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Abstract— Inductive displacement sensors are commonly
used in active magnetic bearing (AMB) applications. In most
research, conventional models used to analyze inductive sensors
in terms of determining sensitivity and obtaining a relationship
between output voltage and displacement ignore the effects of
fringing in air gaps. However, the effects of flux fringing on the
performance of these sensors cannot be ignored in industrial
applications. In this article, by using the Schwarz-Christoffel
transformation, 3-D self- and mutual inductances for the radial
and axial poles of a 3-degree-of-freedom inductive sensor are
calculated, with the effects of fringing taken into account. The
results of these calculations are compared with finite element
results. The results show that the model based on the Schwarz-
Christoffel method outperforms the ideal model in which flux
fringing is ignored, with an inductance calculation error of
about 8% for radial poles and 6.5% for axial poles, respectively.

Keywords—Schwarz-Christoffel transformation, Displacement
sensor, Fringing effects, 3D inductances.

NOMENCLATURE
L, Radial Inductance
Lg Axial Inductance

Dyq Radial Pole Width (X-Y Plane)
D, Radial Pole Width (Y-Z Plane)
Dgq Axial Pole Width (X-Y Plane)
Dy, Axial Pole Width (Y-Z Plane)
H, Radial Pole Height

H, Axial Pole Height

H, Rotor Target Height

N Number of turns

Vo Horizontal line of constant potential in W-plane
Y Vertical line in W-plane

o Relative Permeability

& Permittivity of free space

I. INTRODUCTION

In the last three decades, active magnetic bearing (AMB)
systems have been employed in various high-speed industrial
applications due to their advantages, such as long life,
absence of friction, and the elimination of the need for

gh.arabmarkadeh@um.ac.ir

lubrication systems [1]. One of the most crucial components
of AMBs is the displacement sensors used in them, which
play a pivotal role in the control system of AMBs. Currently,
conventional displacement sensors used in magnetic bearing
applications include inductive and eddy current sensors.
While both sensors offer high sensitivity, eddy current
sensors are sensitive to the material under test and entail a
complex and expensive measurement system. These factors
have contributed to a decrease in their utilization [2]. On the
other hand, inductive sensors, owing to advantages such as a
high signal-to-noise ratio, low cost, and long lifespan,
represent a viable option for AMBs [3]. Consequently,
extensive research has been conducted to enhance the design
of these sensors, aiming to increase sensitivity, analyze
working principles, and develop accurate models for
inductive and self-inductive sensors.

In [4], a novel method is proposed for impedance modeling
of self-inductive displacement sensors, particularly focusing
on incorporating iron core reluctance and flux leakage
considerations. This integration significantly enhances sensor
accuracy and reliability, marking a notable advancement in
displacement measurement techniques. A distinctive
approach to radial displacement detection is presented in [5],
where authors propose utilizing sensing coils weakly coupled
with magnetic bearings. By leveraging this weak coupling,
the sensor achieves exceptional precision and sensitivity,
promising new possibilities for non-invasive displacement
sensing in magnetic bearing systems. In the domain of
angular displacement sensing, [6] introduces an absolute
inductive sensor dedicated to position detection of YRT
turntable bearings. This sensor facilitates accurate angular
displacement measurement, thereby enabling precise
positioning control in rotary motion systems. Ref. [7]
contributes an integrated 5-degree-of-freedom (DOF)
displacement sensor system designed for magnetically
suspended flywheels. This system allows comprehensive
monitoring of displacement in multiple directions,
significantly enhancing the stability and performance of
flywheel-based energy storage systems. The design and
development of a new non-contact inductive displacement
sensor is conducted in [8]. This sensor, known for its
simplicity, reliability, and immunity to environmental
conditions, is well-suited for diverse industrial applications
requiring accurate displacement measurements. An
innovative approach to displacement self-sensing in active
magnetic bearing (AMB) rotor systems is proposed in [9]. By
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employing current ripple demodulations combined with
PWM command signals, this method enables accurate
displacement sensing without additional sensors, simplifying
AMB systems' control and monitoring. Investigating the
effect of excitation signal on double-coil inductive
displacement transducers, authors in [10] offer valuable
insights into optimizing sensor design and performance for
specific applications. An inductive sensor capable of two-
dimensional displacement measurement is proposed in [11].
This sensor design offers versatility and compactness for
precise measurement of complex displacement patterns
across various engineering systems. Ref. [12] delves into the
structure design and simulation analysis of an inductive
displacement sensor. Through simulation-based
optimization, the authors enhance sensor sensitivity and
accuracy, contributing to the development of high-
performance sensor systems. An optimized differential self-
inductance displacement sensor specifically designed for
magnetic bearings is introduced in [13]. The sensor's
effectiveness in accurately measuring displacement in
magnetic bearing systems is demonstrated through
comprehensive design, analysis, and experimentation,
resulting in improved stability and performance. A robust
three-dimensional position sensor for measuring rotor
displacement in both radial and axial directions of an AMB
system is proposed in [14], utilizing a unified sensor stator
and inductive measuring principle. It demonstrates feasibility
in a closed-loop control application with a high-speed
industrial induction machine, offering an alternative solution
to commercial eddy current displacement sensors while
meeting  application requirements with its robust
construction.

