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Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the
world, causing major public health problems in developing countries. The rate of TB
incidence in Iran was estimated to be 13 per 100,000 in 2021. This study aimed to estimate
the reproduction number and serial interval for pulmonary tuberculosis in Iran.
Material and methods: The present national historical cohort study was conducted from
March 2018 to March 2022 based on data from the National Tuberculosis and Leprosy
Registration Center of Iran's Ministry of Health and Medical Education (MOHME). The
study included 30,762 tuberculosis cases and 16,165 new smear-positive pulmonary
tuberculosis patients in Iran. We estimated the reproduction number of pulmonary
tuberculosis in a Bayesian framework, which can incorporate uncertainty in estimating it.
Statistical analyses were accomplished in R software.
Results: The mean age at diagnosis of patients was 52.3 ± 21.2 years, and most patients
were in the 35e63 age group (37.1%). Among the data, 9121 (56.4%) cases were males, and
7044 (43.6%) were females. Among patients, 7459 (46.1%) had a delayed diagnosis between
1 and 3 months. Additionally, 3039 (18.8%) cases were non-Iranians, and 2978 (98%) were
Afghans. The time-varying reproduction number for pulmonary tuberculosis disease was
calculated at an average of 1.06 ± 0.05 (95% Crl 0.96e1.15).
Conclusions: In this study, the incidence and the time-varying reproduction number of
pulmonary tuberculosis showed the same pattern. The mean of the time-varying repro-
duction number indicated that each infected person is causing at least one new infection
over time, and the chain of transmission is not being disrupted.
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1. Introduction

Infectious diseases are caused by pathogens such as bacteria, viruses, parasites, or fungi that invade the body andmultiply,
leading to disease. Tuberculosis (TB) is one of the most prevalent infectious diseases in the world, posing a significant global
health threat (Günther et al., 2023; Malani, 2010). Mycobacterium tuberculosis is the bacterium that causes TB, a highly
contagious bacterial disease that mainly affects the lungs. TB spreads from person to person through the air when an infected
person coughs, sneezes, or talks (Dartois& Rubin, 2022). According to theWorld Health Organization (WHO) report, TB is one
of the top 13 causes of death worldwide and the leading cause of death by a single infectious agent. The disease is particularly
prevalent in developing countries but also affects populations in developed countries (Chakaya et al., 2022; OrganizationWH,
2022; Petersen et al., 2022).

A total of 1.6 million people died from TB in 2021. The global TB epidemic affected 10.6 million individuals in total,
including 6.2 million men, 3.4 million women, and 1.2 million children. People of all ages and from all nations are vulnerable
to contracting tuberculosis. The 30 countries with high TB burdens accounted for 87% of new TB cases. Multidrug-resistant TB
(MDR-TB) remains a public health crisis and a security threat. Only approximately one in three people with drug-resistant TB
accessed treatment in 2020. Globally, half of TB-affected households face costs higher than 20% of their income, according to
the latest national TB patient cost survey data. The world did not attain the goal of 0% tuberculosis patients by 2020, so
households faced catastrophic costs due to TB disease. Although 98% of TB cases occur in low- and middle-income countries
(LMICs), only a fraction of the necessary funding is allocated there. The United Nations' Sustainable Development Goals
(SDGs) include the eradication of tuberculosis as a public health problem by the year 2030 (Chakaya et al., 2022; Organization
WH, 2022; Petersen et al., 2022).

Iran, situated in the Eastern Mediterranean region (EMRO), has a population of approximately 85 million, including 3
million foreign nationals, primarily Afghan nationals constituting approximately 95% of this immigrant population (Khosravi
& Dalvand, 2023). Iran shares its borders with Afghanistan and Pakistan, both designated by the WHO as high-burden TB
countries. The Afghanistan-Iran-Pakistan border region (AIP region) has faced significant challenges stemming from conflicts,
political and civil instability, large-scale displacements, droughts, and famines (Poureslami et al., 2004). These factors have
contributed to the deteriorating health and quality of life of vulnerable populations in the area and resulted in elevated rates
of communicable diseases, such as TB. TB is a significant health problem in Iran. According to the WHO report in 2021 on the
epidemiological categorization of countries, territories, and areas based on incidence per 100,000 population in 2019, Iran
ranked in the lower-moderate category (Bahraminia et al., 2021; Doosti et al., 2023a; Khademi & Sahebkar, 2021;
Organization, 2021). Iran has implemented a TB control program since the 1970s, but the disease persists, particularly in
disadvantaged and marginalized populations. The country faces several challenges in controlling TB, including limited access
to diagnostics and treatment, stigma and discrimination, and poor infection control practices in healthcare settings (Azizi &
Bahadori, 2011; Glaziou et al., 2015; Wilson et al., 2020).

