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Abstract— Inductive displacement sensors are commonly 

used in active magnetic bearing (AMB) applications. In most 

research, conventional models used to analyze inductive sensors 

in terms of determining sensitivity and obtaining a relationship 

between output voltage and displacement ignore the effects of 

fringing in air gaps. However, the effects of flux fringing on the 

performance of these sensors cannot be ignored in industrial 

applications. In this article, by using the Schwarz-Christoffel 

transformation, 3-D self- and mutual inductances for the radial 

and axial poles of a 3-degree-of-freedom inductive sensor are 

calculated, with the effects of fringing taken into account. The 

results of these calculations are compared with finite element 

results. The results show that the model based on the Schwarz-

Christoffel method outperforms the ideal model in which flux 

fringing is ignored, with an inductance calculation error of 

about 8% for radial poles and 6.5% for axial poles, respectively. 

Keywords—Schwarz-Christoffel transformation, Displacement 

sensor, Fringing effects, 3D inductances. 

NOMENCLATURE 

𝐿𝑟 Radial Inductance 

𝐿𝑎 Axial Inductance 

𝐷𝑟1 Radial Pole Width (X-Y Plane) 

𝐷𝑟2 Radial Pole Width (Y-Z Plane) 

𝐷𝑎1 Axial Pole Width (X-Y Plane) 

𝐷𝑎2 Axial Pole Width (Y-Z Plane) 

𝐻𝑟 Radial Pole Height 

𝐻𝑎 Axial Pole Height 

𝐻𝑡 Rotor Target Height 

N Number of turns 

𝑉0 Horizontal line of constant potential in W-plane 

𝜓 Vertical line in W-plane 

𝜇0 Relative Permeability 

𝜀0 Permittivity of free space 

I. INTRODUCTION  

In the last three decades, active magnetic bearing (AMB) 

systems have been employed in various high-speed industrial 
applications due to their advantages, such as long life, 

absence of friction, and the elimination of the need for 

lubrication systems [1]. One of the most crucial components 

of AMBs is the displacement sensors used in them, which 
play a pivotal role in the control system of AMBs. Currently, 

conventional displacement sensors used in magnetic bearing 

applications include inductive and eddy current sensors. 

While both sensors offer high sensitivity, eddy current 

sensors are sensitive to the material under test and entail a 

complex and expensive measurement system. These factors 

have contributed to a decrease in their utilization [2]. On the 

other hand, inductive sensors, owing to advantages such as a 

high signal-to-noise ratio, low cost, and long lifespan, 

represent a viable option for AMBs [3]. Consequently, 

extensive research has been conducted to enhance the design 

of these sensors, aiming to increase sensitivity, analyze 
working principles, and develop accurate models for 

inductive and self-inductive sensors.  

In [4], a novel method is proposed for impedance modeling 

of self-inductive displacement sensors, particularly focusing 

on incorporating iron core reluctance and flux leakage 

considerations. This integration significantly enhances sensor 

accuracy and reliability, marking a notable advancement in 

displacement measurement techniques. A distinctive 

approach to radial displacement detection is presented in [5], 

where authors propose utilizing sensing coils weakly coupled 

with magnetic bearings. By leveraging this weak coupling, 
the sensor achieves exceptional precision and sensitivity, 

promising new possibilities for non-invasive displacement 

sensing in magnetic bearing systems. In the domain of 

angular displacement sensing, [6] introduces an absolute 

inductive sensor dedicated to position detection of YRT 

turntable bearings. This sensor facilitates accurate angular 

displacement measurement, thereby enabling precise 

positioning control in rotary motion systems. Ref. [7] 

contributes an integrated 5-degree-of-freedom (DOF) 

displacement sensor system designed for magnetically 

suspended flywheels. This system allows comprehensive 
monitoring of displacement in multiple directions, 

significantly enhancing the stability and performance of 

flywheel-based energy storage systems. The design and 

development of a new non-contact inductive displacement 

sensor is conducted in [8]. This sensor, known for its 

simplicity, reliability, and immunity to environmental 

conditions, is well-suited for diverse industrial applications 

requiring accurate displacement measurements. An 

innovative approach to displacement self-sensing in active 

magnetic bearing (AMB) rotor systems is proposed in [9]. By 
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employing current ripple demodulations combined with 

