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Abstract. In this paper, we consider a plate viscoelastic p(x)−Kirchhoff type equa-
tion with variable-exponent nonlinearities of the form

utt +∆2u−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(x)u−

∫ t

0

g(t− s)∆2u(s)ds

+β∆2ut + |ut|m(x)−2ut = |u|q(x)−2u,

associated with initial and boundary feedback. Under appropriate conditions on
p(·),m(·) and q(·), general decay result along the solution energy is proved. By
introducing a suitable auxiliary function, it is also shown that regarding negative
initial energy and a suitable range of variable exponents, solutions blow up in a
finite time.

Mathematics Subject Classification (2020): 35B35, 35B44.

Key words: General decay, blow-up, viscoelastic, p(x)-Kirchhoff type equation.

1. Introduction. Let Ω be a bounded domain of Rn(n ≥ 1) with a smooth
boundary ∂Ω = Γ0 ∪ Γ1. Here Γ0 and Γ1 are closed and disjoint with positive
measures. Consider the following plate viscoelastic p(x)−Kirchhoff type equation

utt +∆2u−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)
∆p(x)u−

∫ t

0

g(t− s)∆2u(s)ds+ β∆2ut
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+|ut|m(x)−2ut = |u|q(x)−2u, x ∈ Ω, t > 0 (1){
u(x, t) = 0, x ∈ Γ0, t > 0

∆u(x, t) =
∫ t
0
g(t− s)∆u(s)ds− β∆ut, x ∈ Γ1, t > 0

(2)

u(x, 0) = u0, ut(x, 0) = u1(x), x ∈ Ω (3)

where ∆p(x) is called p(x)−Laplacian operator defined as

∆p(x)u = div(|∇u|p(x)−2∇u),

and β, a, b > 0. Here, we have the following conditions on the variable exponents:

(A1) the exponents p(·), m(·) and q(·) are given measurable functions on Ω such
that:

2 < p1 ≤ p(x) ≤ p2 <∞,

2 < m1 ≤ m(x) ≤ m2 <∞,

2 < q2 ≤ q(x) ≤ q2 <∞,

with
p1 := ess inf

x∈Ω
p(x), p2 := ess sup

x∈Ω

p(x),

m1 := ess inf
x∈Ω

m(x), m2 := ess sup
x∈Ω

m(x),

q1 := ess inf
x∈Ω

q(x), q2 := ess sup
x∈Ω

q(x).

(A2) The kernel of memory, g : R+ → R+, is a differentiable and non-increasing
function satisfying

g(0) > 0, 1−
∫ +∞

0

g(s)ds = l > 0.

Torrejón and Yang [37] studied the following equation

utt−M(∥∇u∥2L2(Ω))∆u−
∫ t

0

a′(t− τ)N(∥∇u∥2L2(Ω))∆u(τ)dτ + h(ut) = f(u), (4)

and when h ≡ 0, they showed that under appropriate assumptions on the kernel of
the memory a′, the functions, M,N , the right-hand side f and the data, solutions
to (4) are unique, global in time, and their derivatives are weakly convergent to
zero in L2(Ω), as t tends to +∞. Many existence and blow-up results for Kirchhoff
type equations with various initial-boundary value conditions have been proved in
the literature. For example, when the initial energy has an upper bound, Wu and
Tsai [38] proved the existence and blow-up of solutions for the equation (4) with
M = m0+bs

γ , h(ut) = a|ut|ν−2ut+a|ut|m−2ut and f(u) = |u|p−2u. Yang and Gong
[39] studied equation (4) with M = 1 + bsγ , h(ut) = ut and f(u) = |u|p−2u. They
proved under certain assumptions on the kernel g and the initial data, solutions
blow-up in a finite time with positive initial energy. In another study, Peyravi and
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Tahamtani obtained a blow-up result for this model with a strong damping term
∆ut in [22].

In the plate model of Kirchhoff type equations, Pişkin [23] considered the fol-
lowing extensible beam equation with nonlinear damping and source term

utt +∆2u−M(∥∇u∥2)∆u+ |ut|p−1ut = |u|q−1u.

He established the existence of the solution by the Banach contraction mapping
principle and decay result by using Nakao’s inequality. Moreover, under suitable
conditions on the initial datum, the blow up of solutions has been proved. In this
regards we refer to [19, 40, 18, 8, 20, 1, 26].