In most of the analyses concerning displacement sensors
referenced above, the ideal model is typically employed. This
model considers the reluctance of the air gap but disregards
the effects of leakage, flux fringing, and the core reluctance.
However, in many industrial applications, the dimensions of
the magnetic poles of the sensor are often not significantly
larger than the nominal air gap. Consequently, the leakage
flux in the magnetic circuit increases as the air gap widens,
adversely affecting sensor performance and introducing
errors in the relationship between the sensor's output voltage
and the rotor's displacement. Hence, there is a need to refine
the ideal model to enhance accuracy. To address this,
modeling techniques aimed at improving accuracy have been
explored. These include measuring the complex permeability
of the core in the magnetic position sensor using a B-H
analyzer at different frequencies [15], incorporating the effect
of flux leakage into the calculation of air gap reluctance [16-
17], and considering the nonlinear effect of relative
permeability. Additionally, analyses based on finite element
model (FEM) often require significant computing time, and
3D FEM models tend to be complex.

Therefore, the main objective of this article is to account
for the effects of flux leakage in air gaps by employing a
theoretical model to calculate the matrix of inductances in the
3D geometry of a three DOF inductive sensor. Theoretical
model results are compared with finite element results,
demonstrating the superior accuracy of the theoretical model
over the ideal one.

II. OPERATION PRINCIPLE OF 3-DOF INDUCTIVE SENSOR

The structure of the 3-DOF inductive Displacement
sensor, shown in Fig. (1-a), is capable of measuring the radial
and axial positions of the rotor, simultaneously. To measure
the radial position, 4 single poles are used in each 90-degree
area of the sensor circumference, and to measure the axial
position, 4 double poles are used in the main horizontal and
vertical directions of the sensor circle. The radial poles
include two sets of wiring comprising two A and B axes of
three DOF. To measure the radial position of the rotor in two
axes, the same sinusoidal exciting circuit is used. When the
rotor is moved from its central position under the effect of
lateral forces, the length of the air gap in the magnetic circuit
of a pair of radial poles of the sensor stator, which are shown
in green or yellow in Fig. (1-a), changes. Therefore, by
changing the length of the air gap, the reluctance of the air
gap in this path will be modified and correspondingly, the
self-inductance of the two-pole windings will change. As it
can be seen in Figs. (1-b) and (1-c), The output feedback
circuit for both axes are a bridge circuit. In the case that the
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Fig. 1. (a) The structure of displacement sensor, (b) Radial poles wiring
circuit, and (c) Axial poles wiring circuit



rotor is in its central position, Lq_4 =Ly g =Ly3_4 =
Lyy_gand Lyy_gp =Ly _p=0L;s_pg=Lry_p, and therefore
the output feedback voltage of both axes is zero. When the
inductance is changed by varying the airgap length, the bridge
circuit is out of balance and the voltage difference according
to (1) is placed in its output:

Ly Lry—a
I Ve ()
out=4 Lrl—A + Lr2—A Lr3—A + Lr4——A '
Lryp Liyp
Voueop = (22—~ Vo @
out=pb Lrl—B + Lr4—B Lr3—A + LTZ—B '