PWM command signals, this method enables accurate 

displacement sensing without additional sensors, simplifying 

AMB systems' control and monitoring. Investigating the 

effect of excitation signal on double-coil inductive 
displacement transducers, authors in [10] offer valuable 

insights into optimizing sensor design and performance for 

specific applications. An inductive sensor capable of two-

dimensional displacement measurement is proposed in [11]. 

This sensor design offers versatility and compactness for 

precise measurement of complex displacement patterns 

across various engineering systems. Ref. [12] delves into the 

structure design and simulation analysis of an inductive 

displacement sensor. Through simulation-based 

optimization, the authors enhance sensor sensitivity and 

accuracy, contributing to the development of high-

performance sensor systems. An optimized differential self-
inductance displacement sensor specifically designed for 

magnetic bearings is introduced in [13]. The sensor's 

effectiveness in accurately measuring displacement in 

magnetic bearing systems is demonstrated through 

comprehensive design, analysis, and experimentation, 

resulting in improved stability and performance. A robust 

three-dimensional position sensor for measuring rotor 

displacement in both radial and axial directions of an AMB 

system is proposed in [14], utilizing a unified sensor stator 

and inductive measuring principle. It demonstrates feasibility 

in a closed-loop control application with a high-speed 
industrial induction machine, offering an alternative solution 

to commercial eddy current displacement sensors while 

meeting application requirements with its robust 

construction.  

In most of the analyses concerning displacement sensors 

referenced above, the ideal model is typically employed. This 

model considers the reluctance of the air gap but disregards 

the effects of leakage, flux fringing, and the core reluctance. 

However, in many industrial applications, the dimensions of 

the magnetic poles of the sensor are often not significantly 

larger than the nominal air gap. Consequently, the leakage 

flux in the magnetic circuit increases as the air gap widens, 
adversely affecting sensor performance and introducing 

errors in the relationship between the sensor's output voltage 

and the rotor's displacement. Hence, there is a need to refine 

the ideal model to enhance accuracy. To address this, 

modeling techniques aimed at improving accuracy have been 

explored. These include measuring the complex permeability 

of the core in the magnetic position sensor using a B-H 

analyzer at different frequencies [15], incorporating the effect 

of flux leakage into the calculation of air gap reluctance [16-

17], and considering the nonlinear effect of relative 

permeability. Additionally, analyses based on finite element 
model (FEM) often require significant computing time, and 

3D FEM models tend to be complex. 
Therefore, the main objective of this article is to account 

for the effects of flux leakage in air gaps by employing a 
theoretical model to calculate the matrix of inductances in the 
3D geometry of a three DOF inductive sensor. Theoretical 
model results are compared with finite element results, 
demonstrating the superior accuracy of the theoretical model 
over the ideal one. 

II. OPERATION PRINCIPLE OF 3-DOF INDUCTIVE SENSOR 

The structure of the 3-DOF inductive Displacement 
sensor, shown in Fig. (1-a), is capable of measuring the radial 
and axial positions of the rotor, simultaneously. To measure 
the radial position, 4 single poles are used in each 90-degree 
area of the sensor circumference, and to measure the axial 
position, 4 double poles are used in the main horizontal and 
vertical directions of the sensor circle. The radial poles 
include two sets of wiring comprising two A and B axes of 
three DOF. To measure the radial position of the rotor in two 
axes, the same sinusoidal exciting circuit is used. When the 
rotor is moved from its central position under the effect of 
lateral forces, the length of the air gap in the magnetic circuit 
of a pair of radial poles of the sensor stator, which are shown 
in green or yellow in Fig. (1-a), changes. Therefore, by 
changing the length of the air gap, the reluctance of the air 
gap in this path will be modified and correspondingly, the 
self-inductance of the two-pole windings will change. As it 
can be seen in Figs. (1-b) and (1-c), The output feedback 
circuit for both axes are a bridge circuit. In the case that the  
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Fig. 1. (a) The structure of displacement sensor, (b) Radial poles wiring 
circuit, and (c) Axial poles wiring circuit 