One of the important factors in estimating the transmissibility and spread of an infectious disease is the basic reproduction
number, denoted by R0, which measures the average number of secondary cases generated by a single primary case in a
populationwithout immunity to the disease. The goal of public healthcare and epidemic control is to reach R0 < 1(Delamater,
Street, Leslie, Yang, & Jacobsen, 2019). Since R0 should be calculated based on the spread of the disease in a completely
susceptible (sensitive) population, the symbol R0 is useful in initial calculations or estimates of the onset of an epidemic. Over
time, as the number of susceptible individuals in the population decreases, the effective reproduction number (time-varying
reproduction number) is denoted by Rt which is used instead of R0. The value of Rt changes over time as the epidemic
progresses. This change is usually due to an increase in the proportion of immune individuals due to recovery from a previous
illness and is decreasing. In the long run, this trend leads to the value of Rt becoming less than 1, resulting in the epidemic
disappearing or the disease becoming endemic. The Rt is a crucial epidemiological parameter that provides important in-
formation about the potential for an infectious disease to spread. Rt is an important parameter for comprehending the
transmission dynamics of infectious diseases (Koopman, 2004).

As a result of the outbreak of COVID-19, disruptions in TB services have led to an increase in the number of TB cases and TB-
related fatalities worldwide, impacting the lives and livelihoods of millions of people worldwide. The COVID-19 pandemic has
reversed a decade of progress in controlling the TB epidemic (Grassly & Fraser, 2008; Siettos & Russo, 2013). TB is the second
leading cause of death from an infectious disease worldwide and requires an equal, if not greater, amount of attention as
COVID-19 (Organization WH, 2022). In some countries, the incidence of TB has increased again due to neglect of control
activities and a false sense of security resulting from the belief that previous control measures have had a lasting impact
(Kamvar et al., 2019).

Bayesian estimation methods provide a powerful approach for estimating time-varying Rt in infectious disease outbreaks.
Bayesian methods use prior knowledge or beliefs about the distribution of Rt together with observed data to update and
refine those beliefs through the process of posterior inference. This approach yields estimates of Rt that are more accurate and
precise than traditional methods, which rely on assumptions about the underlying disease dynamics. Narula et al. applied the
Bayesian molding technique to a deterministic model of TB to assess the situation of TB in Indian states and union territories.
They estimated the value of R0 as 0.92, which shows that the epidemic of TB is unlikely to occur in India (Narula et al., 2015).
As far as the researchers investigated, Rt of pulmonary tuberculosis (PTB) in Iran has not been estimated, and there is no
strong evidence in this regard. Therefore, the results of this study will be an important tool to help health policymakers
develop more effective TB control measures. In recent years, many mathematical models have been developed to estimate Rt
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during epidemic outbreaks, but there is no existing unique framework on this subject. This study aimed to estimate Rt of
smear-positive pulmonary tuberculosis (SPPTB) in Iran using the Bayesian framework.

2. Materials and methods

2.1. Design

From March 2018 to March 2022, a national historical cohort study was conducted in Iran using data from the National
Tuberculosis and Leprosy Registration Center of Iran's MOHME. The study identified a total of 30,762 tuberculosis cases and
16,165 new smear-positive pulmonary tuberculosis patients across all 429 counties in Iran's 31 provinces. These cases were
diagnosed by 61 medical universities.

2.2. Study participants

The study's selection criteria were centered on newly reported cases, specifically those with smear-positive pulmonary
tuberculosis. These criteria were chosen because such cases are known to have a higher potential for disease transmission
within the community and are a priority for treatment. On the other hand, the decision to exclude smear-negative PTB and
extra-pulmonary tuberculosis (EXTB) cases from our study was driven by several factors, including concerns about diagnostic
accuracy, data reliability, the need to focus on particular subpopulations and the goal of ensuring a consistent and uniform
dataset. These exclusions were made to improve the quality and dependability of our analysis, ultimately leading to a more
precise and accurate understanding of the specific subset of TB cases that were the focus of our investigation. The Tuberculosis
and Leprosy Control Office of Iran's MOHME used a unique computerized questionnaire to register, analyze, and control TB
morbidity, mortality, and related risk factors at the national level for all 429 counties in 31 provinces of Iran. The study
extracted all demographic characteristics and other related risk factors, including age, pretreatment weight, height, sex,
delayed diagnosis, location, bacilli density in the initial smear, nationality, prison condition, treatment outcomes of new PTB
patients based on WHO definition, and duration of treatment. The date of onset of symptoms, date of diagnosis, and date of
treatment were recorded for all patients.

