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1 Introduction

It has been proven in string field theory that the classical effective action of string theory,
at all orders of derivatives, exhibits a global O(d, d,R) symmetry when the effective action
is dimensionally reduced on a torus T (d) [1, 2]. In the case of circular reduction, the non-
geometric symmetry O(1, 1,Z) or the Buscher transformations [3, 4], together with the
gauge symmetries associated with the massless fields and the assumption of the background
independence of the effective action at critical dimension [5], allow for the construction of
a covariant and gauge-invariant classical effective action up to overall factors at any order
of derivatives. The Buscher transformations are necessary to incorporate higher derivative
corrections [6] that depend on the scheme of the effective action [7]. This approach, as
demonstrated in previous works such as [8–10], has been utilized to derive the Neveu-Schwarz-
Neveu-Schwarz (NS-NS) couplings up to eight-derivative orders. In this paper, we demonstrate
that this methodology can also be utilized to determine the Yang-Mills (YM) couplings in
the heterotic theory by explicitly performing calculations at the four-derivative order. The
four-derivative couplings in the heterotic theory, encompassing both the NS-NS and YM
couplings, were previously obtained by studying the sphere-level S-matrix element [11, 12].

The two-derivative order bosonic couplings in heterotic theory are given by [11, 13]

S(0) = − 2
κ2

∫
d10x

√
−Ge−2Φ

[
R− 1

12HαβγH
αβγ + 4∇αΦ∇αΦ − 1

4FµνijF
µνij

]
, (1.1)

where κ is related to the 10-dimensional Newton’s constant. The YM gauge field is defined
as Aµ

ij = Aµ
I(λI)ij , where the antisymmetric matrices (λI)ij represent the adjoint repre-

sentation of the gauge group SO(32) or E8 × E8 with the normalization (λI)ij(λJ)ij = δIJ .
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The YM gauge field strength and the B-field strength are given by

Fµν
ij = ∂µAν

ij − ∂νAµ
ij + 1√

α′
[Aµ

ik, Aνk
j ]

Hµνρ = 3∂[µBνρ] −
3
2A[µ

ijFνρ]ij . (1.2)

The NS-NS fields are dimensionless, and we have also normalized the YM gauge field to
be dimensionless. Additionally, there is the Lorentz Chern-Simons three-form Ωµνρ in the
B-field strength, resulting from the Green-Schwarz mechanism [14]. This gives rise to terms
with four and six derivatives. It has been explicitly demonstrated in [2, 15, 16] that the
dimensional reduction of the above action on tori T (d) exhibits global O(d, d,R) symmetry.

We are interested in imposing this symmetry solely to determine the coupling constants
in the covariant and gauge-invariant effective actions at any order of derivatives, such as
the coefficients (1,−1/12, 4,−1/4) in the action (1.1). Therefore, we can impose only the
non-geometric aspect of this symmetry on the most general covariant and gauge-invariant
couplings, allowing for arbitrary coupling constants. This is because the geometric aspect of
this symmetry is already imposed on the effective action through the expression of couplings
in covariant and gauge-invariant forms.

Furthermore, the YM gauge symmetry naturally determines the commutator term in
the YM field strength. As a result, there is no need to impose the non-geometric part
of the O(d, d,R) symmetry specifically to fix the commutator terms in the field strength,
allowing us to eliminate these terms from the couplings. It is worth noting that removing
the commutator term at the two-derivative order is equivalent to assuming an abelian gauge
group. However, in the higher derivative orders of our interest, the matrix indices of the
YM gauge field differentiate the couplings from the abelian counterparts. In this scenario,
the couplings (1.1) are limited to two-derivative couplings, and the non-geometric part of
O(d, d,R) can determine all the couplings up to a single overall factor. Another simplification
arises from considering only the dimensional reduction on a circle, where we can impose the
non-geometric group O(1, 1,Z) to determine the coupling constants.

The work presented in [17] demonstrates the invariance of the aforementioned effective
action under O(1, 1,Z) transformations. In the proposed reduction scheme for the NS-NS
and YM fields in [16], these transformations appear as linear transformations for the NS-NS
base space fields, while they manifest as nonlinear transformations for the scalar component
of the YM field in the base space. This scalar field also appears nonlinearly in the circular
reduction of the effective action.

Hence, a further simplification arises by considering the O(1, 1,Z) transformations as
an expansion involving different powers of the scalar field. In this approach, the reduced
action and the O(1, 1,Z) transformations can be truncated to include only the zeroth and
first orders of the scalar field. Remarkably, we will demonstrate that it is sufficient to consider
this truncated reduced action and the O(1, 1,Z) transformations to determine the coupling
constants. Additionally, it is sufficient to consider the scalar field as constant. A similar
observation regarding the NS-NS couplings in the base space has been made in [8]. It has been
noted that the O(1, 1,Z) constraint imposed on the effective action yields identical relations
between the coupling constants, regardless of whether the base space metric is flat or not.
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Once the two-derivative couplings have been determined by imposing the aforementioned
truncated T-duality, the subsequent step involves several modifications. First, we substitute
the commutator term in the YM field strength, and second, we incorporate the Lorentz Chern-
Simons three-form into the B-field strength. The inclusion of the Lorentz Chern-Simons
three-form introduces additional terms involving four and six derivatives. However, it is worth
noting that there are several other couplings at these derivative orders that can be discovered
using the same methodology. In the context of this paper, our focus will be on utilizing this
approach to determine the couplings at the four-derivative order. We anticipate that this
technique can also be applied to uncover higher-derivative couplings in future investigations.

To utilize the aforementioned technique for determining the effective action at higher
orders of derivatives, it is necessary to establish a basis for the independent covariant couplings
at the given order of derivatives, allowing for arbitrary coupling constants. The coefficients
of the general covariant and gauge-invariant couplings at the four-derivative order and
beyond are interconnected through integration by parts, the Bianchi identities, and field
redefinitions [18]. By employing integration by parts and the Bianchi identities, it becomes
possible to reduce the couplings that are solely related through these freedoms to a set of
independent couplings. We refer to this as the maximal basis. The coefficients of the couplings
in the maximal basis fall into two categories: unambiguous and ambiguous. Under field
redefinitions, the unambiguous parameters remain invariant, while the ambiguous parameters
undergo changes. Furthermore, the ambiguous parameters can be divided into essential
parameters and arbitrary parameters. The number of essential parameters at each order
of derivatives is fixed. The choice of which set of ambiguous parameters is designated as
essential parameters determines the basis scheme. If all arbitrary parameters are set to zero,
we refer to it as the minimal basis. Other choices for the arbitrary parameters correspond to
alternative schemes that are related to the minimal basis through field redefinitions.

In scenarios where the YM field is absent and field redefinitions are involved, the O(1, 1,Z)
symmetry possesses the capability to determine all parameters in the minimal basis at four
derivatives, which consists of 8 couplings [18], except for a single parameter. In fact, T-duality
establishes 7 relations among the 8 unambiguous and essential parameters. On the other
hand, if the maximal basis is employed, which encompasses 20 couplings [18], T-duality
still yields 7 relations among the 20 parameters. In this case, the determination relies
on a single unambiguous or essential parameter, accompanied by 12 additional arbitrary
parameters. The utilization of field redefinitions enables the elimination of these arbitrary
parameters [7].

In the presence of YM fields added to the NS-NS fields at the four-derivative order,
the truncated T-duality establishes 24 relations among the parameters of the independent
couplings. If we consider the couplings in the minimal basis, which comprises 24 couplings,
the truncated T-duality fixes them to be zero. This outcome is expected since there is no
string theory wherein the H-field possesses a YM Chern-Simons term (see eq. (1.2)) but
lacks a Lorentz Chern-Simons term. However, when the four-derivative coupling HΩ is
included, obtained through the replacement of the Lorentz Chern-Simons three-form in the
B-field strength at the two-derivative order, the T-duality determines all 24 parameters in
the minimal basis in terms of the coefficient of HΩ. The NS-NS couplings derived through
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this approach precisely correspond to those present in the Metsaev-Tseytlin action, which
were obtained using the S-matrix method [18].