The problems with variable exponents arise in many branches of sciences such
as flows of electro-rheological fluids, nonlinear viscoelasticity, and image processing
[9, 11, 29]. Pişkin [25], proved the blow up of solutions for the following Kirchhoff-
type equation:

utt −M(∥∇u∥2)∆u+ |ut|p(x)−2ut = |u|q(x)−2u.

In [36], Shahrouzi and Kargarfard considered the following Kirchhoff-type problem:

utt −M(∥∇u∥2)∆u−∆m(x)u+ h(x, t, u,∇u) + βut = ϕp(x)(u), in Ω× (0,+∞){
u(x, t) = 0, (x, t) ∈ Γ0 × (0,+∞)
M(∥∇u∥2) ∂u∂n (x, t) = αu− |∇u|m(x) ∂u

∂n , (x, t) ∈ Γ1 × (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

where ϕp(x)(u) = |u|p(x)u and ∆m(x) is m(x)-Laplacian operator. They proved the
blow up of solutions with positive initial energy and suitable conditions on datum.
Recently, Antontsev et. al. [5] investigated the following nonlinear fourth-order
Timoshenko equation with variable exponents:

utt +∆2u−M(∥∇u∥2L2(Ω))∆u+ |ut|p(x)−2ut = |u|q(x)−2u,

and proved the local existence of the solution under suitable conditions. Moreover,
the nonexistence of solutions has been proved with negative initial energy.

Dai and Hao [10] studied the following equation

−M
( ∫

Ω

1

p(x)
|∇u|p(x)dx

)
div(|∇u|p(x)−2∇u) = f(x, u).

Employing a direct variational approach and the theory of the variable exponent
Sobolev spaces, they established conditions ensuring the existence and multiplicity
of solutions for the problem. Shahrouzi and Ferreira [31] considered the following
r(x)−Kirchhoff type equation with variable-exponent nonlinearity

utt −∆u−
(
a+ b

∫
Ω

1

r(x)
|∇u|r(x)dx

)
∆r(x)u+ βut = |u|p(x)−2u,

and proved that for sufficiently large β and under appropriate conditions on r(·)
and p(·), solutions are asymptotically stable. Moreover, they established regarding
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arbitrary positive initial energy and a suitable range of variable exponents, solutions
blow up in a finite time. Recently, Shahrouzi et al. [34] investigated the following
initial-boundary value problem which involves the viscoelastic fourth-order p(x)-
Laplacian operator and the variable-exponent nonlinearities

|∂tu|ρ(x)−2∂ttu+ Lu−
∫ t

0

µ(t− s)∆2
xu(s)ds−∆x∂ttu+ |∂tu|m(x)−2∂tu

= |u|q(x)−2u, (x, t) ∈ Ω× (0, T ){
u(x, t) = ∂u(x,t)

∂ν = 0, (x, t) ∈ Γ0 × (0,+∞)

M(∆xu)−
∫ t
0
µ(t− s)∆xu(x, s)ds = 0, (x, t) ∈ Γ1 × (0,+∞)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω,

where L is an operator involving the biharmonic and fourth-order p(x)-Laplacian
operators which defined as

Lu :=

n∑
i=1

∂2

∂x2i
M

 n∑
j=1

∂2u

∂x2j

 ,

for any u ∈ H2(Ω), where M(v) =
(
1 + a|v|p(x)−2

)
v, and a is a positive constant.

They proved the global existence of solutions, general decay and blow-up results
with positive initial energy as well as negative, under appropriate conditions on
initial data. In another study, Shahrouzi et al. [35] proved the global existence,
asymptotic stability and finite time blow-up of solutions for the following viscoelas-
tic plate equation involving (p(x), q(x))-Laplacian operator

utt +∆2u− div[(|∇u|p(x)−2 + |∇u|q(x)−2)∇u]−
∫ t

0

g(t− s)∆2u(s)ds− ξ∆ut

= α|u|p(x)−2u+ β|u|q(x)−2u.

The relevant equations with variable-exponent nonlinearities have also been stud-
ied in [2, 3, 4, 7, 16, 17, 24, 30, 32, 33].

Motivated by the above mentioned works, in this paper, we consider a vis-
coelastic p(x)−Kirchhoff type of plate equation (1) with nonlinear boundary con-
ditions (2). Under appropriate conditions on the kernel of memory and variable
exponents, we prove general decay and blow up of solutions with negative initial
energy. This work improve and extend results in the literature to problems involv-
ing fourth-order viscoelastic p(x)−Kirchhoff type equation with variable exponent
nonlinearities and boundary feedback.