2.3. Statistical analysis

The study summarized quantitative variables as the mean ± SD and qualitative variables as the frequency (%). The chi-
square goodness-of-fit test was used to evaluate the uniform distribution of patients among the levels of qualitative vari-
ables. All preliminary data analyses were carried out using SPSS (version 22, Institute Inc., Chicago, IL, USA), R (version 4.2.1,
www.r-project.org), and Microsoft Office Excel (version 2019) at a significance level of 0.05. Furthermore, Bayesian meth-
odology was applied to estimate Rt .

2.4. Theory

Mathematical and computermodels are used to understand patterns of infection spread in populations. Thesemodels vary
from deterministic models of continuous populations to models of dynamically evolving contact networks between in-
dividuals. They provide insight, serve as scientific theories, help design studies, and help analyze data. To better understand
and model the contagious dynamics, the impact of numerous variables ranging from the micro host-pathogen level to host-
to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe, must be
analyzed and thoroughly studied. Mathematical models have been developed to estimate several types of Rt during epidemic
outbreaks (Grassly & Fraser, 2008; Siettos & Russo, 2013).

2.4.1. Estimating the time-varying reproduction number (Rt)
There are several methods for estimating Rt based on epidemic data. Here, a few commonly used methods, such as the

classical method for estimating Rt , during an outbreak of an infectious disease rely on the epidemic curve, which shows the
number of new cases over time. This method assumes a fixed generation time, which is the time between the infection of a
primary case and the infection of a secondary case. Using this assumption alongwith the epidemic curve, the classical method
estimates Rt at each point in time during the outbreak. Although the classical method is straightforward to implement, its
assumption of a fixed generation time may not hold in all situations, which can lead to biased estimates of Rt . Furthermore,
the method may not be suitable for outbreaks with rapidly changing transmission dynamics, such as those with the sudden
implementation of control measures (Kamvar et al., 2019; Kenah et al., 2008).

The Wallinga and Teunis method is a technique to estimate Rt during an outbreak of an infectious disease. This method
allows for greater flexibility than the classical method in estimating Rt (Wallinga & Lipsitch, 2007; Wallinga & Teunis, 2004).

The Bayesian method estimates Rt using a Bayesian framework and assumes Rt following a specific statistical model, such
as a Gaussian process, which can incorporate uncertainty in the estimation of Rt and provide credible intervals for Rt esti-
mates (Cori et al., 2013). This method can be used for both individual-level and aggregate-level data (Cori et al., 2020). Many
studies tested their method on simulated outbreaks and found that the Bayesian method outperformed traditional methods
965
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in terms of accuracy and precision. They also applied the method to real-world outbreaks, including the 2009 H1N1 influenza
pandemic and the 2014 Ebola outbreak, and showed that the Bayesian method provides more accurate and informative
estimates of Rt (Cauchemez et al., 2009; Cori et al., 2017; Donnelly et al., 2011). In this study, we estimated the Rt within the
Bayesian framework that is described in the following.

This method relies on a branching process model. In a branching process, each infected individual can produce a random
number of secondary infections, and the total number of infections at any given time is the sum of all the infections produced
by each infected individual.

The branching process fYt ; t� 0g can be recursively defined using the representation

Yt ¼
XYt�1

j¼1

It:j : n ¼ 0:1:2:… (1)

Where In:j can be interpreted as the number of new cases produced by the j th infected case in the t� th generation. The

probability distribution of It:j for all t and j is

P
�
It:j ¼ k

�¼pk k � 0

expð�RtÞRk
pk ¼ t
k!

k � 0
The sequence fpk : k� 0g is referred to as the offspring distribution. Most often, we do not have data on the number of
infected individuals by each infectious but on the total number of infected individuals for a given time (ItÞ. The Poisson process
in the branching process assumes that the number of new cases at any given time is a random variable that follows a Poisson
distribution referred to as the offspring distribution, with the mean of this distribution being the product of Rt and the sum of
the past incidence It�s of cases, weighted by ws, the probability mass function of the generation time (the time between
infection in a case and their infector). In practice, as the infection is difficult to observe, the incidence of symptomatic cases
can be used instead, and ws can be approximated by the serial interval (SI) (Fraser, 2007; Nash et al., 2022).