 



rotor is in its central position, 𝐿𝑟1−𝐴 = 𝐿𝑟2−𝐴 = 𝐿𝑟3−𝐴 =
𝐿𝑟4−𝐴 and 𝐿𝑟1−𝐵 = 𝐿𝑟2−𝐵 = 𝐿𝑟3−𝐵 = 𝐿𝑟4−𝐵 , and therefore 
the output feedback voltage of both axes is zero. When the 
inductance is changed by varying the airgap length, the bridge 
circuit is out of balance and the voltage difference according 
to (1) is placed in its output: 

𝑉𝑜𝑢𝑡−𝐴 = (
𝐿𝑟2−𝐴

𝐿𝑟1−𝐴 + 𝐿𝑟2−𝐴
−

𝐿𝑟4−𝐴
𝐿𝑟3−𝐴 + 𝐿𝑟4−𝐴

)𝑉𝑖𝑛  (1) 

𝑉𝑜𝑢𝑡−𝐵 = (
𝐿𝑟4−𝐵

𝐿𝑟1−𝐵 + 𝐿𝑟4−𝐵
−

𝐿𝑟2−𝐵
𝐿𝑟3−𝐴 + 𝐿𝑟2−𝐵

)𝑉𝑖𝑛  (2) 

The radial position of the rotor can be determined by the 
feedback voltage’s amplitude and phase shift compared to the 
sinusoidal exciting voltage. When the rotor is moved axially, 
the measurement of this position of the shaft uses the same 
principles as the radial measurement, but in this case, the air 
gap reluctance changes based on the change of effective 
cross-section of the axial poles, instead of changing based on 
the radial air gap changes. In other words, when the 
ferromagnetic part of the rotor moves in the axial direction, 
the cross-section of two axial poles of the stator increases and 
the cross-section of others decreases. In the axial wiring 
circuit where the bridge circuit is used, the inductance of the 
facing poles in one axis is connected in series. This leads to 
the fact that when the shaft is moved radially, the inductance 
of each axial pole’s winding changes, but the total inductance 
of the two windings does not change. As a result, the radial 
movement of the rotor will not affect the axial voltage 
feedback. The axial output voltage of the sensor is determined 
as follows: 

𝑉𝑜𝑢𝑡−𝑍 =

(

 

𝐿𝑎8 + 𝐿𝑎4
𝐿𝑎3 + 𝐿𝑎7 + 𝐿𝑎8 + 𝐿𝑎4

−
𝐿𝑎1 + 𝐿𝑎5

𝐿𝑎1 + 𝐿𝑎2 + 𝐿𝑎5 + 𝐿𝑎6)

 𝑉𝑖𝑛  (3) 

At the axial balance point, where all the inductances 𝐿𝑎1 to 
𝐿𝑎8  are equal together, the ferromagnetic part of the rotor 
overlaps with half of cross-section of each axial pole. Due to 
this axially located rotor position on the shaft, the elongation 
of the shaft can be determined by placing two sensors at the 
two ends of it. Finally, the radial and axial feedback voltages 
will be converted into a dc signal for each axis using the 
modulation circuit. 

III. CALCULATION OF 3D INDUCTANCES OF RADIAL AND 

AXIAL POLES IN SENSOR RING 

Based on the explanation provided in the previous section, 

the basic principles of this displacement sensor are based on 

the determination of the radial and axial pole inductances. 