This manuscript is written as follows. In Section 2, we present some definitions
and Lemmas about the variable-exponent Lebesgue space, Lp(·)(Ω), the Sobolev
space, W 1,p(·)(Ω), to be used for the main results. In Section 3, we prove the
general decay of solutions for appropriate initial data. Finally, the blow up of
solutions has been proved with negative initial energy and suitable conditions on
datum, in the fourth Section.
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2. Preliminaries. In order to study problem (1)-(3), we need some theories
about Lebesgue and Sobolev spaces with variable-exponents (see [6, 11]).

Let p : Ω → [1,∞] be a measurable function, where Ω is a domain of Rn. We
define the variable exponent Lebesgue space by

Lp(x)(Ω) =
{
u| u is measurable in Ω and

∫
Ω

|λu(x)|p(x)dx < ∞ for some λ > 0
}
.

We equip the Lebesgue space with a variable exponent, Lp(·)(Ω), with the following
Luxembourg-type norm

∥u∥p(x) := inf
{
λ > 0

∣∣∣ ∫
Ω

|u(x)
λ

|p(x)dx ≤ 1
}
.

Lemma 2.1. ([11]) Let Ω be a bounded domain in Rn

(i) the space (Lp(·)(Ω), ∥.∥p(·)) is a Banach space, and its conjugate space is Lq(·)(Ω),

where 1
q(x) +

1
p(x) = 1.

(ii) For any f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω), the generalized Hölder inequality holds∣∣ ∫
Ω

fgdx
∣∣ ≤ ( 1

p1
+

1

q1

)
∥f∥p(·)∥g∥q(·) ≤ 2∥f∥p(·)∥g∥q(·).

The relation between the modular
∫
Ω
|f |p(x)dx and the norm follows from

min(∥f∥p1p(·), ∥f∥
p2
p(·)) ≤

∫
Ω

|f |p(x)dx ≤ max(∥f∥p1p(·), ∥f∥
p2
p(·)).

Let the variable exponent p(·) satisfy the log-Hölder continuity condition

|p(x)− p(y)| ≤ A

log 1
|x−y|

, for all x, y ∈ Ω with |x− y| < δ, (5)

where A > 0 and 0 < δ < 1.
The variable-exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : ∇u exists and |∇u| ∈ Lp(·)(Ω)}.

This space is a Banach space concerning the norm

∥u∥W 1,p(·)(Ω) = ∥u∥p(·) + ∥∇u∥p(·).

Furthermore, let W
1,p(·)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(·)(Ω) with respect to

the norm ∥u∥1,p(·). For u ∈W
1,p(·)
0 (Ω), we can define an equivalent norm

∥u∥1,p(·) = ∥∇u∥p(·).

Lemma 2.2. (The Poincaré inequality) Assume that Ω be a bounded domain of
Rn and p(·) satisfies log-Hölder condition, then

∥u∥p(x) ≤ c∥∇u∥p(x), for all u ∈W
1,p(·)
0 (Ω), (6)

where c = c(p1, p2, |Ω|) > 0.



6 J. Ferreira, E. Pişkin and M. Shahrouzi

Lemma 2.3. Let p(·) ∈ C(Ω̄) and q : Ω → [1,∞) be a measurable function that
satisfy

ess infx∈Ω̄(p
∗(x)− q(x)) > 0.

Then the Sobolev embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is continuous and compact.

Where

p∗(x) =

{ np1
n−p1 , if p1 < n,

any number in [1,∞), if p1 ≥ n.

If in addition p(·) satisfies log-Hölder condition, then

p∗(x) =

{
np(x)
n−p(x) , if p(x) < n,

any number in [1,∞), if p(x) ≥ n.

Proposition 2.4. (See [12, 13, 14, 15]) Let Ω be a bounded domain in Rn,
p ∈ C0,1(Ω), 1 < p1 ≤ p(x) ≤ p2 < n. Then for any q ∈ C(Γ1) with 1 ≤ q(x) ≤
(n−1)p(x)
n−p(x) , there is a continuous trace W 1,p(x)(Ω) ↪→ Lq(x)(Γ1), when 1 ≤ q(x) <<

(n−1)p(x)
n−p(x) , the trace is compact, in particulary the continuous trace W 1,p(x)(Ω) ↪→
Lp(x)(Γ1) is compact.

