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ABSTRACT 

In the quest for improved anaerobic digestion (AD) efficiency and 

stability, iron-based additives and drinking water treatment sludge 

(DWTS) have emerged as promising components. This study explores 

the kinetics of methane production during AD of dairy manure under 

various concentrations of iron shavings (IS) and Fe3O4 (10, 20, and 30 

mg/L) and DWTS (6, 12, and 18 mg/L). The experimental data were 

employed to assess the suitability of the Michaelis-Menten model as a 

non-linear regression (NLR) equation for evaluating the kinetics of dairy 

manure AD with these additives. The results demonstrate that the 

Michaelis-Menten model exhibits sufficient predictive capability for 

estimating cumulative methane production during the digestion process. 

The model was then utilized to compare the average cumulative methane 

production across the investigated treatments using the least significant 

difference (LSD) method, as well as to calculate the quantity of methane 

production at 25%, 50%, 75%, and 90% of the final methane yield. 

Notably, the findings revealed a significant difference (P > 0.05) in 

biomethane production among the different levels of DWTS, IS, and 

Fe3O4. Additionally, treatments containing varying levels of DWTS 

exhibited significantly shorter time durations to achieve 25% and 50% 

of their maximum methane yield compared to treatments containing 

Fe3O4. The most pronounced changes in these parameters were 

observed between distinct levels of IS. 
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INTRODUCTION 

With the continuous acceleration of social 

development and the rapid growth of global 

population, energy demand has increased 

dramatically. Therefore, energy crisis and its 

environmental pollution have become two key 

problems of global sustainable development (Yan 

et al., 2012). Importantly, many global 

organizations have agreed that the application of 

new technologies in seeking new alternative 

energy sources is the way to resolve both of the 

two problems (Srivastava et al., 2015). During 

last decades, two forms of potential global bio-

energy and alternative sources include energy 

crops, lignocellulosic complexes and algae crops 

(Srivastava et al., 2015), which have been defined 

as first, second and third-generation biomass 

resources, respectively. In this way, animal 

manure is one of the most important second-

generation biomass resources due to its plentiful 

supply, lower cost, and a rich source of 

lignocellulosic and mineral compounds (Naik et 

al., 2010).  

Dairy manure comprises bounteous amounts of 

nutrients. Actually, it contains substantial 

amounts of Nitrogen (N), Phosphorus (P), and 

Potassium (K) as well as small amounts of trace 

minerals. Generally, the upsurge in production 

and concentration of dairy industry has resulted 

in greater awareness and concern for the proper 

storage, treatment, and utilization of dairy 

manure (Khademi & Masomi, 2022; Zhu et al., 

2021).  

Recently, anaerobic digestion (AD) is a well-

described and common process in dairy manure 

treatment. It represents the two-fold benefits – 

minimizing the environmental effect, while 

simultaneously producing biogas for local energy 

needs (Li et al., 2018).  

Anaerobic digestion is a biochemical process 

that converts a variety of organic matter using 

naturally occurring microorganisms under 

oxygen depleted conditions to produce a gaseous 

mixture mainly composed of methane and carbon 

dioxide, known as biogas. The overall AD 

process is a blend of physicochemical and 

biochemical reactions. These can be basically 

categorized as disintegration, hydrolysis, 

fermentation (acidogenesis), acetogenesis 

(acetate generation) and methanogenesis 

(methane generation) (Uddin & Wright, 2023). 

Despite the rapid development of AD 

technology, some of its drawbacks, such as low 

biodegradation efficiency, poor stability, and 

environmental sensitivity, have hindered its 

commercial application. To address these 

challenges, promising approaches such as co-

digestion, pretreatment, and new reactor designs, 

as well as the use of additives have been 

proposed. The additives stimulate bacterial 

growth and reduce inhibitory effects which can 

help control microbial generation time, 

degradation rate and gas production (Choong et 

al., 2016). Studies conducted by Al Seadi et al. 

(2008) and Cheng et al. (2020) emphasize the 

significance of incorporating trace elements or 

micro-nutrients, like Iron (Fe), cobalt (Co), nickel 

(Ni), into the anaerobic digestion process. These 

additives play a crucial role in facilitating the 

digestion process. While trace elements have 

proven to be beneficial, their widespread 

implementation remains limited primarily due to 

the high cost associated with these chemicals.  