The serial interval (SI), defined as the time interval between the onset of symptoms in a primary case and the onset of
symptoms in a secondary case resulting from the primary case, is also a key factor in determining the speed and pattern of
disease spread (Ten Asbroek et al., 1999; Vink et al., 2014; Vynnycky & White, 2010; Wallinga & Lipsitch, 2007).

TB has no early symptoms, and an infected person can easily spread the disease. The incubation period (no symptoms) for
TB can vary widely, ranging from a few weeks to several months. On average, symptoms develop approximately 2e12 weeks
after infection with TB bacteria. However, in some cases, symptoms may not appear until many months or even years later
(Borgdorff et al., 2011).

In Iran, health centers have been gathering data on the incidence of TB among individuals who have been in close contact
with an infected person since 2018, but the exact time of symptom onset in the second case is unknown. Estimating SI for TB
disease can be challenging, particularly if the exact time of symptom onset in the second case is unknown.

It is worth noting that a significant proportion, approximately 85%, of individuals diagnosed with new smear-positive
pulmonary tuberculosis (PTB) in Iran achieved a successful cure within a median duration of 6.33 months (with a confi-
dence interval ranging from 6.31 to 7.2 months) (Nazar et al., 2021). This underscores that most PTB patients were effectively
treated and monitored during these six months. It is important to recognize that the secondary cases identified in the study
are primarily associated with this treatment duration. A sample of 436 primary cases was identified, while 601 secondary
cases were reported for these primary cases. However, it is crucial to acknowledge the inherent difficulties posed by the
extended latency period characteristic of tuberculosis. The challenge lies in the practicality of tracking all contacts of in-
fectious cases over an extended period to ascertainwhether they eventually develop the disease. This complexity arises due to
tuberculosis's unique features and its protracted incubation period (Ma et al., 2020). Furthermore, it is essential to underscore
that the data under examination in this study originate from a historical cohort and rely on registry-based records. These data
sources have inherent limitations in capturing the entirety of the disease transmission dynamics accurately.

When data on the dates of symptom onset for secondary cases are not available, estimation of the serial interval can still be
possible by relying on an assumption about the distribution of time intervals between symptom onset in primary and sec-
ondary cases. Parametric models for the SI, such as the gamma, Weibull, and log-normal distributions, are widely used to
model infectious diseases (Cowling et al., 2009). Compared to the other distributions, the gamma distribution has a more
flexible shape, which allows it to fit a wider range of SI distributions, including those with shorter or longer tails. The gamma
distribution is also a more natural choice when SI is measured in discrete time units, such as days or weeks, as it models the
probability of observing a certain number of days between the onset of symptoms in the primary and secondary cases. The
Weibull and log-normal distributions are also similar to the gamma distribution in terms of empirical form (Firth, 1988). The
gamma distribution is a continuous probability distribution that is frequently employed to model time intervals between
events that occur independently at a constant rate. The estimation of the shape and scale parameters of the gamma distri-
bution for the serial interval can be achieved using the method of uncertainty on the serial interval distribution as described
in Cori et al. (Cori et al., 2013). This involves calculating the samplemean and variance of the time intervals between symptom
onset in primary and secondary cases, then according to a truncated normal distribution, varying the mean and standard
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deviation of the serial interval. The process involves sampling pairs of means and standard deviations (m and s) while
ensuring that the standard deviation is less than themean. This constraint ensures that the probability density function of the
Gamma distribution for the serial interval is zero at t ¼ 0.

Rt is ameasure of the transmission potential of an infectious disease at a specific point in time. It is calculated as the ratio of
the number of new infected cases at time t, denoted by It, and the total infection potential across all infected individuals at
time t, denoted by Yt. Themodel assumes that the incidence of new cases at time t: It can be represented by a Poisson process:

It � Pois

 
Rt
Xt

s¼1
It�sws

!
(2)
The likelihood of observing the data (total cases Yt at time t) can be formulated as a product of Poisson probabilities:

LðYt jI0:I1…:It�1:ws:RtÞ¼
Y
t

  
Yt

�����Pois
 
Rt
Xt

s¼1
It�sws

!!!
¼

Yt
K¼t�t

ðRtYkðwsÞÞIk expð � RtYkðwsÞÞ
Ik!
The Gamma distribution for a and b can be formulated as a prior distribution for Rt:

PðRtÞ¼
Rta�1 exp

�
�Rt

b

�
GðaÞba
The mean of this gamma distribution is a
b, and these parameters can be obtained from the serial interval distribution.