By using Proposition 2.4, there exist constant C and the embedding

H2
Γ1
(Ω) ↪→ Lp(x)(Γ1)

which implies

∥u∥p(·),Γ1
≤ C∥∆u∥, ∀ u ∈ H2

Γ1
(Ω),

where ∥u∥p(·),Γ1
:=

∫
Γ1

|u|p(x)dΓ.
Moreover, embedding

H2
Γ1
(Ω) ↪→ Lp(x)(Ω)

which implies

∥u∥p(·) ≤ C∥∆u∥, ∀ u ∈ H2
Γ1
(Ω). (7)

We recall the Young’s inequality

XY ≤ θXq(x) + C(θ, q(x))Y q
′(x), X, Y ≥ 0, θ > 0,

1

q(x)
+

1

q′(x)
= 1, (8)

where C(θ, q(x)) = 1
q′(x) (θq(x))

− q′(x)
q(x) . In special case when θ = 1

q(x) , we have from

(8)

XY ≤ Xq(x)

q(x)
+
Y q

′(x)

q′(x)
. (9)

We set

H2
Γ1
(Ω) = {v ∈ H2(Ω) : v = 0 on Γ0}.
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Definition 2.5. Let u0, u1 ∈ H2
Γ1
(Ω)×L2(Ω). A function u(x, t) is called a weak

solution of the problem (1)-(3) defined on [0, T ] (0 < T <∞) if

u ∈ C1
(
(0, T );H2

Γ1
(Ω) ∩W 1,p(·)(Ω)

)
,

ut ∈ L2
(
(0, T );H2

Γ1
(Ω) ∩ Lm(x)(Ω)

)
,

and satisfy∫
Ω

vuttdx+

∫
Ω

v∆2udx−
(
a+ b

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

v∆p(x)udx

−
∫
Ω

∫ t

0

g(t− s)v∆2u(s)dsdx+ β

∫
Ω

v∆2utdx+

∫
Ω

v|ut|m(x)−2utdx

=

∫
Ω

v|u|q(x)−2udx, ∀v ∈ C1
(
(0, T );H2

Γ0
(Ω) ∩W 1,p(·)(Ω)

)
u(x, 0) = u0, ut(x, 0) = u1,

with compatibility boundary condition

∆u0 −
∫ t

0

g(t− s)∆u0(s)ds+ β∆u1 = 0, on Γ1.

For the sake of completeness, the local existence result for the problem (1)-(3) is
stated as follows. This theorem could be proved by the Faedo-Galerkin approxi-
mation method and the compactness method with the Banach fixed point theorem
that has been used in the works of Rahmoune [27, 28].

Theorem 2.6. (Local existence) Suppose that (A1) and (A2) are satisfied; then
the problem (1)-(3) has at least one weak solution.

The energy of the system defined by

E(t) =
1

2
I(t) + a

∫
Ω

1

p(x)
|∇u|p(x)dx−

∫
Ω

1

q(x)
|u|q(x)dx, (10)

where

I(t) = ∥ut∥2 + (1−
∫ t

0

g(s)ds)∥∆u∥2 + b
(∫

Ω

1

p(x)
|∇u|p(x)dx

)2

+ (g ∗∆u)(t),

and

(g ∗ u)(t) =
∫ t

0

g(t− s)∥u(t)− u(s)∥2ds.

Moreover, by using the boundary conditions and (A2) for any solution of problem
(1)-(3), the energy functional satisfies

dE(t)

dt
=

1

2
(g′ ∗∆u)(t)− 1

2
g(t)∥∆u∥2 − β∥∆ut∥2 −

∫
Ω

|ut|m(x)dx ≤ 0. (11)
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3. General decay. In this section, we prove a general decay result for the
solution energy. We show that the solutions decay uniformly to zero with arbitrary
rates the same as the ones of the memory kernel. To this end, we make the following
assumptions:

(A3) There exists a non-increasing differentiable function ξ : R+ → R+ such that

ξ(0) ≥ 0, g′(t) ≤ −ξ(t)g(t),
∫ ∞

0

ξ(t)dt = +∞,

(A4) variable exponents and kernel of memory satisfy

q2 ≤ m1 ≤ min{p1,
2p21
p2

}.

Our main result in this section reads in the following theorem:

Theorem 3.1. Let the conditions (A1)-(A4) be satisfied. Then the energy E(t)
of the problem (1)-(3) satisfies the following general estimate for the two positive
constants k and K:

E(t) ≤ KE(0)e−k
∫ t
0
ξ(s)ds, for all t ≥ 0. (12)

To prove the above theorem, for sufficiently small ε > 0 we define

F (t) = E(t) + εϕ(t), (13)

where

ϕ(t) =

∫
Ω

(uut −
β

2
|∆u|2)dx.