The radial position of the rotor can be determined by the
feedback voltage’s amplitude and phase shift compared to the
sinusoidal exciting voltage. When the rotor is moved axially,
the measurement of this position of the shaft uses the same
principles as the radial measurement, but in this case, the air
gap reluctance changes based on the change of effective
cross-section of the axial poles, instead of changing based on
the radial air gap changes. In other words, when the
ferromagnetic part of the rotor moves in the axial direction,
the cross-section of two axial poles of the stator increases and
the cross-section of others decreases. In the axial wiring
circuit where the bridge circuit is used, the inductance of the
facing poles in one axis is connected in series. This leads to
the fact that when the shaft is moved radially, the inductance
of each axial pole’s winding changes, but the total inductance
of the two windings does not change. As a result, the radial
movement of the rotor will not affect the axial voltage
feedback. The axial output voltage of the sensor is determined
as follows:

La8 + La4

La3 + La7 + La8 + La4
Lal + LaS

Lal + Laz + LaS + La6

Vin ©)

Vout-z =

At the axial balance point, where all the inductances L,, to
L,g are equal together, the ferromagnetic part of the rotor
overlaps with half of cross-section of each axial pole. Due to
this axially located rotor position on the shaft, the elongation
of the shaft can be determined by placing two sensors at the
two ends of it. Finally, the radial and axial feedback voltages
will be converted into a dc signal for each axis using the
modulation circuit.

III. CALCULATION OF 3D INDUCTANCES OF RADIAL AND
AXIAL POLES IN SENSOR RING

Based on the explanation provided in the previous section,
the basic principles of this displacement sensor are based on
the determination of the radial and axial pole inductances.
Hence, the ideal model without considering fringing effects
can be improved by calculating these inductances, accurately.
In this section, the inductances of the radial and axial poles
of the displacement sensor are determined using the
analytical method based on the Schwarz-Christoffel
transformation. Utilizing this transformation, an equation for
the capacitance of a capacitor with an air dielectric can be
derived, where the planes (conductor boundaries) have
geometry and dimensions resembling those of the air gap of
each radial and axial poles. To calculate the capacitance of
this capacitor, the Schwarz-Christoffel transformation
presented in (4) is used twice.

dz
—=A(z, — u1)(91/n)_1(z1 - uz)(ez/n)_l o (24

dt 4)

— ) En/m-1

where 0,,0,, 8,, are the interior angles of a polygon in the z
plane, A is a constant parameter, and u,, u, ... u, are the
coordinates of the points on the real axis of the z; plane
corresponding to the corner points of the polygon in the z
plane. In the first transformation, the air gap geometry under
each radial and axial pole, which is considered as a polygon
bounded by some straight lines, is transformed into the real
axis of another plane (z;) and the points inside this polygon
are mapped to the points in the upper half of this real axis. In
the second transformation, the two horizontal lines of
capacitor plates in the W-plane are considered equivalent to
the real axis of the z; plane. As a result, by using this real axis
in the z; plane, the boundaries of the air gap’s geometry in
the z plane are transformed into the constant potential
horizontal lines in the W plane. This transformation for air
gap geometry under radial and axial poles is shown in Fig.
(2). As it can be seen from this figure, a radial pole is divided
into two equal parts in two x-y and y-z planes, and the
transformation (4) is applied to only one of these halves,
which is highlighted. In the end, once the capacitance is
obtained for one half, the capacitance of entire radial pole will
be obtained by parallelizing two capacitors with equal
capacity. Considering the coordinates of two corner points of
2 and 4 where u; =0,u, =1, 6, =0 and 6, =37n, and
placing them in (4), the transformation equation of z plane to
z, plane for the radial pole is obtained as follows:

Z=—jAl2ln(1+/1-2,)-Inz;, —2/1-Z,|+B  (5)
where the constant values of A and B are determined based
on the boundary conditions Z(Z; =1) =0 and Z(Z, -
0) = oo and are equal to % and zero, respectively. Again,

using Schwarz-Christoffel transformation for Fig. (2-b) and
corner point of 4 (u; = 0 . 8 = 0) we have:

aw C
—=C -0 -1 — .
dz, (z, ) Z
where the constant values of C and D are determined based
on the boundary conditions W(z; =1) =0 and W(z; =

W =CInZ, +D (6)