If we consider the couplings in the maximal basis, which consists of 42 independent terms,
the truncated T-duality still gives rise to 24 relations among the 42 parameters. When the
Lorentz Chern-Simons coupling HΩ is not included, the T-duality fixes the couplings in terms
of one unambiguous or essential parameter and 17 additional arbitrary parameters. However,
since there is no string theory without a Lorentz Chern-Simons coupling, the condition that
all 18 parameters must be removable by field redefinition should be imposed. This condition
introduces an extra relation between the parameters.

When the Lorentz Chern-Simons coupling HΩ is included in the maximal basis, the
T-duality generates 24 relations between this term and the 42 couplings. As a result, the
couplings can be determined by expressing them in terms of the coefficient of the coupling
HΩ and 18 additional parameters. However, it is crucial to note that the condition of
removing these 18 parameters through field redefinition must be imposed, leading to an extra
relation between the parameters. This final step completes the construction of the effective
action in the maximal scheme, which involves 17 arbitrary parameters. By assigning specific
values to these parameters, the NS-NS couplings can be matched with those in the Meissner
action. It is worth mentioning that in the Meissner action, the gravity couplings are in the
Gauss-Bonnet scheme, which does not affect the graviton propagator. Furthermore, there
are no corrections to the B-field and dilaton propagators in this scheme. Importantly, we
have discovered that the YM couplings in this scheme precisely coincide with those found
in [11, 12] through the S-matrix method.

The paper follows the following outline: In section 2, we investigate the dimensional
reduction of the couplings at the two-derivative order to validate the notion that the invariance
of the truncated reduced action under the truncated Buscher rules enables the determination
of the couplings at this order. Subsequently, we extend this method to the four-derivative
couplings in the subsequent sections. In section 3, we identify the independent couplings
at the four-derivative order. In subsection 3.1, we determine the couplings in the minimal
basis, where we enforce field redefinition as well as integration by parts and Bianchi identities
to reduce the number of independent couplings to 24. In subsection 3.2, we forgo the field
redefinition and instead focus on removing redundancy through integration by parts and
Bianchi identities to obtain the set of 42 independent couplings. Moving on to section 4, we
impose truncated T-duality on these bases to fix the coupling constants. In subsection 4.1,
we fix the couplings in the minimal basis and find that there are 10 couplings. Notably, four
of these couplings, which solely involve the NS-NS field, match exactly with the couplings
in the Metsaev-Tseytlin action. The YM couplings in this scheme exhibit variations from
those obtained in the literature through the S-matrix method, owing to the fact that the
graviton propagators receive four-derivative corrections in the Metsaev-Tseytlin action. In
subsection 4.2, we fix the couplings in the maximal basis using the truncated T-duality. In
this case, the effective action comprises 17 arbitrary parameters. By assigning specific values
to these parameters, the NS-NS couplings align with those in the Meissner action, where
the propagators do not receive four-derivative corrections. Remarkably, we demonstrate
that the YM couplings precisely match those obtained through the S-matrix method. In
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section 5, we provide a brief discussion of our findings. Throughout our calculations, we
employ the “xAct” package [19].

2 Effective action at the two-derivative order

It is well-established that the two-derivative effective action of heterotic theory, when dimen-
sionally reduced on a torus T (d), exhibits invariance under O(d, d,R) transformations [2, 15, 16].
The circular invariance of this action, governed by the Z2-Buscher rules, has been extensively
studied in [17]. Notably, the scalar component of the YM gauge field appears nonlinearly
in both the reduced action and the Buscher rules [17].

In this context, we leverage the aforementioned symmetry to determine the coupling
constants of the covariant and gauge invariant couplings. To achieve this, we adopt a power
expansion for the Buscher rules and subsequently truncate terms in the power expansion of
both the Buscher rules and the reduced effective action, specifically excluding those involving
more than one YM scalar field. Remarkably, we will demonstrate that such a truncation
provides sufficient information to fix the effective action up to an overall factor.

The most general covariant and gauge-invariant independent coupling involving the
NS-NS and YM fields at the two-derivative order is given by the following action:

S(0) = − 2
κ2

∫
d10x

√
−Ge−2Φ

[
a1R− a3

12HαβγH
αβγ + 4a2∇αΦ∇αΦ − a4

4 FµνijF
µνij

]
. (2.1)

The YM gauge field strength and the B-field strength are given by equation (1.2), neglecting
the commutator term. The coupling constants a1, . . . , a4 are to be determined by imposing
the truncated Bucher rules.

To perform the dimensional reduction of the action on a circle, we employ the following
reduction scheme for the NS-NS and YM fields [16, 17]:

Gµν =
(
ḡab + eφgagb e

φga

eφgb eφ

)
, Aµ

ij =
(
Āa

ij + eφ/2αijga

eφ/2αij

)
, Φ = ϕ̄+ φ/4 , (2.2)

Bµν =
(
b̄ab + 1

2(bagb − bbga) + 1
2e

φ/2αij(gaĀb
ij − gbĀa

ij) ba − 1
2e

φ/2αijĀa
ij

−bb + 1
2e

φ/2αijĀa
ij 0

)
,

where ḡab, b̄ab, ϕ̄, and Āij
a represent the metric, B-field, dilaton, and YM gauge field in

the base space, respectively. Additionally, ga and bb denote two vectors, while φ and αij

represent scalars within this space. The difference between the above reduction and those
in [17] is that we include a factor of eφ/2 to the scalar component of the YM gauge field. By
employing the above reduction scheme, one can derive the following reductions for different
components of the H-field [16, 17]:

Haby = Wab −
1
2e

φα2Vab − eφ/2αijF̄abij ,

Habc = H̄abc + 3g[aWbc] −
3
2e

φα2g[aVbc] − 3eφ/2αijg[aF̄bc]
ij , (2.3)
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where α2 = αijαij , Wab = ∂abb − ∂bba, Vab = ∂agb − ∂bga, F̄ab
ij = ∂aĀa

ij − ∂bĀa
ij , and H̄

represents the torsion in the base space:

H̄abc = 3∂[ab̄bc] −
3
2g[aWbc] −

3
2b[aVbc] −

3
2Ā[a

ijF̄bc]
ij . (2.4)

Our notation for antisymmetry is such that, for example, 3g[aWbc] = gaWbc − gbWac − gcWba.
The circular reduction of the action (2.1) can be expressed in terms of the field strengths

W , V , F̄ , and H̄ in the base space as follows:

S(0) =− 2
κ′2

∫
d9x

√
−ḡ e−2ϕ̄

[
a1R̄− a3

12H̄
2+4a2∂aϕ̄∂

aϕ̄− a4
4 F̄abijF̄

abij +2(a2−a1)∂aφ∂
aϕ̄

+ 1
4(a2−2a1)∂aφ∂

aφ− a1
4 e

φV 2− a3
4 e

−φW 2− a4
2 e

φ/2F̄abijV
abαij + a3

2 e
−φ/2F̄abijW

abαij

− a4
2 ∂aα

ij∂aαij +α2
(
−a4

8 ∂aφ∂
aφ− a4

4 e
φV 2+ a3

4 V
abWab−

a3
4 F̄abijF̄

abij

− a3
4 e

φ/2F̄abijV
abαij− a3

16e
φV 2α2

)]
, (2.5)

where κ′ is related to the 9-dimensional Newton’s constant. In deriving this expression,
we have employed integration by parts. The terms in the third and fourth lines exhibit
nonlinearity with respect to YM scalar field αij , whereas the terms in the first and second
lines are of zeroth and first order in αij . Additionally, all coupling constants a1, · · · , a4
appear in the first and second lines.