However, exploring more affordable sources of 

micro-nutrients could render their utilization 

economically feasible. Several studies 

(Ebrahimi-Nik et al., 2018; Huiliñir et al., 2015; 

Huiliñir et al., 2017) have highlighted the 

successful utilization of fly ash and drinking 

water treatment sludge (DWTS). DWTS is 

composed of alkaline, trace, heavy metals, and 

clay, arising from the treatment of surface water 

for drinking purposes.  

In addition to this, as in any 

biological/chemical process, studying AD 

kinetics is essential to evaluate the feasibility of 

the process (as well as the design of a biogas 

production plant). It means that, the application 

of mathematical modeling in AD proves to be a 

rapid and cost-effective approach for predicting 

and optimizing fuel processing engineering and 

waste industry design 

(Andriamanohiarisoamanana et al., 2020). 
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Amidst this context, AD processes exhibit 

compatibility with non-linear models, as the 

growth of microorganisms and subsequent 

production kinetics are frequently non-linear in 

nature (Khamis, 2005). Within this framework, 

numerous non-linear regressions (NLRs) were 

derived from AD experiments, emphasizing the 

significance of making appropriate selections 

from an extensive library of functions 

(Archontoulis & Miguez, 2015). Generally, it 

provides information concerning the 

biodegradability rate of the substrates and also 

bottlenecks of the process that might affect 

digestibility and consequently methane yield 

(Allen et al., 2015; Karki et al., 2022; Tabassum 

et al., 2018). Kinetic models are useful to 

optimize, simulate and monitor the performance 

of the process under different conditions, 

especially when different additives such as trace 

element used in AD process of various feedstock, 

(Hassaan et al., 2021; Pramanik et al., 2019), 

because the kinetics of biogas production vary 

from one substrate to another.  

According the extensive research in the field, 

there is currently a few published studies 

exploring the application of suggested kinetic 

models in evaluating of enhancing biogas yield 

by incorporating DWTS into the anaerobic 

digestion process of dairy manure and comparing 

it with iron-based additives. Thus, the present 

project seeks to fill this knowledge gap and aims 

to evaluate the impact of iron-based additives, IS, 

Fe3O4, and DWTS, as trace elements and 

additives (nine treatments) for biogas production 

during the anaerobic digestion process of dairy 

manure via the best suggested kinetic model. For 

this, we compared the quantity of methane 

production for each of the nine treatments at 

various points during the anaerobic digestion 

process. Also, the average cumulative methane 

production among the studied treatments 

compared after the completion of the anaerobic 

digestion process using the LSD method. 

 

 

 

 

MATERIALS AND METHODS 

Anaerobic digestion assays 

In this study, dairy manure (sourced from the 

livestock farm) was used as substrate and the 

essential inoculum for the AD tests was procured 

from an active digester, receiving daily feedings 

of food waste, primarily consisting of rice, within 

Ferdowsi University of Mashhad's biogas 

laboratory. Fe3O4 and iron shavings served as the 

trace elements in this digester. The iron shavings, 

measuring less than 1 mm, were procured from 

the mechanic laboratory. Additionally, the 

experiments involved the application of drinking 

water treatment sludge (DWTS) as an effective 

additive, obtained from a drinking water 

treatment plant. The key components of DWTS 

included Fe2O3, SiO2, CaO, and Al2O3, 

respectively. The composition of DWTS used in 

this research closely resembled that described in 

our previous study (Ebrahimi-Nik et al., 2018).  

The process was conducted under mesophilic 

conditions at 37°C, we performed three 

independent experimental replicates following 

the procedure outlined by Holliger et al. (2016). 

The experiments were carried out using 500 mL 

bottles, with a working volume of 400 mL, 

ensuring each bottle's gas-tightness. To facilitate 

gas collection, the bottles were connected to 2 L 

gas collection bags via pneumatic mediators 

attached to their lids through plastic tubes. Both 

inlet and outlet were present on the gas bags, with 

a heparin cap connected to the outlet, enabling 

methane measurement using a syringe.  