Hence, the ideal model without considering fringing effects 

can be improved by calculating these inductances, accurately. 

In this section, the inductances of the radial and axial poles 
of the displacement sensor are determined using the 

analytical method based on the Schwarz-Christoffel 

transformation. Utilizing this transformation, an equation for 

the capacitance of a capacitor with an air dielectric can be 

derived, where the planes (conductor boundaries) have 

geometry and dimensions resembling those of the air gap of 

each radial and axial poles. To calculate the capacitance of 

this capacitor, the Schwarz-Christoffel transformation 

presented in (4) is used twice. 

𝑑𝑧

𝑑𝑡
= 𝐴(𝑧1 − 𝑢1)

(𝜃1 𝜋⁄ )−1(𝑧1 − 𝑢2)
(𝜃2 𝜋⁄ )−1…(𝑧1

− 𝑢𝑛)
(𝜃𝑛 𝜋⁄ )−1 

(4) 

where 𝜃1,𝜃2, 𝜃𝑛 are the interior angles of a polygon in the 𝑧 
plane, 𝐴  is a constant parameter, and 𝑢1 , 𝑢2  … 𝑢𝑛  are the 

coordinates of the points on the real axis of the 𝑧1  plane 

corresponding to the corner points of the polygon in the 𝑧 
plane. In the first transformation, the air gap geometry under 

each radial and axial pole, which is considered as a polygon 

bounded by some straight lines, is transformed into the real 

axis of another plane (𝑧1) and the points inside this polygon 

are mapped to the points in the upper half of this real axis. In 

the second transformation, the two horizontal lines of 

capacitor plates in the 𝑊-plane are considered equivalent to 

the real axis of the 𝑧1 plane. As a result, by using this real axis 

in the 𝑧1 plane, the boundaries of the air gap’s geometry in 

the 𝑧  plane are transformed into the constant potential 

horizontal lines in the 𝑊 plane. This transformation for air 

gap geometry under radial and axial poles is shown in Fig. 

(2). As it can be seen from this figure, a radial pole is divided 

into two equal parts in two x-y and y-z planes, and the 

transformation (4) is applied to only one of these halves, 

which is highlighted. In the end, once the capacitance is 

obtained for one half, the capacitance of entire radial pole will 

be obtained by parallelizing two capacitors with equal 

capacity. Considering the coordinates of two corner points of 

2 and 4 where 𝑢1 = 0 , 𝑢2 = 1 , 𝜃1 = 0  and 𝜃2 =
3𝜋

2
, and 

placing them in (4), the transformation equation of 𝑧 plane to 

𝑧1 plane for the radial pole is obtained as follows:  

(5) 𝑍 = −𝑗𝐴[2 ln(1 + √1 − 𝑍1) − ln𝑍1 − 2√1 − 𝑍1] + 𝐵 

where the constant values of 𝐴 and 𝐵 are determined based 

on the boundary conditions 𝑍(𝑍1 = 1) = 0  and 𝑍(𝑍1 →

0) = ∞ and are equal to 
𝑗𝑔

𝜋
 and zero, respectively. Again, 

using Schwarz-Christoffel transformation for Fig. (2-b) and 

corner point of 4 (𝑢1 = 0  .  𝜃 = 0) we have: 

(6) 
𝑑𝑊

𝑑𝑧1
= 𝐶(𝑧1 − 0)

−1 =
𝐶

𝑧1
  .   𝑊 = 𝐶ln𝑍1 +𝐷 

where the constant values of 𝐶 and 𝐷 are determined based 

on the boundary conditions 𝑊(𝑧1 = 1) = 0  and 𝑊(𝑧1 =

−1) = 𝑗V0  and are equal to 
V0

𝜋
 and zero, respectively. 