Now, one can observe that the terms in the first and second lines remain invariant under
the following linear transformations:

ga → ba, ba → ga, φ→ −φ, αij → −αij , Āa
ij → Āa

ij , ḡab → ḡab, b̄ab → b̄ab, ϕ̄→ ϕ̄ , (2.6)

provided that the parameters in the action are all the same, i.e., a1 = a2 = a3 = a4. One can
extend the aforementioned linear transformation to a nonlinear transformation and observe
that the terms in the third and fourth lines of (2.5) remain invariant under the nonlinear
Buscher transformations [17]. However, such calculations serve only as a demonstration
that the full action is indeed invariant under the nonlinear Buscher transformation, which
is not our primary focus. Therefore, to utilize the O(1, 1,Z) symmetry in determining the
coupling constants, it suffices to consider the terms of zeroth and first order in αij and treat
these scalars as constants in the reduced action and Buscher rules. We speculate that this
truncation in the reduced action and Buscher rules could potentially fix the couplings even
at higher orders of derivatives. In the subsequent sections, we will perform this calculation
for the couplings involving four derivatives.

3 Bases for four-derivative couplings

To determine the effective action using the T-duality Z2-constraint, it is necessary to first
identify a basis with unfixed coupling constants. Subsequently, the Z2-symmetry needs to be
imposed on this basis in order to establish the relationships between the coupling constants.
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For the identification of the basis at the four-derivative order, as outlined in [20], it is essential
to list all covariant and gauge-invariant NS-NS and YM couplings. By utilizing the “xAct”
package [19], it has been determined that there are a total of 81 such couplings. None of them
can have an odd number of YM field strengths. These couplings can be expressed as follows:

L′
1 = c′1Fα

µijFαβ
ijFβ

νklFµνkl + c′2Fα
µijFαβ

ilFβ
ν

jkFµν
kl + · · · . (3.1)

Here, c′1, . . . , c′81 denote the coupling constants. However, these couplings are not all inde-
pendent. Some of them are interrelated through total derivative terms, while others are
connected through field redefinitions or various Bianchi identities.

To eliminate the total derivative terms from the aforementioned couplings, the following
terms are introduced into the Lagrangian L′

1:

e−2ΦJ1 ≡ ∇α(e−2ΦIα
1 ) . (3.2)

Here, the vector Iα
1 represents a collection of all possible covariant and gauge-invariant terms

at the three-derivative level, including arbitrary parameters.
To eliminate the freedom of field redefinitions, it is necessary to perturb the metric,

dilaton, H-field, and YM gauge fields in the two-derivative action described in (1.1). By
utilizing the Bianchi identity satisfied by the H-field:

∇[αHβµν] + 3
4F[αβ

ijFµν]ij = 0 , (3.3)

it is found that the perturbation of the H-field and the perturbation of the YM field are related
through the equation d(δH + 3F ijδAij) = 0, where form notation is employed. Consequently,
the perturbation of the H-field can be expressed as a linear combination of the YM gauge
field perturbation and an arbitrary two-form δB:

δH = 3dδB − 3F ijδAij . (3.4)

Subsequently, the field redefinition introduces the following terms into the Lagrangian L′
1:

K1 ≡
(1

2∇γH
αβγ −Hαβ

γ∇γΦ
)
δBαβ

−
(
∇βFαβ

ij − 2Fαβ
ij∇βΦ − 1

2F
βµijHαβµ

)
δAα

ij

−
(
Rαβ − 1

4H
αγδHβ

γδ + 2∇β∇αΦ − 1
2F

αµijF β
µij

)
δGαβ (3.5)

− 2
(
R− 1

12HαβγH
αβγ + 4∇α∇αΦ − 4∇αΦ∇αΦ − 1

4FαβijF
αβij

)(
δΦ − 1

4δG
µ

µ

)
.

In this expression, the perturbations δGµν , δBµν , δΦ, δAa
ij are constructed from the NS-NS

and YM fields at the two-derivative order, with arbitrary coefficients. δGµν is symmetric,
and δBµν is antisymmetric. By incorporating the total derivative terms and the contribution
from field redefinitions into the Lagrangian L′

1, the resulting Lagrangian, denoted as L1,
exhibits different coupling constants. Consequently, the equation

∆1 − J1 −K1 = 0 , (3.6)
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holds, where ∆1 = L1 − L′
1 is equivalent to L′

1, but with coefficients δc1, δc2, . . ., where
δci = ci − c′i. Solving the above equation yields linear relations among δc1, δc2, . . ., which
indicate how the couplings are related to each other through total derivative and field
redefinition terms. Additionally, there are relations between δc1, δc2, . . . and the coefficients of
the total derivative terms and field redefinitions, but they are not of interest for our purposes.

To solve the equation (3.6), it is necessary to express it in terms of independent couplings
by imposing the following Bianchi identities:

Rα[βγδ] = 0 , ∇[µRαβ]γδ = 0 , [∇,∇]O −RO = 0 ,

∇[αHβµν] + 3
4F[αβ

ijFµν]ij = 0 , ∇[αFβγ]
ij = 0 . (3.7)

If we had not removed the commutator term in the YM field strength, an additional Bianchi
identity would arise as [∇,∇]F ∼ FF . This relation connects the coupling that involves
antisymmetric two-derivatives of F to the coupling that involves FF . In other words, these
two couplings are not independent. If one chooses one of them as an independent coupling,
the other one must be eliminated from the list of independent couplings. By removing the
commutator term in the YM field strength, we consider the couplings FF to be independent
and remove the couplings that involve antisymmetric two-derivatives of the YM field strength
from the list of all higher derivative couplings.

The Bianchi identities (3.7) can be imposed on the equation (3.6) either in a gauge-
invariant form or a non-gauge-invariant form. We impose them in a non-gauge-invariant
form. Hence, we rewrite the terms in (3.6) in a local frame where the covariant derivatives
are expressed in terms of partial derivatives and the first partial derivative of the metric
is zero. Additionally, the terms involving H and F in (3.6) can be rewritten in terms of
potentials using the relations (1.2), in which the commutator is removed. This way, all the
Bianchi identities are automatically satisfied [20].

The equation (3.6) can then be solved to find the basis. We consider solving this equation
in two cases: using field redefinition or not. In the next subsection, we use field redefinition
to find the couplings in the minimal basis. In the subsequent subsection, we do not use
field redefinition, i.e., we do not include K1 in this equation, to find the couplings in the
maximal basis.

3.1 Minimal basis

Imposing the Bianchi identity in a non-gauge-invariant form, one can rewrite the different
terms on the left-hand side of (3.6) in terms of independent but non-gauge-invariant couplings.
The coefficients of the independent terms must be zero, leading to a set of algebraic equations.
The solution to these equations has two parts. The first part consists of 24 relations between
only δci’s, while the second part consists of additional relations between the coefficients of
total derivative terms, field redefinitions, and δci’s, which are not of interest to us. The
number of relations in the first part determines the number of independent couplings in L′

1.
In a particular scheme, it is possible to set some of the coefficients in L′

1 to zero. However,
after replacing the non-zero terms in (3.6), the number of relations between only δci’s should
remain unchanged. In other words, there must always be 24 relations.
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For the terms involving only NS-NS couplings, we include the 8 independent terms from
the minimal basis of NS-NS fields chosen [18] by setting all other NS-NS terms to zero. As
for the YM couplings, we set the couplings involving derivatives of H and F to zero, along
with those involving the Ricci tensor, Ricci scalar, and couplings with an odd number of
H-fields. Despite eliminating these terms, equation (3.6) still yields more than 24 δci in the
relations that solely involve δci. This suggests that we can further set some of the δci to
zero to obtain a set of 24 relations characterized by δci = 0.