IS and Fe3O4 were selected at three levels: 10, 

20, and 30 mg/L, whereas DWTS was utilized at 

6, 12, and 18 mg/L. For clarity, Table 1 illustrates 

the experimental treatments and their 

corresponding symbols. Daily measurements of 

biogas and methane production resulting from the 

treatments were carried out using a 60cc syringe 

(Raposo Bejines et al., 2012). The anaerobic 

digestion process spanned 43 days and concluded 

when the rate of methane production during three 

consecutive days dropped below 1% of the total 

cumulative methane production (Holliger et al., 

2016). More details about this process and its 
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measurements can be find in our previous 

manuscript (Rezaeifar et al., 2023). 

Table 1. Experimental treatments and their relevant 

symbols 

Additives Unit (mg/L) Treatment(symbol) 

 6 T1 

DWTS 12 T2 

 18 T3 

 10 T4 

IS 20 T5 

 30 T6 

 10 T7 

Fe3O4 20 T8 

 30 T9 

Kinetic modelling 

In order to examine the production of biogas 

through the anaerobic digestion of dairy manure 

and determine the relevant kinetic parameters, the 

utilization of nonlinear regression (NLR) models 

was implemented. In order to evaluate the NLR 

model and its coefficients importance, 

researchers often employ the analysis of variance 

(ANOVA).  

The procedure of fitting nonlinear models 

involves multi-steps. The principal 

characteristics of nonlinear models are 

parsimony, interpretability, and prediction. On 

the other hand, key drawbacks are reduced 

flexibility compared to linear models and lack of 

an analytical solution for estimating the 

parameters. Also, an appropriate selection in a 

large library of functions is of great importance 

(Archontoulis & Miguez, 2015). More to the 

point, samples must be representatively large as 

well as accurate to obtain the desired results 

through the regression model. Therefore, this 

method is highly sensitive and may lead to errors 

(Wang et al., 2011). 

For this study, the model coefficients were 

acquired by using the MATLAB function fitnlm, 

which is a built-in function capable of fitting a 

diversity of NLR models to data. For the obtained 

result from experimental section, a 

comprehensive summary of the NLRs analyzed is 

evaluated by Rezaeifar et al. (2023), they analysis 

an extensive range of data patterns, including 

exponential, logarithmic, polynomial, sinusoidal, 

generalized Mitscherlich, Michael Menten, and 

power-law functions.  

Moreover, to assess the fitness of nonlinear 

regression models, the coefficient of 

determination (R2), root mean square error 

(RMSE), and minimum value predicted by the 

model (MP) is employed as the following 

equations:  

𝑅2 = 1 −
∑ (𝐵𝑎𝑖 − �̂�𝑝𝑖)

2𝑁
1

∑ (𝐵𝑎𝑖 − 𝐵𝑎
̅̅ ̅)2𝑁

1

 (1) 

𝑅𝑀𝑆𝐸 =  √∑
|𝐵𝑎𝑖 − �̂�𝑝𝑖|

2

𝑁

𝑛

𝑖=1

 (2) 

Where Ba and Bp denote the experimental and 

predicted values, respectively. The 𝐵𝑎
̅̅ ̅ represents 

the average value of the experimental values, and 

N denotes the sample size (Wang et al., 2011). By 

utilizing these criteria, we were able to identify 

the models that most precisely depict the 

fundamental biogas production kinetics. A good 

fit with experimental data is indicated by a low 

RMSE value and a high R2 value when selecting 

the best time model ideally. 

Although there are a wide range of equations 

can be used in modeling the kinetic of biogas 

production (Rezaeifar et al., 2023), in this study, 

we proceeded with the Michaelis-Menten non-

linear regression model for further analyses. 

Generally, Michaelis-Menten model can explains 

how an enzyme can cause kinetic rate 

enhancement of a reaction and explains how 

reaction rates depends on the concentration of 

enzyme and substrate (Choi et al., 2017). 

Therefore, it may be practical in modeling the 

kinetic of biogas production on different 

substrate, while the past studies show that it has 

not been evaluated for the mentioned substrate in 

this study. 

The formula of chosen model, Michaelis-

Menten (MM), is as following, in this equation, 

a, b and c are final volume of produced gas, time 

at a/2 and a dimensional parameter, respectively.   

f(t) = a
tc

tc + bc (3) 
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RESULTS AND DISCUSSION 

Prediction performance evaluation 

Based on the R2 and RMSE criterion, it is 

reported that the Michaelis-Menten model 

demonstrated great predictive ability for all 

treatments. The results of RMSE and R2 for each 

of the nine treatments are reported in Table 2. 