The posterior distribution for Rt given the observed new cases It and the prior information can be formulated as:

ðRt jI0:I1…:It�t�1:It�t:It�tþ1…:It :wsÞ

fLðYt jI0:I1…:It�1:ws:RtÞPðRtÞ

¼
 Yt

K¼t�t

ðRtYkðwsÞÞIk expð � RtYkðwsÞÞ
Ik!

!0BB@
Rta�1 exp

�
�Rt

b

�
GðaÞba

1
CCA

¼Rtaþ
Pt

s¼1
Ik�1 exp

 
� Rt

 Xt

k¼t�t
YkðwsÞþ1

b

!!
�
Yt

K¼t�t

ðYkðwsÞÞIk
Ik!

Where a and b are the shape and scale parameters of the gamma-distributed prior for Rt. We used a gamma-distributed prior,
conjugated to the Poisson likelihood, to obtain an analytical formulation of the posterior distribution of Rt . According to the
expression above, the posterior distribution for Rt given the incidence data, conditional on the SI distribution ws, is a gamma
distribution with the shape parameter aþPt

s¼1Ik and the scale parameter 1Pt

k¼t�t
YkðwsÞþ1

b

.

We conducted a Bayesian analysis to estimate the mean of a branching process featuring a Poisson offspring distribution.
Our primary objective was to ascertain the underlying mean parameter of this process while incorporating prior beliefs
through the utilization of a gamma prior distribution. To estimate the posterior distribution for Rt, Bayesian inference
techniques such as Markov chain Monte Carlo (MCMC) can be employed. The posterior distribution takes into account both
the observed data It and the prior information from the gamma distribution. We used the EpiEstim package to calculate Rt
based on the provided SI value. (Cori et al., 2013; McBryde et al., 2009; Nishiura & Chowell, 2014; Wallinga & Lipsitch, 2007).

2.4.2. Comparative analysis of Rt before and after the onset of the COVID-19 pandemic
To assess and compare Rt values before and after the onset of the COVID-19 pandemic, a time series analysis was

employed. This method was deemed essential due to the inherent temporal dependencies and the lack of data independence
in the dataset. The analytical procedure involved several crucial steps. First, the data weremeticulously structured into a time
series format to capture temporal dynamics. Subsequently, visualizations were created to elucidate the Rt patterns during
both the pre-pandemic and post-pandemic periods. The selection of an appropriate time series model, such as ARIMA or VAR,
was a pivotal step, followed by the separate estimation of model parameters for each period. Hypothesis testing was then
conducted to discern statistically significant differences in Rt values between the two periods, and the findings were inter-
preted accordingly. This approach sheds light on the impact of the COVID-19 pandemic on Rt values, offering insights into the
evolving dynamics of disease transmission.
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3. Results

Between March 2018 and March 2022, a total of 30762 active TB cases (PTB and EXTB) were diagnosed in Iran, 16165 of
whomwere new smear-positive PTB patients, and theywere included in the study. Of the 16165 patients,11425 (70.68%) were
cured, 2176 (13.46%) completed the treatment period, 375 (2.32%) experienced treatment failure, 526 (3.25%) interrupted the
treatment or failed to follow up, 1491 (9.22%) died, and 172 (1.06%) patients transferred out (Fig. 1).

A sample of 436 primary cases was identified, while 601 secondary cases were reported. Of the primary cases, 348 (79.8%)
had only one secondary case, 52 (11.9%) had two secondary cases, and 36 (8.3%) had more than three secondary cases. On
average, each primary case is associated with approximately 1.3 secondary cases. Additionally, 147 (33.7%) of the primary
cases were of Afghan nationality, of which 195 secondary cases (32.5%) were reported.

The mean age at diagnosis of patients was 52.3 ± 21.2 years, and most patients were in the 35e63 years age group (37.1%).
Among the data, 9121 (56.4%) cases were males, and 7044 (43.6%) were females. The patients’ height was defined in the TB
registration system, but height for 772 cases and weight for 53 cases were not recorded, so body mass index (BMI) was
calculated for 15,340 cases. A total of 5395 (35.3%) cases were underweight, 1892 (12.4%) were overweight, 701 (4.6%) were
obese, and the others were in the normal range. Among patients, 7459 (46.1%) had a delayed diagnosis between 1 and 3
months. A total of 3039 (18.8%) cases had non-Iranian nationalities, and 2978 (98%) were Afghans (Table 1).