Among the couplings involving YM field strengths, there are 8 terms that feature
four field strengths. Four of these couplings involve single-trace terms in the gauge group
indices, such as Tr(FµνF

µνFαβF
αβ), while the other four involve two-trace terms, such

as Tr(FµνF
µν)Tr(FαβF

αβ). The coupling constants associated with the single-trace terms
are unambiguous parameters, whereas the coupling constants of the two-trace terms are
ambiguous parameters. In our chosen scheme, we consider the two-trace terms as independent
couplings. There are still other choices available for selecting the independent couplings.

We select the 24 couplings according to the following scheme:

L1 =α′
[
c1Fα

γklFαβijFβ
δ

klFγδij +c2Fα
γ

i
kFαβijFβ

δ
k

lFγδjl+c3Fα
γ

i
kFαβijFβ

δ
j
lFγδkl

+c4Fα
γ

ijF
αβijFβ

δklFγδkl+c5Fαβ
klFαβijFγδklF

γδ
ij +c6Fαβ

klFαβijFγδjlF
γδ

ik

+c7Fαβi
kFαβijFγδklF

γδ
j
l+c8FαβijF

αβijFγδklF
γδkl+c9F

αβijF γδ
ijHαγ

ϵHβδϵ

+c10F
αβijF γδ

ijHαβ
ϵHγδϵ+c11Fα

γ
ijF

αβijHβ
δϵHγδϵ+c12Hα

δϵHαβγHβδ
εHγϵε

+c13FαβijF
αβijHγδϵH

γδϵ+c14Hαβ
δHαβγHγ

ϵεHδϵε+c15HαβγH
αβγHδϵεH

δϵε

+c16F
αβijF γδ

ijRαβγδ +c17RαβγδR
αβγδ +c18Hα

δϵHαβγRβγδϵ (3.8)
+c19FβγijF

βγij∇αΦ∇αΦ+c20HβγδH
βγδ∇αΦ∇αΦ+c21Hα

γδHβγδ∇αΦ∇βΦ

+c22∇αΦ∇αΦ∇βΦ∇βΦ+c23Fα
βij∇αΦ∇γFβ

γ
ij +c24Fα

βij∇αΦ∇γFβ
γ

ij + 1
4H

αβγΩαβγ

]
,

where we have also included the four-derivative HΩ term, which results from replacing the
Lorentz Chern-Simons three-form in the H-field [14], i.e., H → H− 3α′

2 Ω, in the leading-order
action (1.1). The Chern-Simons three-form is given by:

Ωµνα = ω[µµ1
ν1∂νωα]ν1

µ1 + 2
3ω[µµ1

ν1ωνν1
α1ωα]α1

µ1 ; ωµµ1
ν1 = eν

µ1∇µeν
ν1 , (3.9)

where eµ
µ1eν

ν1ηµ1ν1 = Gµν . Our index convention is that µ, ν, . . . are the indices of the
curved spacetime, and µ1, ν1, . . . are the indices of the flat tangent spaces. We assume that
the effective action has an overall factor of −2/κ2.

The parameters c1, . . . , c24 in the above Lagrangian are background-independent coupling
constants that can be determined either through the S-matrix method, which involves
comparing the S-matrix of the field theory with the S-matrix elements in string theory in flat
spacetime, or through T-duality. In the T-duality approach, one direction of spacetime is
assumed to be a circle, and the truncated O(1, 1,Z) symmetry is imposed on the coupling
constants. We employ the latter approach to determine the coupling constants in the
minimal basis.
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3.2 Maximal basis

To obtain the maximal basis, one should refrain from using field redefinition. By removing K1
from the equation (3.6) and solving it again, one discovers 42 relations solely between δci’s.
Consequently, the maximal basis consists of 42 couplings. In this scenario, it is permissible to
set the coefficients of the couplings involving first derivatives of curvatures, second derivatives
of H and F , and third derivatives of the dilaton to zero. After setting them to zero, the
equation (3.6) still generates 42 relations solely between δci’s. However, there are still more
than 42 δci present in these relations, indicating that we are still able to set some of them
to zero in order to produce 42 relations δci = 0. Unlike in the minimal basis, we are not
allowed to set all terms with an odd number of H to zero.

We choose the 42 couplings in the following scheme:

L1 =α′
[
c1Fα

γklFαβijFβ
δ

klFγδij +c2Fα
γ

i
kFαβijFβ

δ
k

lFγδjl+c3Fα
γ

i
kFαβijFβ

δ
j
lFγδkl

+c4Fα
γ

ijF
αβijFβ

δklFγδkl+c5Fαβ
klFαβijFγδklF

γδ
ij +c6Fαβ

klFαβijFγδjlF
γδ

ik

+c7Fαβi
kFαβijFγδklF

γδ
j
l+c8FαβijF

αβijFγδklF
γδkl+c9F

αβijF γδ
ijHαγ

ϵHβδϵ

+c10F
αβijF γδ

ijHαβ
ϵHγδϵ+c11Fα

γ
ijF

αβijHβ
δϵHγδϵ+c12Hα

δϵHαβγHβδ
εHγϵε

+c13FαβijF
αβijHγδϵH

γδϵ+c14Hαβ
δHαβγHγ

ϵεHδϵε+c15HαβγH
αβγHδϵεH

δϵε

+c16Fα
γijFβγijR

αβ +c17Hα
γδHβγδR

αβ +c18RαβR
αβ +c19FαβijF

αβijR

+c20HαβγH
αβγR+c21R

2+c22F
αβijF γδ

ijRαβγδ +c23RαβγδR
αβγδ +c24Hα

δϵHαβγRβγδϵ

+c25F
αβijHβγδ∇αF

γδ
ij +c26FβγijF

βγij∇α∇αΦ+c27HβγδH
βγδ∇α∇αΦ+c28R∇α∇αΦ

+c29FβγijF
βγij∇αΦ∇αΦ+c30HβγδH

βγδ∇αΦ∇αΦ+c31R∇αΦ∇αΦ+c32∇α∇αΦ∇β∇βΦ
+c33Fα

γijFβγij∇αΦ∇βΦ+c34Hα
γδHβγδ∇αΦ∇βΦ+c35Rαβ∇αΦ∇βΦ

+c36∇αΦ∇αΦ∇βΦ∇βΦ+c37∇αΦ∇β∇αΦ∇βΦ+c38Fα
γijFβγij∇β∇αΦ

+c39Hα
γδHβγδ∇β∇αΦ+c40∇βFαγij∇γFαβij +c41H

βγδ∇αΦ∇δHαβγ

+c42∇γHαβδ∇δHαβγ + 1
4H

αβγΩαβγ

]
, (3.10)

where we have also included the four-derivative HΩ term. It is worth noting that if the
YM gauge field is set to zero, the basis consists of 21 couplings, whereas if one sets it to
zero before solving the equation (3.6), one would find 20 couplings. This discrepancy is not
an inconsistency because in the presence of the YM field, the Bianchi identity (3.3) can
relate terms without F to terms that include F , or terms with F to terms without F . It is
possible to find the maximal basis in a different scheme such that if the YM field is removed,
it becomes the same as the maximal basis for only NS-NS fields. In fact, in the minimal
basis (3.8), we have chosen such a scheme.

The parameters c1, . . . , c42 in the above Lagrangian are background-independent cou-
pling constants that we will determine in the next section by imposing the truncated
T-duality.