Lemma 3.2. Under the assumptions of Theorem 3.1, the functional ϕ(t) satisfies,
along the solution, the estimate

ϕ′(t) ≤ (C2 +
β

2γ0
)∥∆ut∥2 +

1− l

4γ1
(g ∗∆u)(t) + m2 − 1

m2

∫
Ω

|ut|m(x)dx

+

∫
Ω

|u|q(x)dx− [l − γ1(1− l)− 2βγ0 −
C

m1
]∥∆u∥2

−a
∫
Ω

|∇u|p(x)dx− b

p2

(∫
Ω

|∇u|p(x)dx
)2

. (14)

Proof. Differentiating ϕ(t) with respect to t we have

ϕ′(t) = ∥ut∥2 +
∫
Ω

uuttdx− β

∫
Ω

∆u∆utdx.
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Multiplying equation (1) in u and using boundary conditions we get

ϕ′(t) = ∥ut∥2 − (1−
∫ t

0

g(s)ds)∥∆u∥2 − a

∫
Ω

|∇u|p(x)dx− 2β

∫
Ω

∆u∆utdx

−b
(∫

Ω

1

p(x)
|∇u|p(x)dx

)(∫
Ω

|∇u|p(x)dx
)
−
∫
Ω

u|ut|m(x)−2utdx

+

∫ t

0

g(t− s)

∫
Ω

∆u(∆u(s)−∆u)dxds+

∫
Ω

|u|q(x)dx

≤ C2∥∆ut∥2 − l∥∆u∥2 − a

∫
Ω

|∇u|p(x)dx

− b

p2

(∫
Ω

|∇u|p(x)dx
)2

+

∫
Ω

|u|q(x)dx− 2β

∫
Ω

∆u∆utdx

+

∫ t

0

g(t− s)

∫
Ω

∆u(∆u(s)−∆u)dxds−
∫
Ω

u|ut|m(x)−2utdx, (15)

where condition (A1) and (7) have been used.
To estimate the last three terms on the right-hand side of (15), we use the

Young’s inequality (9). Consequently, we get

|
∫
Ω

∆u∆utdx| ≤ γ0∥∆u∥2 +
1

4γ0
∥∆ut∥2, (16)

|
∫
Ω

u|ut|m(x)−2utdx| ≤
∫
Ω

1

m(x)
|u|m(x)dx+

∫
Ω

m(x)− 1

m(x)
|ut|m(x)dx

≤ 1

m1

∫
Ω

|u|m(x)dx+
m2 − 1

m2

∫
Ω

|ut|m(x)dx

≤ C

m1
∥∆u∥2 + m2 − 1

m2

∫
Ω

|ut|m(x)dx, (17)

where (A1) and embedding inequality have been used.∫ t

0

g(t− s)|
∫
Ω

∆u(∆u(s)−∆u)dx|

≤ γ1(

∫ t

0

g(s)ds)∥∆u∥2 + 1

4γ1

∫
Ω

(∫ t

0

g(t− s)|∆u(s)−∆u|ds
)2

dx

≤ γ1(1− l)∥∆u∥2 + 1

4γ1

∫
Ω

(∫ t

0

g(t− s)√
g(t− s)

√
g(t− s)|∆u(s)−∆u|ds

)2

dx

≤ γ1(1− l)∥∆u∥2 + 1

4γ1

(∫ t

0

g(s)ds
)∫

Ω

∫ t

0

g(t− s)|∆u(s)−∆u|2dsdx

≤ γ1(1− l)∥∆u∥2 + (1− l)

4γ1
(g ∗∆u)(t), (18)
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where inequality
∫ t
0
g(s)ds <

∫∞
0
g(t)dt = 1− l has been used.

Hence, by combining (16)-(18) and (15), the proof of Lemma 3.2 is completed. 2

Lemma 3.3. Under the assumptions of Theorem 3.1, there exists a constant α > 0
such that the functional F (t) satisfies, along the solution, the estimate

F ′(t) + εm1F (t) ≤ α(g ∗∆u)(t). (19)

Proof. Differentiating of F (t) with respect to t, and taking (11) and (14) into
account, we deduce

F ′(t) = E′(t) + εϕ′(t)

≤ −[β(1− ε

2γ0
)− εC2]∥∆ut∥2 + ε

∫
Ω

|u|q(x)dx

+
ε(1− l)

4γ1
(g ∗∆u)(t)− (1− m2 − 1

m2
)

∫
Ω

|ut|m(x)dx

+ε(l − γ1(1− l)− 2βγ0 −
C

m1
)∥∆u∥2 − εa

∫
Ω

|∇u|p(x)dx

− εb
p2

(∫
Ω

|∇u|p(x)dx
)2

.