Based on a sample of 436 primary cases and close contact data, the mean SI estimated approximately 29.6 weeks. In the
Bayesian framework implemented with the EpiEstim package, uncertainty on the serial interval model is adopted, specifically
Fig. 1. Flow diagram showing selection of the study population (tuberculosis (TB), pulmonary tuberculosis (PTB), extra-pulmonary tuberculosis (EXTB)).

968



Table 1
Baseline characteristics and risk factors of new smear-positive pulmonary tuberculosis patients in Iran (n ¼ 16,165).

Characteristics New smear-positive PTB patients P Value

Age (year) Mean ± SD 52.3 ± 21.2 e

Age (year) <15 (n %) 391(2.4) <0.001 a

15-35 (n %) 3944 (24.4)
36-63 (n %) 5990 (37.1)
>64 (n %) 5840 (36.1)

Gender Female (n %) 7044 (43.6) <0.001 a

Male (n %) 9121 (56.4)
BMI (kg/m2) Underweight (n %) 5395 (35.3) <0.001 a

Normal range (n %) 7312 (47.8)
Overweight (n %) 1892 (12.4)
Obese (n %) 701 (4.6)

Bacilli density in initial smear 1e9 Basil (n %) 1501 (9.3) <0.001 a

1þ (n %) 5355 (33.1)
2þ (n %) 3456 (21.4)
3þ (n %) 5853 (36.2)

Delayed diagnosis (month) <1 (n %) 3865 (23.9) <0.001 a

1-3 (n %) 7459 (46.1)
3> (n %) 4841(29.9)

Nationality Iranian (n %) 13126 (81.2) <0.001 a

Others (n %) 3039 (18.8)
Location Urban (n %) 10948 (67.7) <0.001 a

Rural (n %) 5217 (32.3)
Prison condition Yes (n %) 473 (2.9) <0.001 a

No (n %) 15692 (97.1)

a Significant at a level of 0.05.
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using a gamma distribution with a mean of 29.6. This means that SI is assumed to follow a truncated normal distribution,
varying themean of the serial interval from 15 to 42weeks with amean value of 29.6 weeks. With this SI distribution in place,
the Bayesian framework allows for the estimation of the posterior distribution for Rt. SI of SPPTB in Iran from 2018 to 2022
weekly is shown in Fig. 2. The weekly number of SPPTB cases and Rt in Iran from March 2018 to March 2022 are shown in
Fig. 3.

Table 2 provides a summary of the descriptive statistics for key epidemiological parameters related to SPPTB in Iran during
the period from 2018 to 2022. The mean Rt is reported as 1.06, with a standard deviation (SD) of 0.05, reflecting the average
and variation in disease transmission. SI exhibits a mean of 29.59 weeks and an SD of 20.41 weeks. Quartile values, including
the 1st quartile (0.88 for Rt and 28.77 for SI) and 3rd quartile (1.88 for Rt and 30.37 for SI), delineate the spread of data around
the medians (1.02 for Rt and 29.58 for SI). Notably, the minimum and maximum values for Rt are 0.51 and 1.88, respectively,
while those for SI are 25.49 and 32.96 weeks. Furthermore, the table presents the 95% credible intervals for Rt (ranging from
0.96 to 1.15) and SI (from 18.58 to 31.43), offering insights into parameter uncertainty.

Table 3 displays the results of the time series analysis comparing Rt values before and after the COVID-19 pandemic. Two
separate ARIMA (0,1,1) models were employed for the pre-pandemic and post-pandemic periods. The analysis revealed
distinct patterns Rt before and after the pandemic. Rt exhibited a decreasing trend during the pre-pandemic period, while the
post-pandemic period witnessed an increasing trend. Specifically, the pre-pandemic ARIMA model had a coefficient_ma1 of
0.391, resulting in a lower Rt mean. Conversely, the postpandemic ARIMA (0,1,1) model had a coefficient_ma1 of 0.422 and a
positive drift term, contributing to a higher Rt mean.
Fig. 2. Serial interval of SPPTB in Iran from March 2018 to March 2022 weekly.
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Fig. 3. New cases and Rt of SPPTB in Iran from March 2018 to March 2022 weekly.

Table 2
Descriptive statistics of Rt and SI of PTB disease in Iran during 2018e2022.

descriptive statistics Mean (Rt) SD (Rt) Mean (SI)
(week)

SD (SI)
(week)

Minimum 0.51 0.03 25.49 18.02
1st Quartile 0.88 0.04 28.77 19.57
Median 1.02 0.05 29.58 20.35
Mean 1.06 0.05 29.59 20.41
3rd Quartile 1.88 0.05 30.37 21.26
Maximum 1.88 0.12 32.96 24.77
95%Crl (0.96,1.15) (18.58,31.43)

Standard deviation (SD), 95% credible interval (95% Crl).