Moreover, Table 2 presents the coefficients of the 

Michaelis-Menten nonlinear regression model, 

along with their standard deviation, p-values, 

coefficient of determination (R2), and adjusted 

coefficient of determination for each of the 

studied treatments. The p-values for all cases are 

equal to zero, indicating that the coefficients of 

the models are significant at a significance level 

of one percent. The small standard deviation 

values of the coefficients, compared to the 

coefficient values, provide further evidence that 

the models' estimations can be trusted. With the 

exception of the T4 treatment, all other treatments 

have an R2 value greater than 0.94, confirming 

the prediction reliability of the models. Hence, 

the results will be interpreted based on the 

estimations of the models. 

In addition to these, a comparison between 

experimental and predicted value of methane 

production via the suggested mode is shown in 

figure 1 for T3, T4 and T8 as the highest, lowest 

and moderate sample of three different treatment. 

Table 2. Coefficients, significance results, and coefficient of determination values for the Michaelis-Menten model 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 

Michaelis-Menten  
RMSE 90 118 130 187 134 138 91 85 81 

R2 0.98 0.97 0.95 0.75 0.92 0.87 0.97 0.94 0.92 

Coefficients 

a 2566.0 2280.0 2158.5 1275.3 1562.9 1273.9 1325.3 893.0 736.1 

b 1.64 1.95 1.59 1.56 1.98 2.37 5.06 5.77 5.35 

c 11.50 9.83 10.76 17.46 8.41 6.50 13.31 12.90 12.62 

Std 

 

a 50.95 38.94 71.30 208.83 34.37 24.16 12.70 9.94 12.25 

b 0.07 0.10 0.12 0.35 0.16 0.26 0.29 0.44 0.59 

c 0.37 0.27 0.60 4.39 0.34 0.30 0.17 0.19 0.29 

p-value 

 

 

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑅2 
𝑅2 0.99 0.98 0.97 0.80 0.96 0.93 0.98 0.97 0.94 

𝑅𝐴𝑑𝑗.
2  0.99 0.98 0.97 0.80 0.95 0.92 0.98 0.97 0.94 

 

 

Figure 1. Comparison between predicted and experimental value of methane production for a) T3 b) T4 and c) T5 
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Biogas performance 

Within the realm of anaerobic digestion, 

nonlinear regression proves to be a robust 

instrument for estimating significant parameters, 

including the degradation rate, the gas volume 

generated per nutrient degradation, and the 

fermentation process's lag phase and others. Also, 

we can calculate some other parameters those can 

be hard and time-consuming to determine during 

experiments. The suggested model can be 

practical to run an analysis of variance or do an 

LSD test. 

It is clear by running an ANOVA test and get a 

significant result that means at least one of the 

groups tested differs from the other groups. 

However, it cannot be shown by the ANOVA test 

which group differs. In order to address this, the 

Fisher least significant difference (LSD) test can 

be helpful, which is only used when the null 

hypothesis is rejected as a result of your 

hypothesis test results. The LSD calculates the 

smallest significant between two means as if a 

test had been run on those two means (as opposed 

to all of the groups together). This enables 

researcher to make direct comparisons between 

two means from two individual groups. Any 

difference larger than the LSD is considered a 

significant result. 

As can be seen, figure 2 present the comparison 

of average cumulative methane production using 

the LSD method at 5% level after the completion 

of the anaerobic digestion process. Figure 2(a) 

indicate the comparison of average the 

cumulative methane production among the 

studied treatments (with different level of 

DWTS) using the LSD method. As it can be seen, 

there isn’t a statistically significant difference 

between these treatments. 

 In addition, this comparison between different 

levels of IS in figure 2(b) shows that the 

difference between IS10 with IS20 would be 

significant while IS20 has the highest amount of 

cumulative methane production. Furthermore, 

comparison between the treatment with different 

level of Fe3O4 in figure 2(c) shows the lowest 

level meaning Fe3O410 shows a statistically 

significant difference with higher level of this 

additives (Fe3O420 and Fe3O430), while this 

treatment has the biggest amount of the 

cumulative methane production between these 

treatments. 