For ε < 2
m1

, we get

F ′(t) ≤ −εm1F (t)− [β(1− ε

2γ0
)− εC2(

m1

2
+ 1)]∥∆ut∥2

−ε
(
β(
εm1

2
− 2γ0) + l − γ1(1− l)− C

m1
− m1

2

)
∥∆u∥2

−ε(m1

q2
− 1)

∫
Ω

|u|q(x)dx+ε(m1

2
+

(1− l)

4γ1
)(g ∗∆u)(t)

−(1− m2 − 1

m2
)

∫
Ω

|ut|m(x)dx− εa(1− m1

p1
)

∫
Ω

|∇u|p(x)dx

−bε( 1
p2

− m1

2p21
)
(∫

Ω

|∇u|p(x)dx
)2

+ ε2m1

∫
Ω

uutdx.

By virtue of the additional condition of variable exponents (A4), we choose ε
2 <

γ0 <
εm1

4 and γ1 = l
1−l , then we obtain

F ′(t) ≤ −εm1F (t)− [β(1− ε

2γ0
)− εC2(

m1

2
+ 1)]∥∆ut∥2

−ε
(
β(
εm1

2
− 2γ0)−

C

m1
− m1

2

)
∥∆u∥2

+ε(
m1

2
+

(1− l)2

4l
)(g ∗∆u)(t) + ε2m1

∫
Ω

uutdx. (20)
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Thanks to Young’s inequality (8) and (7), we estimate the last term of (20) as:

ε2m1|
∫
Ω

uutdx| ≤
m1

2
∥∆u∥2 + ε4m1C

4

2
∥∆ut∥2, (21)

thus by utilizing (21) into (20), we deduce

F ′(t) ≤ −εm1F (t)− [β(1− ε

2γ0
)− εC2(

ε3m1C
2

2
+
m1

2
+ 1)]∥∆ut∥2

−ε
(
β(
εm1

2
− 2γ0)−

Cεm1

m1
−m1

)
∥∆u∥2

+ε(
m1

2
+

(1− l)2

4l
)(g ∗∆u)(t). (22)

Finally for sufficiently large β and ε small enough, then the proof of Lemma 3.3 is
completed. 2

To complete the proof of Theorem 3.1, by using (A3) and (11), multiplying (19)
in ξ(t) to get

ξ(t)F ′(t) ≤ −εm1ξ(t)F (t) + αξ(t)(g ∗∆u)(t)
≤ −εm1ξ(t)F (t)− α(g′ ∗∆u)(t)
≤ −εm1ξ(t)F (t)− 2αE′(t)

≤ −εm1ξ(t)E(t)− 2αE′(t). (23)

Now, Let define
L(t) = ξ(t)F (t) + 2αE(t),

then by using (23) we arrive at

L′(t) ≤ ξ′(t)F (t)− εm1ξ(t)E(t)

≤ −εm1ξ(t)E(t)

≤ −εm1

γ
ξ(t)L(t), (24)

where 0 ≤ L(t) ≤ γE(t) has been used.
By integrating (24) conclusion of Theorem 3.1 and general decay of solutions

of (1)-(3) has been proved.

4. Blow up. In this section, we are going to prove that for appropriate initial
data some of the solutions blow up in a finite time. We denote by C various positive
constants which may be different at different occurrences. To prove this result for
certain solutions with negative initial energy, we set β = 1. Moreover, it is assumed
that:

(B1) variable exponents satisfy

max{2
l
(1 +

C

m1
),

2p22
p1

} ≤ m2 ≤ q1,



12 J. Ferreira, E. Pişkin and M. Shahrouzi

where C is a constant mentioned in (17).
Now we are in a position to state and prove our blow-up result as follows:

Theorem 4.1. Let the conditions (A1)-(A2) and (B1), are satisfied. Assume that
E(0) < 0. Then the solution to the problem (1)-(3) blows up in finite time T ∗, and

T ∗ ≤ 1− σ

ησψ
σ

1−σ (0)
,

where σ < 1 and ψ(t) is given in (27).