– 10 –



J
H
E
P
0
6
(
2
0
2
4
)
0
5
9

4 Effective action at the four-derivative order

The observation that the dimensional reduction of the classical effective action of string theory
on a torus T (d) must be invariant under the O(d, d,R) transformations [1, 2] indicates that
the circular reduction of the couplings in the effective action should be invariant under the
discrete group O(1, 1,Z) or Z2-group, which consists only of non-geometrical transformations.
Hence, to impose this Z2-constraint on the classical effective action Seff , one needs to reduce
the theory on a circle using the reduction (2.2) to obtain the (D − 1)-dimensional effective
action Seff(ψ) where ψ collectively represents the base space fields. Then, one transforms this
action under the Z2-transformations to produce Seff(ψ′) where ψ′ is the Z2-transformation
of ψ. The Z2-constraint on the effective action is given by

Seff(ψ) − Seff(ψ′) =
∫
dD−1x

√
−ḡ∇a

[
e−2ϕ̄Ja(ψ)

]
, (4.1)

where Ja is an arbitrary covariant vector composed of the (D − 1)-dimensional base space
fields. The above constraint may be used to fix the coupling constants in the effective action
Seff up to overall factors at each order of derivatives.

In the heterotic theory, the reduced action Seff and the Z2-transformations in the reduction
scheme (2.2) are nonlinear in the YM scalar field αij . In this paper, we speculate that if we
keep track of only the zeroth and first order of the scalar field αij in both the reduced action
Seff and the Z2-transformations, and assume this field is constant, then the corresponding
truncated T-duality constraint (4.1) still has enough constraints to fix the coupling constants in
Seff . Therefore, we divide the reduced action and the Z2-transformations ψ′ into two parts as

Seff = SL
eff + SNL

eff ; ψ′ = ψL + ψNL, (4.2)

where the upper index L stands for the zeroth and linear order of the constant αij , and the
upper index NL stands for the nonlinear orders of αij . Then we truncate the nonlinear parts
and propose that the following truncated constraint:

SL
eff(ψ) − SL

eff(ψL) =
∫
d9x

√
−ḡ∇a

[
e−2ϕ̄Ja(ψ)

]
, (4.3)

may fix all coupling constants in the parent action Seff up to overall factors at each derivative
order. In the second term of the above action, only the zeroth and first order terms of
αij should be retained.

The Buscher rules in (2.6) only include the zeroth and first order terms of αij . This part
is necessary to investigate the T-duality of the reduced action at the zeroth and linear order
of αij . The nonlinear part of the Buscher rule, which we are not concerned with, is required
to demonstrate the invariance of the full reduced action (1.1), which incorporates terms up to
fourth order in αij , under T-duality [17]. Assuming that the diffeomorphism transformations
do not receive higher-derivative deformations, the Buscher rules must be generalized to include
higher derivative terms corresponding to the effective action at each order of α′. Therefore,
the truncated generalized Buscher rules ψL should have the following expansion:

ψL = ψL
0 +

∞∑
n=1

α′n

n! ψ
L
n . (4.4)
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Here, ψL
0 represents the truncated Buscher rules in (2.6), and ψL

n represents their deformations
at order α′n. The deformed Buscher rules must form the Z2-group.

Using an α′-expansion for the 9-dimensional effective action SL
eff and for the vector

Ja, and employing the following Taylor expansion for the T-duality transformation of the
9-dimensional effective action at order α′n around the truncated Buscher rule ψL

0 :

SL(n)(ψL) =
∞∑

m=0
α′mSL(n,m)(ψL

0 ), (4.5)

where SL(n,0) = SL(n), one finds that the Z2-constraint in (4.3) becomes

∞∑
n=0

α′nSL(n)(ψ) −
∞∑

n=0,m=0
α′n+mSL(n,m)(ψL

0 ) −
∞∑

n=0
α′n

∫
d9x ∂a

[
e−2ϕ̄Ja

(n)(ψ)
]

= 0, (4.6)

where Ja
(n) is an arbitrary covariant vector composed of the 9-dimensional base space fields at

order α′n+1/2. In the above equation, we have also used the observation made in [8] that the
Z2-constraint for curved base space produces exactly the same constraint for the coupling
constants as for flat base space. Hence, for simplicity of the calculation, we have assumed
the base space is flat. To find the appropriate constraints on the effective actions, one must
set the terms at each order of α′ to zero.

The T-duality constraint (4.6) at order α′0 is

SL(0)(ψ) − SL(0)(ψL
0 ) −

∫
d9x ∂a

[
e−2ϕ̄Ja

(0)(ψ)
]

= 0, (4.7)

where SL(0)(ψ) is determined by the terms in the first and second lines of (2.5). We have
already observed that the above constraint fixes the coupling constants in S(0).

The constraint in (4.6) at order α′ becomes

−SL(0,1)(ψL
0 ) −

∫
d9x ∂a

[
e−2ϕ̄Ja

(1)(ψ)
]

= SL(1)(ψL
0 ) − SL(1)(ψ). (4.8)

Using the reductions in (2.2), it is straightforward to find the circular reduction of the
couplings in (3.8) or (3.10) to obtain the corresponding SL(1)(ψ). Then, using the truncated
Buscher transformations in (2.6), one can calculate its corresponding SL(1)(ψL

0 ).
To determine the first term on the left-hand side of the above equation, we need higher-

derivative corrections to the truncated Buscher rules (2.6), i.e.,

φL = −φ+ α′∆φ(1)(ψ) + · · · , gL
a = ba + α′eφ/2∆g(1)

a (ψ) + · · · ,

bL
a = ga + α′e−φ/2∆b(1)

a (ψ) + · · · , ḡL
ab = ηab + α′∆ḡ(1)

ab (ψ) + · · · ,

H̄L
abc = H̄abc + α′∆H̄(1)

abc(ψ) + · · · , ϕ̄L = ϕ̄+ α′∆ϕ̄(1)(ψ) + · · · ,

(ĀL
a )ij = Āa

ij + α′∆Ā(1)
a

ij(ψ) + · · · , (αL)ij = −αij + α′∆α(1)ij(ψ) + · · · . (4.9)

The corrections ∆φ(1), ∆g(1)
a , ∆b(1)

a , ∆ḡ(1)
ab , ∆ϕ̄(1), ∆Ā(1)

a
ij , ∆α(1)ij are independent and can

be written as contractions of the base space fields at the two-derivative order. However,
the correction ∆H̄(1)

abc is related to the corrections ∆b(1)
a , ∆ḡ(1)

ab , ∆Ā(1)
a

ij , and an arbitrary
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two-form ∆B(1)
ab that is also at the two-derivative order. This relation is a result of the

Bianchi identity of H̄L, which is

dH̄L + 3
2dg

L ∧ dbL + 3
4dĀ

Lij ∧ dĀLij = 0. (4.10)

The replacement (4.9) produces the following relation at order α′:

d
(
∆H̄(1) + 3eφ/2dg ∧ ∆g(1) + 3e−φ/2db ∧ ∆b(1) + 3dĀij ∧ ∆Ā(1)

ij

)
= 0. (4.11)

The expression inside the parentheses should be an exact three-form. Hence,

∆H̄(1)
abc = 3∂[a∆B(1)

bc] − 3eφ/2V[ab∆g
(1)
c] − 3e−φ/2W[ab∆b

(1)
c] − 3F̄[ab

ij∆Ā(1)
c]ij , (4.12)

where 3∂[a∆B(1)
bc] is the exact three-form.