—1) =jV, and are equal to % and zero, respectively.
According to the capacitor shape in the W plane, the
capacitance per unit length can be determined as follows:

Y1 — s
C=¢g——— 7
€o v, (7
According to the above analysis, the points of i, and 4
inside the W plane are obtained as follows:

_ —Vo Dy, _ 2Vy (mH,
V’S‘T( e +2(1—ln2)>.¢1—7ln(zg) (®)

As a result, (7) is rewritten for the radial half-pole structure
as follows:
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Fig. 2. (a) Radial airgap in x-y plane, (b) real axis in Z1 plane, (¢) W plane, and (d) axial airgap in y-z plane

Equation (9) is similar for the other half of the radial pole.
Generally, it can be said that the capacitance for a radial pole
of the position sensor is obtained by parallelizing the
capacitance of both halves. Now, by comparing the
relationship between magnetic reluctance and capacitance,
the reluctance of the air gap under a radial pole is determined
as follows:

1
Toe=y) T D 2 (10)
20 g5+ 57 (14 )|

Equation (10) is related to the air gap reluctance of radial
poles in the x-y plane. In order to calculate inductances in
three dimensions, it is required to determine reluctance in the
y-z plane. In this plane, the reluctance relationship is the same
as that of the x-y plane, except for the radial pole width is
changed. Moreover, in each plane, the fringing factor can be
obtained from the ratio of the calculated air gap reluctance
per-unit-of-length to that of the ideal. Then, the 3D air gap
reluctance can be obtained using (11) by multiplying the
fringing factors of the two planes as outlined in (12).
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aroap “ODrlDrZ ( )
Op = Ox_y X 0y_, (12)

In the same way, the described procedure can be utilized to
account for fringing effects in the air gap under axial poles.
The capacitance for the axial pole in the x-y plane resembles
that of the radial pole in this plane. However, the geometry of
the axial pole in the y-z plane must be decomposed, as
illustrated in Fig. (2-d), to resemble the geometry of the radial
pole, thereby establishing a reluctance relationship for it.

Thus, the capacitances for sections 1 and 2 in y-z plane, can

be computed by:
D 2 mH
(Mr@=%hg @+mzjﬂ (13)
Dy, 2 nH,
C, -2) = €0 [E + ;(1 + 4g )] (14)

After some manipulations, the air gap reluctances in the two
planes of axial poles, accounting for the fringing effect, are
obtained as follows:

1
R
-2 =
e [_a2+ (1+1 m/HtxHa)l (15)
Ho 4g
1

R

a@-» T D 4 mH, (16)
wo[ gt + 2 (14|

According (15) and (16), 3D fringing factor for the air gap
of the axial poles is equal to:

uo[—“2+ <1+1 @)]
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Finally, the 3D inductances of radial poles in the
displacement sensor can be computed by (18) and (19).
Equations (18) and (19) can be also applied for L,;_5 =
Lyy_gand L, _g = L.,_p, respectively. Moreover, since the



specific equation cannot be determined for 3D inductances of
the axial poles (for instance Lal and La2), the air gap
reluctances of four poles of the axial section are presented in
(20) and (21).

IV. SIMULATION RESULTS

In this section, to investigate the accuracy of 3D inductance
calculations, the results of this method are compared with
those obtained from the FEM. For this purpose, the position
sensor ring is simulated in the Ansys software using
magnetostatic analysis. Figure 3 displays the flux density
distribution in different parts of the sensor. To clarify the
coupling between the windings, a high voltage is applied to
them to increase the flux density. As observed, in the
modeling of the radial section, the leakage flux between the
poles of two radial axes A and B has been ignored due to the
coupling coefficient close to one in both adjacent poles of one
axis. Therefore, only two radial poles in one axis are selected
to investigate the theoretical model, and the results are similar
for other poles. Similarly, only four poles are used for axial
calculations. The geometric dimensions of the radial and axial
poles of the sensor are presented in Table 1. In Fig. 4, the self-
inductances of the radial poles for various air gaps are depicted
for three models, including (1) the ideal model (without
considering the fringing effect), (2) the analytical model
(taking the fringing effect into account), and (3) the FEM. As
observed, the self-inductances of the radial windings decrease
with the increase of air gap length. The error between the ideal
model and the analytical model compared to the FEM is
shown in Fig. 5. As observed, with an increase in the air gap,
the flux fringing increases. Consequently, the error in the ideal
model for an air gap variation of 0.8 mm increases by
approximately 30%. Meanwhile, the analytical model, with a
consistent 8% error, demonstrates better accuracy than the
ideal model. In Figs 6 and 7, the self-inductances of the axial
pole windings versus different axial displacements are
depicted for air gaps of 0.4 mm and 0.8 mm. A zero
displacement signifies a position where the rotor aligns
precisely in the middle of all four axial poles and shares the
same cross-sectional area with each. As the rotor moves in the
positive Z direction, the self-inductance of winding Lal-1
decreases while that of winding La2-1 increases,
proportionally to the effective cross section. As observed, in
the axial part, the analytical model exhibits an error of about
6.5% compared to the FEM, which is much more accurate
than the ideal model, with an error of 65% compared to the
FEM.