Proof. Define H(t) = −E(t) and thus by using (11) we arrive at

H ′(t) = −dE(t)

dt
≥

∫
Ω

|ut|m(x)dx, (25)

then negative initial energy and (25) gives H(t) ≥ H(0) > 0. Also, by definition
H(t), it is easy to see that

H(t) ≤
∫
Ω

1

q(x)
|u|q(x)dx ≤ 1

q1

∫
Ω

|u|q(x)dx. (26)

Define for 0 < σ < 1

ψ(t) = H1−σ(t) + ε

∫
Ω

(uut +
1

2
|∆u|2)dx, (27)

where ε sufficiently small to be chosen later.
By taking a derivative of (27) and using (1), we have

ψ′(t) = (1− σ)H−σ(t)H ′(t) + ε∥ut∥2 + ε

∫
Ω

uuttdx+ ε

∫
Ω

∆u∆utdx

= (1− σ)H−σ(t)H ′(t) + ε∥ut∥2 − ε(1−
∫ t

0

g(s)ds)∥∆u∥2

−bε
(∫

Ω

1

p(x)
|∇u|p(x)dx

)(∫
Ω

|∇u|p(x)dx
)
+ ε

∫
Ω

|u|q(x)dx

−aε
∫
Ω

|∇u|p(x)dx+ ε

∫ t

0

g(t− s)

∫
Ω

∆u(∆u(s)−∆u)dxds

−ε
∫
Ω

u|ut|m(x)−2utdx

≥ (1− σ)H−σ(t)H ′(t) + ε∥ut∥2 − ε(1−
∫ t

0

g(s)ds)∥∆u∥2

− bε
p1

(∫
Ω

|∇u|p(x)dx
)2

+ ε

∫
Ω

|u|q(x)dx− aε

∫
Ω

|∇u|p(x)dx

+ε

∫ t

0

g(t− s)

∫
Ω

∆u(∆u(s)−∆u)dxds

−ε
∫
Ω

u|ut|m(x)−2utdx, (28)
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where the condition (A1) has been used.

Now, we use (18) with γ1 = 1 to estimate the integral of memory term in the
inequality (28), we obtain

ψ′(t) ≥ (1− σ)H−σ(t)H ′(t) + ε∥ut∥2 − ε[(1−
∫ t

0

g(s)ds) + 1− l]∥∆u∥2

− bε
p1

(∫
Ω

|∇u|p(x)dx
)2

+ ε

∫
Ω

|u|q(x)dx− aε

∫
Ω

|∇u|p(x)dx

−ε(1− l)

4
(g ∗∆u)(t)− ε

∫
Ω

u|ut|m(x)−2utdx. (29)

By using the definition of the H(t) and condition (A1), it follows that

εm2H(t) = εm2

∫
Ω

1

q(x)
|u|q(x)dx− εm2

2
∥ut∥2 −

εm2

2
(1−

∫ t

0

g(s)ds)∥∆u∥2

−εm2a

∫
Ω

1

p(x)
|∇u|p(x)dx− εm2b

2

(∫
Ω

1

p(x)
|∇u|p(x)dx

)2

−εm2

2
(g ∗∆u)(t)

≤ εm2

q1

∫
Ω

|u|q(x)dx− εm2

2
∥ut∥2 −

εm2

2
(1−

∫ t

0

g(s)ds)∥∆u∥2

−εm2a

p2

∫
Ω

|∇u|p(x)dx− εm2b

2p22

(∫
Ω

|∇u|p(x)dx
)2

−εm2

2
(g ∗∆u)(t). (30)

Using (30), we obtain from (29)

ψ′(t) ≥ εm2H(t) + (1− σ)H−σ(t)H ′(t) + ε(
m2

2
+ 1)∥ut∥2

+ε[(
m2

2
− 1)(1−

∫ t

0

g(s)ds)− 1 + l]∥∆u∥2

+εa(
m2

p2
− 1)

∫
Ω

|∇u|p(x)dx+ ε(1− m2

q1
)

∫
Ω

|u|q(x)dx

+εb(
m2

2p22
− 1

p1
)
(∫

Ω

|∇u|p(x)dx
)2

+ ε(
m2

2
− (1− l)

4
)(g ∗∆u)(t)

−ε
∫
Ω

u|ut|m(x)−2utdx,
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Since we have 1−
∫ t
0
g(s)ds > 1−

∫∞
0
g(t)dt = l, so we get

ψ′(t) ≥ εm2H(t) + (1− σ)H−σ(t)H ′(t) + ε(
m2

2
+ 1)∥ut∥2

+ε(
m2l

2
− 1)∥∆u∥2 + εa(

m2

p2
− 1)

∫
Ω

|∇u|p(x)dx

+εb(
m2

2p22
− 1

p1
)
(∫

Ω

|∇u|p(x)dx
)2

+ ε(1− m2

q1
)