Using the above relation, one finds the Taylor expansion of the T-duality transformation
of the leading-order action around the truncated Buscher transformations to be:

SL(0,1)(ψL
0 )

=− 2
κ′2

∫
d9xe−2ϕ̄

[(
1
4∂

aφ∂bφ−2∂a∂bϕ̄+ 1
4H̄

acdH̄b
cd+ 1

2(eφV acV b
c+e−φW acW b

c)

+F̄ acijF̄ b
cij +(eφ/2V ac−e−φ/2W ac)F̄ b

cijα
ij

)
∆ḡ(1)

ab +
(

2∂c∂
cϕ̄−2∂cϕ̄∂

cϕ̄− 1
24H̄

2

− 1
8∂cφ∂

cφ− 1
8(eφV 2+e−φW 2)+ 1

2 F̄abijF̄
abij +(eφ/2V ab−e−φ/2W ab)F̄abijα

ij

)

×(ηab∆ḡ(1)
ab −4∆ϕ̄(1))−

(
1
2∂a∂

aφ−∂aϕ̄∂
aφ+ 1

4(eφ/2V ab+e−φ/2W ab)F̄abijα
ij

− 1
4(eφV 2−e−φW 2)

)
∆φ(1)+

(
2e−φ/2∂bϕ̄W

ab−e−φ/2∂bW
ab+e−φ/2∂bφW

ab

+ 1
2e

φ/2H̄abcVbc−2
(
∂bϕ̄+ 1

4∂bφ

)
F̄ abijαij +∂bF̄

abijαij

)
∆g(1)

a +
(

2eφ/2∂bϕ̄V
ab

−eφ/2∂bV
ab−eφ/2∂bφV

ab+ 1
2e

−φ/2H̄abcWbc+2
(
∂bϕ̄−

1
4∂bφ

)
F̄ abijαij

−∂bF̄
abijαij

)
∆b(1)

a +
(1

2∂aH̄
abc−H̄abc∂aϕ̄

)
∆B(1)

bc +
(

1
2H̄

abcF̄bcij−∂bF̄
ab

ij

+2∂bϕ̄F̄
ab+αij

[
2
(
∂bϕ̄−

1
4∂bφ

)
eφ/2V ab−2

(
∂bϕ̄+ 1

4∂bφ

)
e−φ/2W ab−eφ/2∂bV

ab

+e−φ/2∂bW
ab

])
∆Ā(1)ij

a +
(

1
2 F̄abij(eφ/2V ab−e−φ/2W ab)

+αij

(
−1

2V
abWab+ 1

2W
2+ 1

2 F̄
2+ 1

4∂aφ∂
aφ

))
∆α(1)ij

]
, (4.13)
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where we have also removed some total derivative terms. In finding the above result in the
last line, we have kept the terms in the leading-order action that have a second order of the
scalar αij . This is because the variation ∆α(1)ij may have terms at the zeroth order of αij ,
which would produce a linear order of αij after replacing it in the last line above.

Since the truncated T-duality transformations (4.9) must satisfy the Z2-group, the
deformations at order α′ should satisfy the following constraint:

−∆φ(1)(ψ) + ∆φ(1)(ψL
0 ) = 0 ; ∆b(1)

a (ψ) + ∆g(1)
a (ψL

0 ) = 0 ,

∆g(1)
a (ψ) + ∆b(1)

a (ψL
0 ) = 0 ; ∆ḡ(1)

ab (ψ) + ∆ḡ(1)
ab (ψL

0 ) = 0 ,

∆ϕ̄(1)(ψ) + ∆ϕ̄(1)(ψL
0 ) = 0 ; ∆B(1)

ab (ψ) + ∆B(1)
ab (ψL

0 ) = 0 ,

∆Ā(1)ij
a (ψ) + ∆Ā(1)ij

a (ψL
0 ) = 0 ; −∆α(1)ij(ψ) + ∆α(1)ij(ψL

0 ) = 0 . (4.14)

These corrections should be constructed from all contractions of ∂φ, ∂ϕ̄, eφ/2V , e−φ/2W , H̄,
F̄ab

ij , and their derivatives at order α′ with arbitrary coefficients. They should also include
terms at zeroth and first order in the scalar αij , while satisfying the above constraint.

Having discussed how to calculate SL(0,1)(ψL
0 ), let us now consider the total derivative

term in the T-duality constraint (4.8). The vector Ja
(1) should also be constructed from

contractions of ∂φ, ∂ϕ̄, eφ/2V , e−φ/2W , H̄ , F̄ab
ij at the three-derivative order with arbitrary

coefficients. Furthermore, these constructions should also include terms at zeroth and first
order in the scalar αij .

The parameters in the total derivative term and in the corrections to the Buscher rules
appear on the left-hand side of the equation (4.8), while the coupling constants c1, c2, . . .

appear on the right-hand side of this equation. To solve this equation, we need to impose
the Bianchi identities corresponding to the field strengths H̄, F̄ , V,W . We impose these
identities by expressing the field strengths in terms of potentials. As a result, the equation
can be written in terms of independent but non-gauge-invariant couplings. The coefficients
of the independent terms must be zero, leading to a system of linear algebraic equations
among these parameters.

By solving the algebraic equations, we obtain two sets of solutions for these parame-
ters. One set of solutions represents the relationships only among the parameters in the
deformations of the Buscher rules and total derivative terms. These solutions satisfy the
following homogeneous equation:

−SL(0,1)(ψL
0 ) −

∫
d9x ∂a

[
e−2ϕ̄Ja

(1)(ψ)
]

= 0. (4.15)

However, we are not interested in the solutions of the above equation.
The other solution, which is a particular solution of the non-homogeneous equation (4.8)

and the one of interest, expresses these parameters in terms of the coupling constants c1, c2, . . ..
This solution also determines the relationships between the coupling constants. We will
consider the particular solution for two cases: when the couplings are in the minimal basis
and when the couplings are in the maximal basis. In the next subsection, we will focus
on the case of the minimal basis.
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4.1 Couplings in the minimal scheme

If we consider the four-derivative couplings in the minimal basis (3.8) without the inclusion of
the Chern-Simons couplings HΩ, the particular solution of the non-homogeneous equation (4.8)
yields c1 = c2 = · · · = c24 = 0. This result is expected since there is no string theory in
which H is given by (1.2). However, in heterotic theory, the Green-Schwarz mechanism [14]
introduces the YM Chern-Simons term in (1.2) as well as the Lorentz Chern-Simons terms
−(3α′/2)Ωµνρ. These terms give rise to an additional four-derivative coupling, along with the
24 couplings in the minimal basis. Interestingly, when we include this term, the T-duality
constraint (4.8) fixes all the parameters in terms of the coefficient of the Chern-Simons
coupling HΩ, which is already fixed at the two-derivative order.

We find the following result for the effective action:

S(1) = − α′

4κ2

∫
d10x

√
−Ge−2Φ

[
1
4Fα

γklFαβijFβ
δ

klFγδij −
1
2Fα

γ
ijF

αβijFβ
δklFγδkl

− 1
8Fαβ

klFαβijFγδklF
γδ

ij + 1
4F

αβijF γδ
ijHαγ

ϵHβδϵ −
1
8F

αβijF γδ
ijHαβ

ϵHγδϵ

− 1
2Fα

γ
ijF

αβijHβ
δϵHγδϵ + 1

24Hα
δϵHαβγHβδ

εHγϵε −
1
8Hαβ

δHαβγHγ
ϵεHδϵε

+RαβγδR
αβγδ − 1

2Hα
δϵHαβγRβγδϵ + 2HαβγΩαβγ

]
. (4.16)

Interestingly, all unambiguous single-trace four YM couplings become zero, which is consistent
with the results obtained from the S-matrix method [11]. When the YM gauge field is zero,
the action mentioned above reduces to the Metsaev-Tseytlin action, which is consistent with
the S-matrix elements in the heterotic theory [18].