The errors between mutual inductances of axial poles
obtained from the FEM and both the analytical and ideal
models are shown in Fig. 8 for an air gap of 0.4 mm.
According to this figure, in the negative axial displacement of
0.6, where the rotor with Lal-1 and Lal-2 has the largest
effective cross section, both ideal and analytical models have
the same accuracy. But as the rotor moves in the positive Z
direction and the effective cross section decreases, the error of
the ideal model increases so that in the positive displacement
of 0.6, the error of the ideal model is about 3 times more than
the analytical model. The results indicate that the analytical
model can accurately simulate the 3D inductances of the
sensor poles. By employing this method, it becomes possible
to model the behavior of the sensor, which relies on changes
in winding inductance.

Table 1. Parameters of Radial and axial geometries

Parameter Value Parameter Value Parameter Value
Hr (mm) 13.5 Drl (mm) 12.5 Da2 (mm) 3

Hal (mm) 12 Dr2 (mm) 5 N 50
Ht (mm) 10 Dal (mm) 11.5

B [tesla]

21693E +00
. 2.0247E400
1.8801E+00
1.7355€ +00
1.5909E +00
14463 +00
1.3017E+00
14571E+00
- 1.0125€+00
8.6786E-01
7.2326E-01
5. 7866E 01

43405601
2.8945E-01
1.4485€-01
2.4327E-04

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gap (mm)
Fig. 4. The self-inductance of the radial windings
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Fig. 5. The error between the self-inductances obtained from both the
analytical and ideal models, as compared to those from the FEM.
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Fig. 8. The mutual inductance error between the windings Lal-1 and Lal-2

V. CONCLUSION

This study aimed to address the fringing effects in air gaps on
the performance of inductive displacement sensors,
particularly in the context of their application in the AMB
systems. By utilizing a theoretical model to compute the
matrix of inductances within the 3D geometry of a three-
degree-of-freedom inductive sensor, the research sought to
enhance the accuracy of sensor analysis. Comparison
between theoretical model outcomes and finite element
results highlighted the superior precision of the theoretical
model relative to the idealized one. The investigation also
underscored the significance of considering fringing effects,
which are often overlooked in conventional analyses.
Through the application of the Schwarz-Christoffel
transformation, this study successfully accounted for these
effects, enabling a more comprehensive evaluation of sensor
behavior. The findings demonstrate the importance of
incorporating  fringing effects for accurate sensor
characterization, thereby advancing the understanding and
optimization of inductive sensor systems for industrial
applications.

ACKNOWLEDGMENT

The authors express their gratitude to Kavosh Electronic
Vanda Shargh company for their support and provision of
documents and technical reports concerning active magnetic
bearings.

REFERENCES

[17 K. N. V. Prasad and G. Narayanan, “Electromagnetic Bearings With
Power Electronic Control for High-Speed Rotating Machines: Review,
Analysis, and Design Example, ” [EEE Transactions on Industry
Applications, vol. 57, no. 5, pp. 4946-4957, Sept.-Oct. 2021.

B 2

4g

[2] M. Sun,J. Zhou, B. Dong, and S. Zheng, “Driver Circuit Improvement
of Eddy Current Sensor in Displacement Measurement of High-Speed
Rotor,” IEEE Sensors J., vol. 21, no. 6, pp. 7776—7783, Mar. 2021.