∫
Ω

|u|q(x)dx

+ε(
m2

2
− 1− l

4
)(g ∗∆u)(t)− ε

∫
Ω

u|ut|m(x)−2utdx. (31)

On the other hand, similar to (17), by using (25) we have

|
∫
Ω

u|ut|m(x)−2utdx| ≤ C

m1
∥∆u∥2 + m2 − 1

m2

∫
Ω

|ut|m(x)dx

≤ C

m1
∥∆u∥2 + m2 − 1

m2
H ′(t)

≤ C

m1
∥∆u∥2 + m2 − 1

m2
KH−σ(t)H ′(t), (32)

where K is a sufficient large constant that will be enunciated later.

ψ′(t) ≥ εm2H(t) + (1− σ − εK(m2 − 1)

m2
)H−σ(t)H ′(t)

+ε(
m2

2
+ 1)∥ut∥2 + ε(

m2l

2
− C

m1
− 1)|∆u∥2

+εa(
m2

p2
− 1)

∫
Ω

|∇u|p(x)dx+ εb(
m2

2p22
− 1

p1
)
(∫

Ω

|∇u|p(x)dx
)2

+ε(1− m2

q1
)

∫
Ω

|u|q(x)dx+ ε(
m2

2
− 1− l

4
)(g ∗∆u)(t). (33)

At this point by using (B1), we deduce

ψ′(t) ≥ (1− σ − εK(m2 − 1)

m2
)H−σ(t)H ′(t) + εm2

[
H(t) + ∥ut∥2 + |∆u∥2

+a

∫
Ω

|∇u|p(x)dx+ b
(∫

Ω

|∇u|p(x)dx
)2

+

∫
Ω

|u|q(x)dx

+(g ∗∆u)(t)
]
. (34)

Now, suppose that ε sufficiently small and K large enough such that 1 − σ −
εK(m2−1)

m2
> 0 and (32) holds, then we deduce

ψ′(t) ≥ εm2

[
H(t) + ∥ut∥2 + ∥∆u∥2 + a

∫
Ω

|∇u|p(x)dx+ b
(∫

Ω

|∇u|p(x)dx
)2

+

∫
Ω

|u|q(x)dx+ (g ∗∆u)(t)]. (35)
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Therefore we get

ψ(t) ≥ ψ(0) > 0, for all t ≥ 0.

On the other hand, by using the Hölder and Young inequalities, we have

|
∫
Ω

uutdx|
1

1−σ ≤ C(∥u∥
1

1−σ ∥ut∥
1

1−σ ) ≤ C
(
∥∆u∥2 + ∥ut∥2 +H(t)

)
. (36)

Thus, using the inequality

(a1 + a2 + · · ·+ am)λ ≤ 2
m−1
λ−1 (aλ1 + aλ2 + · · ·+ aλm),

(for a1, a2, · · · , am ≥ 0, λ ≥ 1), we have for sufficiently small ε and some η > 0

ψ
1

1−σ (t) =
[
H1−σ(t) + ε

∫
Ω

uutdx+
ε

2
∥∆u∥2

] 1
1−σ

≤ 4
1−σ
σ

(
H(t) + ε

1
1−σ |

∫
Ω

uutdx|
1

1−σ +
(ε
2

) 1
1−σ ∥∆u∥

2
1−σ

)
≤ C

(
∥∆u∥2 + ∥ut∥2 +H(t)

)
≤ η−1ψ′(t),

therefore

ψ′(t) ≥ ηψ
1

1−σ (t). (37)

Integrating (37) from 0 to t, we deduce

ψ
σ

1−σ (t) ≥ 1

ψ− σ
1−σ (0)− ησt

1−σ
.

This shows that solutions blow up in finite time T ∗ ≤ 1−σ
ησψ

σ
1−σ (0)

, and proof of

Theorem 4.1 has been completed. 2

Remark 4.2. The proof of Theorem 4.1 can be extended for any β > 0.

Remark 4.3. Let u(t) be a local weak solution to problem (1)-(3), if 0 < E(t) <
E1 and (B1) holds, then by taking H(t) = E1 − E(t) instead of H(t) = −E(t) in
the proof of Theorem 4.1 and similar argument as in the proof of Theorem 4.1,
u(t) blows up at a finite time.

Acknowledgement. The authors would like to express their gratitude to the anony-
mous referees for their constructive comments and suggestions that allowed to im-
prove this manuscript.



16 J. Ferreira, E. Pişkin and M. Shahrouzi
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