The T-duality constraint (4.8) also yields the following corrections to the truncated
Buscher rules (2.6):

−8∆ϕ̄(1) = −1
2e

φVabV
ab + 1

2e
−φWabW

ab ,

−8∆G(1)
ab = −2eφVa

cVbc +2e−φWa
cWbc ,

−8∆α(1)
ij = −1

2e
φVcdV

cdαij + 1
2e

−φWcdW
cdαij ,

−8∆Ā(1)
a ij = −eφ/2H̄adeV

deαij −eφ/2H̄adeW
deαij ,

−8∆B(1)
ab = 4V[b

cWa]c +2eφ/2F̄[b
cijVa]cαij +2e−φ/2F̄[b

cijWa]cαij ,

−8∆φ(1) = −2eφVabV
ab−2e−φWabW

ab−2∂aφ∂
aφ+2V abWab ,

−8∆g(1)
a = −eφ/2H̄abcV

bc−2e−φ/2∂bWa
b +4e−φ/2Wab∂

bϕ̄+ 1
2e

−φ/2H̄abcW
bc−eφ/2Vab∂

bφ

+αij

(1
2H̄abcF̄

bcij −2∂aF̄a
bij +4F̄ab

ij∂bϕ̄+ F̄ab
ij∂bφ

)
, (4.17)

and ∆b(1)
a (ψ) = −∆g(1)

a (ψL
0 ). When the YM scalar αij is zero, the above correction reduces to

the corrections that have been found in [7] for the couplings in the Metsaev-Tseytlin action.
The observation that the single-trace terms of the four YM field strength are zero is

consistent with the S-matrix results. However, the two-trace terms in (4.16) do not precisely
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match those obtained from S-matrix calculations [11]. This discrepancy is not an inconsistency
because the two-trace terms represent ambiguous couplings that can be modified through
field redefinitions. Therefore, the explicit form of the four YM field strength that is produced
by the S-matrix method should appear in other schemes. To confirm the consistency of the
single-trace terms with the S-matrix, we need to derive the effective action in alternative
schemes. In the next subsection, we will determine the couplings in the maximal scheme.

4.2 Couplings in the maximal scheme

If we consider the four-derivative couplings in the maximal basis (3.10) without the inclusion of
the Chern-Simons couplings HΩ, the particular solution of the non-homogeneous equation (4.8)
yields 24 relations among the 42 coupling constants. We then examine the resulting basis,
which contains 18 parameters under the field redefinition. Among these parameters, c23 in
the basis (3.10), which represents the coefficient of the Riemann squared, remains unchanged
under field redefinitions. The remaining 17 parameters can be eliminated through suitable field
redefinitions. If there were a string theory in which the Lorentz Chern-Simons term in the B-
field strength was absent, the unambiguous parameter c23 would be non-zero and represent the
coefficient of four-derivative couplings. However, since no such theory exists, we must impose
the condition that the unambiguous parameter must be zero. This condition introduces an
additional constraint on top of the 24 relations obtained from the T-duality constraint (4.8).

However, in the heterotic theory, there exist four-derivative Chern-Simons couplings HΩ
along with the 42 couplings in the maximal basis. In this case, the particular solution of the
non-homogeneous equation (4.8) yields the following 24 relations between the 42 coupling
constants and the coefficient of the couplings HΩ:

c12 = 1/24+c1/12+c10/6, c18 =−1−8c1−8c10−8c11+16c14−2c16, c2 = 0,
c22 =−1/4−2c10, c23 = 1+2c1+4c10, c24 =−3/4−2c10+2c11−8c14+c16/2−c17,

c25 =−1/2+c1−2c10, c3 = 0, c31 = 32c19−48c20+8c21−16c26+24c27−2c28−8c29+12c30,

c32 = 4+32c1+32c10+32c11+96c13−64c14−432c15+8c16+40c19−108c20−15c21−8c26

+24c27+4c28, c34 = c33/2, c35 =−4−32c1−32c10−32c11+64c14−8c16−2c33,

c36 =−16−128c1−128c10−128c11−384c13+256c14+1728c15−32c16−32c19+240c20

+76c21−32c26−16c28−32c29+48c30, c37 = 24+192c1+192c10+192c11+768c13−384c14

−3456c15+48c16−288c20−120c21+96c26−96c27+24c28+80c29−144c30−4c33,

c38 =−2−16c1−16c10−16c11+96c13+32c14−288c15−2c16+40c19−48c20+10c21−8c26

+12c27−c28, c4 = 2c11−4c14, c40 = 1/2−2c1, c41 = 1+8c1+8c10+8c11−48c13−16c14

+144c15+2c16−2c17−20c19+24c20−5c21+4c26−6c27+c28/2+c39, c42 = 1/4−c1

−2c11+8c14−c16/2+c17, c5 =−(c1/4)+c10/2, c6 = 0, c7 = 0, c8 = (3c13)/2−(9c15)/4
−c19/8+(3c20)/16−c21/64, c9 = 1/4+c1/2+c10 . (4.18)

Using the fact that the coefficient of Riemann squared, c23, must be zero in the absence of
the couplings HΩ, we obtain one additional relation:

c10 = −c1
2 . (4.19)
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By substituting the relations (4.18) and (4.19) into the maximal basis (3.10), we determine the
couplings in the maximal scheme, which involve 17 arbitrary parameters. Choosing specific
values for these parameters allows us to obtain the effective action in the corresponding
scheme. For instance, when c1 = 1/4, c11 = −1/2, c14 = −1/8, and all other 14 parameters
are set to zero, we recover the action (4.16).

In order to compare the four YM couplings generated by T-duality with the corresponding
couplings obtained from the S-matrix method, we consider a scheme in which the graviton,
dilaton, and B-field propagators derived from the leading-order action (1.1) receive no
corrections at the four-derivative order. One particular scheme satisfying this condition is
the Meissner action. With the following relations for the 17 parameters:

c1 = 1/4, c14 = −1/8, c21 = 1, c15 = 1/144, c17 = 1, c20 = −1/6, c27 = −2/3, c30 = 2/3, c39 = 2,
c16 = c19 = c11 = c28 = c29 = c26 = c33 = c13 = 0 , (4.20)

we obtain the following effective action:

S(1) = − α′

4κ2

∫
d10x

√
−Ge−2Φ

[
1
4Fα

γklFαβijFβ
δ

klFγδij + 1
2Fα

γ
ijF

αβijFβ
δklFγδkl

− 1
8Fαβ

klFαβijFγδklF
γδ

ij −
1
16FαβijF

αβijFγδklF
γδkl + 1

4F
αβijF γδ

ijHαγ
ϵHβδϵ

− 1
8F

αβijF γδ
ijHαβ

ϵHγδϵ + 1
24Hα

δϵHαβγHβδ
εHγϵε −

1
8Hαβ

δHαβγHγ
ϵεHδϵε

+ 1
144HαβγH

αβγHδϵεH
δϵε +Hα

γδHβγδR
αβ − 4RαβR

αβ − 1
6HαβγH

αβγR+R2

+RαβγδR
αβγδ − 1

2Hα
δϵHαβγRβγδϵ −

2
3HβγδH

βγδ∇α∇αΦ + 2
3HβγδH

βγδ∇αΦ∇αΦ

+ 8R∇αΦ∇αΦ − 16Rαβ∇αΦ∇βΦ + 16∇αΦ∇αΦ∇βΦ∇βΦ − 32∇αΦ∇β∇αΦ∇βΦ

+ 2Hα
γδHβγδ∇β∇αΦ + 2HαβγΩαβγ

]
. (4.21)

When the YM gauge field is zero, the action mentioned above reduces to the Meissner
action [21], up to the total derivative term 16∇β(e−2Φ∇αΦ∇αΦ∇βΦ). The corresponding
corrections to the truncated Buscher rules (2.6) are:

−8∆ϕ̄(1) =−1
2e

φ/2F̄abijV
abαij− 1

2e
−φ/2F̄abijW

abαij , (4.22)

−8∆G(1)
ab =−4eφ/2F̄{b

cijVa}cαij−2e−φ/2F̄{b
cijWa}cαij ,

−8∆α(1)
ij =−eφVcdV

cdαij +e−φWcdW
cdαij +2αij∂c∂

cφ−4αij∂cφ∂
cϕ̄ ,

−8∆Ā(1)
a ij = 0 ,

−8∆B(1)
ab = 4V[b

cWa]c+2eφ/2F̄[b
cijVa]cαij +2e−φ/2F̄[b

cijWa]cαij ,

−8∆φ(1) =−eφVabV
ab−e−φWabW

ab−2∂aφ∂
aφ+2V abWab ,

−8∆g(1)
a =−eφ/2H̄abcV

bc−2e−φ/2Wab∂
bφ+ 1

2e
−φ/2H̄abcW

bc−eφ/2Vab∂
bφ− 1

2H̄abcF̄
bcijαij ,

and ∆b(1)
a (ψ) = −∆g(1)

a (ψL
0 ). When the YM scalar αij is set to zero, the aforementioned

correction simplifies to the corrections previously discovered in [6, 7] for the couplings
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in the Meissner action. It is worth noting that while the base space metric and dilaton
remain invariant for NS-NS couplings, the presence of the YM field breaks this invariance.
Furthermore, in the absence of the YM field, the transformations only involve the first
derivative of the base space fields, whereas the YM field introduces second derivatives of
the base space fields in addition to the first derivative.