[3] S. Fericean and R. Droxler, “New Noncontacting Inductive Analog
Proximity and Inductive Linear Displacement Sensors for Industrial
Automation,” IEEE Sensors J., vol. 7, no. 11, pp. 1538-1545, Nov.
2007.

[4] Z.Ren, H. Li, X. Chen, W. Yu and R. Chen, “Impedance Modeling of
Self-Inductive Displacement Sensor Considering Iron Core Reluctance
and Flux Leakage, ” IEEE Sensors Journal, vol. 22, no. 9, pp. 8583-
8595, 1 Mayl, 2022.

[5] W.Li, J. Hu, Z. Su and D. Wang, “Radial Displacement Detection
Using Sensing Coils Weakly Coupled with Magnetic Bearing, ” I[EEE
Sensors Journal, vol. 22, no. 21, pp. 20352-20359, 1 Nov.1, 2022.

[6] Y. Wang, Y. Qin, X. Chen, Q. Tang, T. Zhang and L. Wu, “Absolute
Inductive Angular Displacement Sensor for Position Detection of YRT
Turntable Bearing, ” /EEE Transactions on Industrial Electronics, vol.
69, no. 10, pp. 10644-10655, Oct. 2022.

[7] B. Xiang and T. Wen, “An Integrated 5-DoF Displacement Sensor
System of Magnetically Suspended Flywheel, ” IEEE Transactions on
Instrumentation and Measurement, vol. 72, pp. 1-11,2023.

[8] A. Babu and B. George, “Design and Development of a New Non-
Contact Inductive Displacement Sensor, ” I[EEE Sensors Journal, vol.
18, no. 3, pp. 976-984, Feb. 2018.

[9] Y. Jiang, K. Wang, M. Sun and J. Xie, “Displacement Self-Sensing
Method for AMB-Rotor Systems Using Current Ripple Demodulations
Combined with PWM Command Signals, ” IEEE Sensors Journal, vol.
19, no. 14, pp. 5460-5469, July 2019.

[10] Y.Li, R.Li,J. Yang, J. Xu, and X. Yu, “Effect of Excitation Signal on
Double-Coil Inductive Displacement Transducer, ” Sensors, vol. 23,
no, 7, pp. 1-17, Apr. 2023.

[11] L. Wu, S. Xu, Z. Zhong, C. Mou, and X. Wang “An Inductive Sensor
for Two-Dimensional Displacement Measurement, ” Sensors, vol. 20,
no, 7, pp. 1-15, Mar. 2020.

[12] C. Rui, L. Hongwei and T. Jing, “Structure Design and Simulation
Analysis of Inductive Displacement Sensor, ” /3th IEEE Conference
on Industrial Electronics and Applications (ICIEA), Wuhan, China, pp.
1620-1626, 2018.

[13] K. Wang, L. Zhang, Y. Le, S. Zheng, B. Han and Y. Jiang, “Optimized
Differential Self-Inductance Displacement Sensor for Magnetic
Bearings: Design, Analysis and Experiment, ” /EEE Sensors Journal,
vol. 17, no. 14, pp. 4378-4387, July 2017.

[14] T. Sillanp&d, A. Smirnov, P. Jaatinen, J. Vuojolainen, N. Nevaranta, R.
Jastrzebski, and O. Pyrhonen, “Three-Axis Inductive Displacement
Sensor Using Phase-Sensitive Digital Signal Processing for Industrial
Magnetic Bearing Applications, ” Actuators, vol. 10, no. 6, pp. 1-16,
May 2021.

[15] S.-H. Yang, K. Hirata, T. Ota, Y. Mitsutake, and Y. Kawase,
“Impedance Characteristics Analysis of the Non-Contact Magnetic
Type Position Sensor,” Electronics and Communations in Japan, vol.
94, no. 3, pp. 33-40, Mar. 2011.

[16] J. Miihlethaler, J. W. Kolar, and A. Ecklebe, “A Novel Approach for
3D Air Gap Reluctance Calculations,” 8th International Conference on
Power Electronics The Shilla Jeju, Korea, 2011.

[17] W.Li,J. Hu, Z. Su, D. Wang, “Analysis and Design of Axial Inductive
Displacement Sensor, ” Measurement, vol. 187, pp. 1-8, Jan. 2022.