According to the capacitor shape in the 𝑊  plane, the 

capacitance per unit length can be determined as follows: 

(7) 𝐶 = 𝜀0
𝜓1 −𝜓3
𝑉0

 

According to the above analysis, the points of 𝜓1 and 𝜓3  

inside the 𝑊 plane are obtained as follows: 

(8) 𝜓3 =
−𝑉0
𝜋
(
𝜋𝐷𝑟1
2𝑔

+ 2(1 − ln2)) . 𝜓1 =
2𝑉0
𝜋
ln (
𝜋𝐻𝑟
2𝑔
) 

As a result, (7) is rewritten for the radial half-pole structure 
as follows: 

(9) 𝐶 = 𝜀0

2𝑉0
𝜋 ln (

𝜋𝐻𝑟
2𝑔
)+

𝑉0
𝜋 (

𝜋𝐷𝑟1
2𝑔 + 2(1 − ln2))

𝑉0

= 𝜀0 [
𝐷𝑟1

2𝑔
+
2

𝜋
(1 + ln

𝜋𝐻𝑟
4𝑔
)] 



  

 

 
(b) 

 
(a) (c) 

 
(d) 

Fig. 2. (a) Radial airgap in x-y plane, (b) real axis in Z1 plane, (c) W plane, and (d) axial airgap in y-z plane 

Equation (9) is similar for the other half of the radial pole. 

Generally, it can be said that the capacitance for a radial pole 

of the position sensor is obtained by parallelizing the 

capacitance of both halves. Now, by comparing the 

relationship between magnetic reluctance and capacitance, 

the reluctance of the air gap under a radial pole is determined 

as follows: 

(10) 𝑅𝑟(𝑥−𝑦) =
1 

2𝜇0 [
𝐷𝑟1
2𝑔 +

2
𝜋
(1 + ln

𝜋𝐻𝑟
4𝑔
)]

 

Equation (10) is related to the air gap reluctance of radial 

poles in the x-y plane. In order to calculate inductances in 

three dimensions, it is required to determine reluctance in the 

y-z plane. In this plane, the reluctance relationship is the same 

as that of the x-y plane, except for the radial pole width is 

changed. Moreover, in each plane, the fringing factor can be 
obtained from the ratio of the calculated air gap reluctance 

per-unit-of-length to that of the ideal. Then, the 3D air gap 

reluctance can be obtained using (11) by multiplying the 

fringing factors of the two planes as outlined in (12). 

(11) 𝑅𝑎𝑖𝑟𝑔𝑎𝑝 =
𝜎𝑇𝑔

𝜇0𝐷𝑟1𝐷𝑟2
 

(12)   𝜎𝑇 = 𝜎𝑥−𝑦 × 𝜎𝑦−𝑧 

In the same way, the described procedure can be utilized to 

account for fringing effects in the air gap under axial poles. 

The capacitance for the axial pole in the x-y plane resembles 
that of the radial pole in this plane. However, the geometry of 

the axial pole in the y-z plane must be decomposed, as 

illustrated in Fig. (2-d), to resemble the geometry of the radial 

pole, thereby establishing a reluctance relationship for it. 

Thus, the capacitances for sections 1 and 2 in y-z plane, can 

be computed by: 

(13) 𝐶1 (𝑦−𝑧) = 𝜀0 [
𝐷𝑎2
4𝑔

+
2

𝜋
(1 + ln

𝜋𝐻𝑡
4𝑔
)] 

(14) 𝐶2 (𝑦−𝑧) = 𝜀0 [
𝐷𝑎2
4𝑔

+
2

𝜋
(1 + ln

𝜋𝐻𝑎
4𝑔
)] 

After some manipulations, the air gap reluctances in the two 

planes of axial poles, accounting for the fringing effect, are 

obtained as follows: 

(15) 
𝑅 𝑎(𝑦−𝑧) =

1 

𝜇0 [
𝐷𝑎2
2𝑔 +

4
𝜋 (1+ ln

𝜋√𝐻𝑡 ×𝐻𝑎
4𝑔 )]

 