The four YM coupling in (4.21) can be expressed as follows:

1
4Tr(Fα

γFβ
δ)Tr(FαβFγδ) + 1

2Tr(Fa
γFαβ)Tr(Fβ

γFγδ)

− 1
8Tr(FαβFγδ)Tr(FαβF γδ) − 1

16Tr(FαβF
αβ)Tr(FγδF

γδ)

= 1
32 t

αβγδµνρλTr(FαβFγδ)Tr(FµνFρλ) . (4.23)

The tensor t8, as defined in [22], is such that the contraction of t8 with four arbitrary
antisymmetric tensors M1, · · · ,M4 is given by:

tαβγδµνρσM1
αβM

2
γδM

3
µνM

4
ρσ = 8(trM1M2M3M4 +trM1M3M2M4 +trM1M3M4M2)

−2(trM1M2trM3M4 +trM1M3trM2M4 +trM1M4trM2M3)
(4.24)

The couplings in (4.23) are precisely the four YM couplings that have been discovered in [11]
through the examination of the low-energy expansion of the sphere-level S-matrix element
involving four YM vertex operators in heterotic string theory. Furthermore, the couplings
between the YM field strength and the H-field in (4.21) can be expressed as follows:(1

4Hαγ
ϵHβδϵ −

1
8Hαβ

ϵHγδϵ

)
Tr(FαβF γδ) = −3

8H[αβ
ϵHγ]δϵTr(FαβF γδ) , (4.25)

which is also the coupling found through the S-matrix method in [11]. It is important to
note that the couplings presented in [11] are in the Einstein frame, whereas the couplings
in equation (4.21) are in the string frame. Furthermore, the coupling schemes in [11] and
equation (4.21) differ from each other. However, in both cases, the leading-order propagators
do not receive four-derivative corrections.

If one would like to compare the remaining couplings in [11] with those in equation (4.21),
it would be necessary to first convert from the Einstein frame to the string frame and then
use field redefinition to precisely identify all terms in [11] with those in equation (4.21).
However, since the NS-NS couplings in the action (4.21) are the same as the couplings in the
Metsaev-Tseytlin action, up to field redefinition, and the latter couplings are consistent with
the S-matrix elements, we are not interested in delving into this comparison in further detail.

5 Discussion

In this paper, we have explored the imposition of the O(1, 1,Z) symmetry on the circular
reduction of heterotic string theory in order to derive its effective action at the four-derivative
level, focusing on NS-NS and YM couplings. Due to the nonlinear nature of T-duality
transformations and the circular reduction of the effective action with respect to the scalar
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component of the YM field, we have introduced a truncation method. This method retains
only the zeroth and first order terms of the scalar, discarding all higher order contributions,
in both the T-duality transformations and the reduced action.

We have demonstrated that this truncation procedure can be employed within the T-
duality Z2-constraint to determine the coupling constants in both the minimal basis and the
maximal basis at the four-derivative order. In the minimal scheme, this leads to the inclusion
of the YM coupling in the Metsaev-Tseytlin action, while in the maximal scheme, it allows
for the incorporation of the YM couplings into the Meissner action.

We have obtained the truncated Buscher rules at two-derivative order, given by equa-
tions (4.17) and (4.22), which correspond to the Metsaev-Tseytlin action (4.16) and the
Meissner action (4.21), respectively. The circular reduction of these actions, considering
only the zeroth and first order terms of the YM scalar, remains invariant under these trun-
cated Buscher rules. For the circular reduction of these actions at all orders of the YM
scalar field, it is expected that they should be invariant under the full Buscher rules at
two derivatives. These full Buscher rules encompass all higher orders of the YM scalar
field, as well as derivatives of this scalar field. Discovering these transformations would
be of great interest.

We have observed that the four YM field strength couplings, which are single-trace, are un-
ambiguous because they cannot be generated through field redefinitions, Bianchi identities, or
total derivative terms. However, the T-duality constraint requires their coefficients to be zero.
To illustrate this more clearly, let’s consider the circular reduction of the term in equation (3.8)
with coefficient c2. By applying the reduction described in equation (2.2), we find that the
reduced form of this term is c2 F̄a

c
i
k F̄ abij F̄b

d
k

l F̄cdjl + 4c2 e
φ/2 F̄a

c
i
k F̄b

d
k

l F̄cdjl V
ab αij . The

first term is invariant under the truncated Buscher rule stated in equation (2.6), while
the second term transforms as −4c2 e

−φ/2 F̄a
c
i
k F̄b

d
k

l F̄cdjl W
ab αij . No other term in equa-

tion (3.8) produces such a structure. Furthermore, since it is a single-trace term, it cannot
be generated by corrections to the Buscher rules, total derivative terms, or Bianchi iden-
tities in the base space. Therefore, T-duality fixes the coefficient c2 to be zero. A similar
situation occurs for the terms in equation (3.8) with coefficients c3, c6, and c7. We antici-
pate that a similar scenario would arise for higher-derivative couplings. Thus, we speculate
that the classical effective action of the heterotic theory, at n orders of derivatives and for
n > 2, should not contain single-trace couplings of n YM field strengths. This is in contrast
to the classical effective action of D-branes, which only features single-trace couplings of
YM field strengths. This distinction arises from the fact that the vertex operator in the
disk-level S-matrix element appears on the boundary of the disk, and there is a Chan-
Paton factor for any S-matrix element. As a result, the classical effective action of type
I string theory should only contain single-trace terms. This is not inconsistent with the
S-duality between the heterotic theory and type I theory [23] because the higher-derivative
classical effective action of one theory at weak coupling should be transformed into the
higher-derivative effective action of the other theory at strong coupling, which is not a
classical effective action.

The four YM couplings generated by T-duality in the Meissner scheme can be expressed
in terms of the t8 tensor, as shown in equation (4.23). On the other hand, T-duality yields
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the following eight-derivative coupling in the heterotic theory [24]:

α′2

128 t
αβγδµνρλTr(RαβRγδ)Tr(RµνRρλ). (5.1)

Here, the trace is over the last two indices of the Riemann curvature. These two couplings
can be combined as follows:

1
32 t

αβγδµνρλ
[
Tr(FαβFγδ) − α′

2 Tr(RαβRγδ)
] [

Tr(FµνFρλ) − α′

2 Tr(RµνRρλ)
]
. (5.2)

This expression has been determined in [11] through the study of the four-point S-matrix
element.

The four-derivative couplings presented in equations (4.16) and (4.21) are consistent with
the couplings obtained from the sphere-level four-point function in heterotic string theory.
Calculating the six-point function in heterotic string theory is a highly intricate task, and
extracting the corresponding low-energy six-derivative coupling is even more challenging.
However, extending the approach used in this paper to the six-derivative order is relatively
less complex compared to the S-matrix method. Therefore, it would be intriguing to apply
the T-duality approach to uncover the six-derivative YM couplings in the heterotic theory,
which should include the six-derivative couplings in (5.2). It is worth noting that the NS-NS
coupling at this order has already been derived using the T-duality method in a study by [9].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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