Table 3
Time series analysis comparing Rt of PTB in Iran before the COVID-19 pandemic and after the COVID-19 pandemic.

Model Coefficient_ma1 sigma2 Log_Likelihood AIC AICc BIC ME RMSE

Prepandemic ARIMA 0.391 0.003 125.400 �244.800 �244.500 �237.510 0.000 0.054
Postpandemic ARIMA 0.422 0.003 147.580 �291.150 �291.030 �285.900 0.004 0.057
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In Fig. 4, we present a comparison of the time series trends of Rt before and after the onset of the COVID-19 pandemic.
These findings suggest that the COVID-19 pandemic has had an impact on Rt dynamics in PTB transmission, with a shift from a
decreasing trend to an increasing trend.

4. Discussion

The data for tuberculosis in Iranwere examined, and it was found that between 2018 and 2022, a total of 30,762 cases were
reported; in 2018 and 2019, 9000 cases were registered annually; in 2020 and 2021, approximately 6500 cases were regis-
tered annually; and in 2021 and 2022, a 27% decrease in TB was detected in Iran. One of the reasons for this reduction was
attributed to the COVID-19 pandemic and the involvement of healthcare personnel in this emergency, leading to a reduction
in tuberculosis screening in Iran. The COVID-19 pandemic has resulted in a significant reduction in TB detection and diagnosis
worldwide, with some countries experiencing up to a 25% decrease in TB cases detected during the lockdown period. This is
due to reduced access to health services, decreased TB screening, and the repurposing of TB testing equipment and staff for
COVID-19 testing. The reduction in TB detection may lead to a higher risk of transmission and long-term implications for TB
control (Husain et al., 2021; Rodrigues et al., 2022).

The time series analysis comparing Rt values before and after the COVID-19 pandemic in the context of SPPTB transmission
revealed notable differences. Before the pandemic, Rt exhibited a decreasing trend, as indicated by the pre-pandemic ARIMA
model with a lowermean Rt . In contrast, the post-pandemic period demonstrated an increasing Rt trend, characterized by the
post-pandemic ARIMAmodel with a higher mean Rt . This shift from a decreasing to an increasing trend suggests a significant
impact of the COVID-19 pandemic on PTB transmission dynamics. The COVID-19 pandemic has profoundly impacted TB
diagnosis and screening programs, posing significant challenges to the global effort to combat tuberculosis. The diversion of
resources, reduced access to healthcare facilities, and disruptions in diagnostic services have hampered TB case finding and
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Fig. 4. Comparison of Rt time series trends before and after the COVID-19 pandemic.
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early detection during these unprecedented times. Additionally, the overlapping respiratory manifestations of tuberculosis
and COVID-19 highlight the critical importance of understanding andmanaging the respiratory dynamics of these diseases to
prevent transmission, ensure timely diagnosis, and develop effective treatment strategies (Cioboata et al., 2023).

The incidence rate of tuberculosis (TB) in Afghanistan and Pakistan, which are neighboring countries of Iran, is one of the
highest in the world, estimated to be at least 40 cases per 100,000 people or greater (Organization, 2021). These countries
have the highest prevalence of drug-resistant tuberculosis. According to the data, 147 (33.7%) of the primary cases were
Afghan nationals who infected 195 (32.5%) secondary cases, indicating a high percentage. This suggests that immigrants from
neighboring countries, particularly Afghanistan, can also have an impact on the trend of tuberculosis in Iran. Therefore,
controlling the incidence of tuberculosis among immigrants and developing cohesive programs to follow up and treat these
individuals can play a key role in eradicating the disease. According to a study conducted in Taiwan, female and youngmigrant
workers from countries with high TB incidence were identified as significant sources of tuberculosis reservoirs. This finding
suggests that latent tuberculosis infection (LTBI) may reactivate, leading to a probable risk of ongoing transmission during the
first few years after their arrival in Taiwan (Lu et al., 2019). Borgdorff et al.'s study found that immigration from high TB
prevalence areas may contribute to an increased risk of tuberculosis in Europe. The study focused on the transmission of
tuberculosis between andwithin nationalities among residents of the Netherlands. The researchers used a transmission index
to estimate the Rt associated with recent transmission and found that 17% of Dutch TB cases were attributed to recent
transmission from a non-Dutch source. The transmission index varied significantly by nationality, with the highest rates
found among the Surinamese, Moroccan, and Turkish populations. These findings underscore the importance of targeted TB
control measures for immigrant populations from high-prevalence areas to reduce the risk of ongoing transmission within
the community. (Borgdorff et al., 1998).