(16) 
𝑅 𝑎(𝑥−𝑦) =

1 

𝜇0 [
𝐷𝑎1
𝑔 +

4
𝜋 (1 + ln

𝜋𝐻𝑎
4𝑔 )]

 

According (15) and (16), 3D fringing factor for the air gap 

of the axial poles is equal to: 

(17) 

𝜎𝑇 =

1

𝜇0 [
𝐷𝑎2
2𝑔 +

4
𝜋 (1+ ln

𝜋√𝐻𝑡 × 𝐻𝑎
4𝑔 )]

 

𝑔
𝜇0𝐷𝑎2

×

1 

𝜇0 [
𝐷𝑎1
𝑔 +

4
𝜋 (1 + ln

𝜋𝐻𝑎
4𝑔 )]

𝑔
𝜇0𝐷𝑎1

 

Finally, the 3D inductances of radial poles in the 

displacement sensor can be computed by (18) and (19). 

Equations (18) and (19) can be also applied for 𝐿𝑟3−𝐵 =
𝐿𝑟4−𝐵 and 𝐿𝑟1−𝐵 = 𝐿𝑟2−𝐵, respectively. Moreover, since the 



specific equation cannot be determined for 3D inductances of 

the axial poles (for instance La1 and La2), the air gap 

reluctances of four poles of the axial section are presented in 

(20) and (21).    

IV. SIMULATION RESULTS 

In this section, to investigate the accuracy of 3D inductance 

calculations, the results of this method are compared with 
those obtained from the FEM. For this purpose, the position 

sensor ring is simulated in the Ansys software using 

magnetostatic analysis. Figure 3 displays the flux density 

distribution in different parts of the sensor. To clarify the 

coupling between the windings, a high voltage is applied to 

them to increase the flux density. As observed, in the 

modeling of the radial section, the leakage flux between the 

poles of two radial axes A and B has been ignored due to the 

coupling coefficient close to one in both adjacent poles of one 

axis. Therefore, only two radial poles in one axis are selected 

to investigate the theoretical model, and the results are similar 

for other poles. Similarly, only four poles are used for axial 
calculations. The geometric dimensions of the radial and axial 

poles of the sensor are presented in Table 1. In Fig. 4, the self-

inductances of the radial poles for various air gaps are depicted 

for three models, including (1) the ideal model (without 

considering the fringing effect), (2) the analytical model 

(taking the fringing effect into account), and (3) the FEM. As 

observed, the self-inductances of the radial windings decrease 

with the increase of air gap length. The error between the ideal 

model and the analytical model compared to the FEM is 

shown in Fig. 5. As observed, with an increase in the air gap, 

the flux fringing increases. Consequently, the error in the ideal 
model for an air gap variation of 0.8 mm increases by 

approximately 30%. Meanwhile, the analytical model, with a 

consistent 8% error, demonstrates better accuracy than the 

ideal model. In Figs 6 and 7, the self-inductances of the axial 

pole windings versus different axial displacements are 

depicted for air gaps of 0.4 mm and 0.8 mm. A zero 

displacement signifies a position where the rotor aligns 

precisely in the middle of all four axial poles and shares the 

same cross-sectional area with each. As the rotor moves in the 

positive Z direction, the self-inductance of winding La1-1 

decreases while that of winding La2-1 increases, 
proportionally to the effective cross section. As observed, in 

the axial part, the analytical model exhibits an error of about 

6.5% compared to the FEM, which is much more accurate 

than the ideal model, with an error of 65% compared to the 

FEM. 

The errors between mutual inductances of axial poles 

obtained from the FEM and both the analytical and ideal 

models are shown in Fig. 8 for an air gap of 0.4 mm. 

According to this figure, in the negative axial displacement of 

0.6, where the rotor with La1-1 and La1-2 has the largest 

effective cross section, both ideal and analytical models have 

the same accuracy. But as the rotor moves in the positive Z 
direction and the effective cross section decreases, the error of 

the ideal model increases so that in the positive displacement 

of 0.6, the error of the ideal model is about 3 times more than 

the analytical model. The results indicate that the analytical 

model can accurately simulate the 3D inductances of the 

sensor poles. By employing this method, it becomes possible 

to model the behavior of the sensor, which relies on changes 

in winding inductance. 