Finally, figure 3 presents the comparison of 

average cumulative methane production among 

the studied treatments using the LSD method 

after the completion of the anaerobic digestion 

process. Notably, the figure highlights a 

significant difference (P > 0.05) in biomethane 

production between the different levels of 

DWTS, IS, and Fe3O4. As observed, the treatment 

with DWTS6 exhibits the highest level of average 

cumulative methane production, and there is a 

statistically significant difference between this 

treatment and the others, except DWTS12. This 

suggests that DWTS6 stands out as a particularly 

effective treatment for promoting methane 

production during the anaerobic digestion 

process, warranting further consideration for 

practical applications. Ebrahimi-Nik et al. (2018) 

demonstrated that the addition of 6 mg/kg DWTS 

to the anaerobic digestion of food waste resulted 

in a significant increase of 65% and 58% in 

biogas and methane yield, respectively 

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.statisticshowto.com/what-is-statistical-significance/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/support-or-reject-null-hypothesis/
https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/support-or-reject-null-hypothesis/
https://www.statisticshowto.com/mean/
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Figure. 2. Comparison of average cumulative methane 

production using LSD method among studied treatments 

with different level of a) DWTS b) IS c) Fe3O4 

Furthermore, using the results of the modeling 

analysis, we computed the quantity of methane 

production for each of the nine treatments at 

various points during the anaerobic digestion 

process. Specifically, we calculated methane 

production when it reached 25%, 50%, 75%, and 

90% of the final amount achieved at the end of 

the process. The computed values for above 

mentioned condition are shown with TV25, 

TV50, TV75, and TV90 for each treatment and 

presented in Table 3. By examining these values 

for each treatment, we can determine which 

treatments achieve their maximum methane 

production more rapidly or slowly. Opting for a 

treatment that reaches its maximum methane 

production earlier with a higher percentage would 

be preferable, as it indicates a more efficient and 

effective process.  

The comparison of these results for the 

treatments of this study shows that although the 

treatments containing different levels of DWTS 

spent much less time to reach 25% and 50% of 

their maximum value compared to the treatments 

containing iron oxide, the time required to reach 

the 90% the maximum values for these treatments 

was much higher than the treatments containing 

Fe3O4. Also, as can be seen, the higher levels of 

all the additives used in this study generally 

reduced the time to reach 25, 50, 75 and 90% of 

the maximum, and the most changes for this 

parameter between these three types of additives 

were between different levels of IS. 

In fact, higher levels of IS could double the 

time to reach the desired maximum in some cases.
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Figure 3. Comparison of average cumulative methane production among studied treatments using LSD 

method  

Table 3. Calculated methane production values for TV25, TV50, TV75, and TV90 for each treatment 

  TV25 TV50 TV75 TV90 

DWTS 

DWTS 6 5.65 11.29 21.77 38.89 

DWTS 12 5.64 9.65 16.32 26.93 

DWTS 18 5.28 9.40 16.49 28.03 

IS 

IS 10 8.48 17.65 23.05 32.61 

IS 20 4.73 7.94 13.20 21.57 

IS 30 4.21 6.64 10.41 16.14 

Fe3O4 

Fe3O4 10 10.41 13.22 16.72 21.06 

Fe3O4 20 10.76 13.02 15.71 18.90 

Fe3O4 30 10.40 12.16 14.20 16.53 

Notes: TV25, TV50, TV75, and TV90 represent the times when methane production reaches 25%, 50%, 

75%, and 90% of the maximum amount achieved at the end of the anaerobic digestion process, 

respectively.  
 

CONCLUSIONS 

In this study, we investigated the impact of 

iron-based additives, including Fe, Fe3O4, and 

DWTS, at various levels, on the anaerobic 

digestion of dairy manure by the Michaelis-

Menten model as a non-linear regression. This 

model presents the best performance in 

estimating methane production kinetics for all 

nine treatments over time. The results revealed 

that DWTS at level 6 achieved the highest 

average cumulative methane production among 

the studied treatments using the LSD method at a 

5% significance level, while there isn’t a 

statistically significant difference between 

different levels of these treatments. Also, the 

difference between the higher level of IS and 

Fe3O4 were not statistically significant. In 

addition, computing the quantity of methane 

production at various points shows that the 

treatment reaches its maximum methane 

production earlier with a higher percentage would 

be preferable, as it indicates a more efficient and 

effective process. Generally, the higher levels of 

all the additives used in this study reduced the 
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time to reach 25, 50, 75 and 90% of the maximum 

methane production.  
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