Several studies have estimated Rt for TB. For example, a study byMa et al. used simulation studies to demonstrate that the
curemodel should be usedwhen there is credible information on the percentage of individuals whowill develop TB following
infection. They estimated the SI for TB in the United States and Canada to be approximately 0.5 years and approximately 2.0
years in Brazil. This suggests a higher occurrence of reinfected TB in developing countries such as Brazil (Ma et al., 2020).
Another study by Salpeter et al. estimated Rt to be approximately 0.55 (Salpeter & Salpeter, 1998). Another study by Zhao, Li,
and Yuan used the SEIR epidemic model with age groupings and seniors to investigate the role of age in the transmission of
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tuberculosis in mainland China from 2005 to 2016. Then, they evaluated the parameters by the least squares method and
simulated the model, and they estimated an R0 of 1.79, with a 95% confidence interval for R0 of (1.78, 1.80) by Latin hypercube
sampling (Zhao et al., 2017). There was no study to estimate Rt and SI for TB in Iran. In this study, the SPPTB incidence and Rt
follow similar patterns. Rt fluctuates approximately 1, occasionally dips below it and occasionally rises above it, but the
average remains at approximately 1.06. The mean value of Rt provides us with insights into potential future trends in SPPTB
incidence. This suggests that there may be an increase in SPPTB cases in the future, and this information can be valuable in
understanding the likely trajectory of the disease. We have concluded that the chain of transmission has not been interrupted
(Dietz,1993). In recent decades, the incidence of the disease has been gradually reduced in Iran. However, the reduction in the
incidence of the disease has stopped in the country in recent years. This could be due to an increase in immigration, diabetes,
HIV/AIDS, and the prevalence of drug-resistant strains. In conclusion, the increase in predisposing risk factors for catching TB,
especially migration and Beijing strain, shows that in the absence of accurate monitoring, TB cases will increase in the near
future in Iran (Fadaee et al., 2020). Despite TB treatment success and the low prevalence of MDR cases, TB incidence has not
decreased significantly in Iran. Delays in diagnosis, high TB burden in refugees, and close contact investigation and pro-
phylaxis are important issues in the TB control program in Iran to be considered in control planning (Doosti et al., 2023b).

One strength of the Bayesian estimation method for pulmonary tuberculosis Rt using new smear-positive cases in Iran is
that it allows for a more precise estimation of the Rt variable over time, which is critical for understanding the transmission
dynamics of the SPPTB in Iran. The study also used a large dataset of SPPTB cases from the Iranian National Tuberculosis
Registry, which helped to ensure that the results were robust and representative of the broader population. However, there
are also several limitations to consider. First, the study only covered the period from 2018 to 2022, which may not represent
longer-term trends in SPPTB transmission in Iran. Second, the study relied on assumptions about the distribution of the SI,
which could introduce some uncertainty into the results. It should be noted that the value of Rt may be subject to over-
estimation due to an imprecise calculation of SI and a lack of accurate knowledge about the incubation time of TB. Addi-
tionally, there is a possibility of underestimation due to decreased tuberculosis case detection during the years 2020e2022 as
a result of the strain on healthcare systems caused by the COVID-19 pandemic. Despite these limitations, the Bayesian
estimation method used in this study provides a valuable tool for estimating Rt of SPPTB in Iran, which could inform public
health strategies aimed at controlling the spread of the disease. Future studies could build on this work by incorporating
additional sources of data and extending the analysis to cover longer periods.

5. Conclusion

The findings of this study shed light on the patterns of TB transmission and underscore the significance of collecting and
examining temporal data related to the disease, including Rt . Such insights hold the potential to guide health policymakers in
crafting interventions aimed at disease control. Our research adds to the collective endeavor to combat and eradicate TB, a
persistent global public health concern. Enhanced comprehension of TB transmission patterns equips us to devise more
efficient approaches to prevention, diagnosis, and treatment, leading to better health outcomes for individuals and com-
munities impacted by TB.

Based on this study, it appears that there has been a consistent and constant trend in both the weekly incidence of SPPTB
and Rt of SPPTB in Iran. Moreover, this suggests that due to the COVID-19 pandemic, there may have been insufficient efforts
to address and reduce the spread of this disease, ultimately preventing its eradication from the country.
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