Table 1. Parameters of Radial and axial geometries 

Parameter Value Parameter Value Parameter Value 

Hr (mm) 13.5 Dr1 (mm) 12.5 Da2 (mm) 3 

Ha1 (mm) 12 Dr2 (mm) 5 N 50 

Ht (mm) 10 Da1 (mm) 11.5   

 
Fig. 3. The flux density distribution within the 3-DOF position sensor 

 
Fig. 4. The self-inductance of the radial windings  

 
Fig. 5. The error between the self-inductances obtained from both the 

analytical and ideal models, as compared to those from the FEM. 

 
Fig. 6. The self-inductance of the axial winding La1-1 

 
Fig. 7. The self-inductance of the axial winding La1-3 



𝐿𝑟1−𝐴 = 𝐿𝑟4−𝐴   =
𝑁2𝜇0 [𝐷𝑟1 +

4(𝑔 + ∆𝑦)
𝜋 (1+ ln

𝜋𝐻𝑟
4(𝑔 + ∆𝑦)

)][𝐷𝑟2 +
4(𝑔 + ∆𝑦)

𝜋 (1+ ln
𝜋𝐻𝑟

4(𝑔 + ∆𝑦)
)]

2(g + ∆𝑦)
 

(18) 

𝐿𝑟1−2 = 𝐿𝑟3−𝐴   =
𝑁2𝜇0 [𝐷𝑟1 +

4(𝑔 − ∆𝑦)
𝜋 (1+ ln

𝜋𝐻𝑟
4(𝑔 − ∆𝑦)

)][𝐷𝑟2 +
4(𝑔 − ∆𝑦)

𝜋 (1+ ln
𝜋𝐻𝑟

4(𝑔 − ∆𝑦)
)]

2(g − ∆𝑦)
 

(19) 

𝑅1 = 𝑅2   =
𝑔

𝜇0 [𝐷𝑎1 +
4𝑔
𝜋 (1 + ln

𝜋𝐻𝑎
4𝑔 )] [(

𝐷𝑎2 +∆𝑧
2 ) +

4𝑔
𝜋 (1+ ln

𝜋√𝐻𝑡 ×𝐻𝑎
4𝑔 )]

  
(20) 

𝑅3 = 𝑅4   =
𝑔

𝜇0 [𝐷𝑎1 +
4𝑔
𝜋 (1+ ln

𝜋𝐻𝑎
4𝑔 )][(

𝐷𝑎2− ∆𝑧
2 )+

4𝑔
𝜋 (1 + ln

𝜋√𝐻𝑡 ×𝐻𝑎
4𝑔 )]

 
(21) 

 
Fig. 8. The mutual inductance error between the windings La1-1 and La1-2 

V. CONCLUSION 

This study aimed to address the fringing effects in air gaps on 

the performance of inductive displacement sensors, 

particularly in the context of their application in the AMB 

systems. By utilizing a theoretical model to compute the 

matrix of inductances within the 3D geometry of a three-

degree-of-freedom inductive sensor, the research sought to 

enhance the accuracy of sensor analysis. Comparison 

between theoretical model outcomes and finite element 

results highlighted the superior precision of the theoretical 

model relative to the idealized one. The investigation also 

underscored the significance of considering fringing effects, 

which are often overlooked in conventional analyses. 

Through the application of the Schwarz-Christoffel 

transformation, this study successfully accounted for these 

effects, enabling a more comprehensive evaluation of sensor 

behavior. The findings demonstrate the importance of 

incorporating fringing effects for accurate sensor 

characterization, thereby advancing the understanding and 

optimization of inductive sensor systems for industrial 

applications. 
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