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ABSTRACT

This study investigates temporal variations of two water quality indices, named turbidity and Chlorophyll-a (Chl-a), from 2016 to

2021 in the Anzali wetland. For this purpose, ground-based measurements were collected at four stations from 2016 to 2019,

while Sentinel-2 images were utilized to predict Chl-a and turbidity from 2016 to 2021. To validate the forecasted results,

remote sensing data for Chl-a and turbidity were compared to measurements. After the validation step, Chl-a and turbidity

were predicted using remotely-sensed data for the first and fourth peaks of the COVID-19 pandemic, which coincide with

the COVID-19 lockdowns in 2020 and 2021 in Iran, respectively. The results indicate 26% and 16% decreases in Chl-a and tur-

bidity in the COVID-19 lockdown imposed in 2020, while it yielded to 1% decrease in turbidity and 21% increase in the Chl-a

concentration in the COVID-19 lockdown applied in 2021, compared to the corresponding mean values measured from 2016

to 2019. In conclusion, the lockdown imposed in 2020, which turned out to be a much more restricted quarantine than the

one applied in 2021, was found to be one of the primary reasons behind improving water quality indices of Anzali wetland

in March and April of 2020.
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HIGHLIGHTS

• This study investigates the lockdown’s effects on the Anzali western wetland turbidity and Chl-a.

• In 2021, Chl-a concentration in wetland increased by 21% and turbidity decreased by 1%.

• Changes in turbidity and chlorophyll-a concentration are mainly related to human activities.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

The COVID-19 pandemic attempts to alter not only human lives but also environment and is a unique problem
(Rahman et al. 2021). In the combat against the vigorous COVID-19 outbreak, lockdowns are counted as one of
the most controlling measures (Niazkar et al. 2020). During partial and full quarantine, various high- and low-risk

businesses may be shut down. Although the curfew period inevitably brings about financial disadvantages, it not
only significantly reduces the number of positive COVID-19 cases but also pandemic offers a rare chance to
examine the interplay between human activity and environmental changes (Venter et al. 2020; Xu et al. 2021).
For instance, air quality is expected to improve as activities ceased, whereas wastewater discharge, which had

a significant impact on the surrounding aquatic environment, may be reduced. Under the lockdown circum-
stances, it is vital to quantify influences that industrial activities and humans’ actions had on different aspects
of environment (Patel et al. 2020; Yunus et al. 2020). Water plays a crucial role as the primary resource for main-

taining ecosystem stability, being indispensable for both human populations and natural environments (Niknam
et al. 2024). Consequently, evaluating the quality of water is of paramount significance.

Several studies have reported mixed findings regarding the determinants and causing factors of COVID-19 to

provide useful implications and to take control of the spread (e.g., Bhadra et al. 2021; Roy et al. 2021; Mansouri
Daneshvar et al. 2022). Also, based on the literature, many studies have been carried out to delineate different
environmental factors in the absence or reduction of humans’ actions during the lockdown periods. For instance,

Venter et al. (2020) surveyed air pollution x in 34 countries during the lockdown period due to COVID-19. They
showed that the reduction of transportation and travel has decreased the rate of nitrogen dioxide emissions and
the amount of airborne suspended matter by 60 and 31%, respectively. Furthermore, it is stipulated that the state
of water pollution would improve in rivers and various watercourses with the cessation of not only industrial

activities but also sewage discharge. Studies conducted on various rivers and lakes during the COVID-19 pan-
demic deduced the same result. For instance, Patel et al. (2020) investigated the Yamuna River in Delhi,
which is known to be the most polluted river in India. They found that the water quality index (WQI) of nine

stations was improved by 37% during the lockdown period. In addition, biochemical oxygen demand (BOD)
and chemical oxygen demand (COD) reduced by 42.83 and 39.25%, respectively. Furthermore, the values of tur-
bidity, total suspended solids (TSS), and the algae effect were calculated using Landsat-8 images, while they

showed a significant reduction during the lockdown period.
The quality of water is affected by the type of land cover and land use in an area (Goodarzi et al. 2023). Accord-

ing to the literature review, most of research during the COVID-19 outbreak uses satellite imagery to assess water

quality. One of the most significant advantages of using remote sensing imagery over ground-based data is its
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broader coverage across the globe (Goodarzi et al. 2022a). For instance, Cherif et al. (2020) studied water temp-
erature and quality at the west coast of Tangier, Morocco, using Sentinel-3 images at multiple points in April 2019
and 2020. Their results indicated a decrease in water temperature and an improvement in water quality during the

lockdown. Their finding can be utilized to manage coastal activities. Aman et al. (2020) found that the amount of
suspended matter in the water of the Sabarmati River in Ahmedabad, India, decreased approximately by 36.48%
during the lockdown period and reached 16.79%. Moreover, air quality in Ahmedabad has been improved
according to the Center for Air Pollution Control. In another study, Yunus et al. (2020) used Landsat-8 images

to calculate suspended particulate matter (SPM) in Vembanad River, which is the longest freshwater river in
India. It was observed that SPM decreased by 15.9% due to the decrease in tourism and industrial activities.
To be more specific, the SPM rate decreased at 11 points out of 20 in April 2020. In addition, Niroumand-

Jadidi et al. (2020) examined water properties and total suspended matter (TSM) in the Venice Lagoon during
and before a lockdown. Their results showed a reduction of TSM and water turbidity during the lockdown
period. Also, Avtar et al. (2020) compared chlorophyll-a (Chl-a) using Landsat-8 and Sentinel-2 images in

Lake Vembanad and Wuhan between the pre-lockdown and during lockdown. The results demonstrated an
increase in Wuhan, while there were no significant changes in Vembanad. Muduli et al. (2021) used Sentinel-
2 satellite imagery to analyze water turbidity before and during a lockdown at seven specific points on the

Ganges River in India. It was found that water turbidity reduced by 55%, which is due to reduced industrial
activity, urban pollution, and hotels and domestic sewage. Also, it was indicated that the amounts of dissolved
oxygen (DO), BOD, and NO3 were decreased. Similarly, Tokatlı & Varol (2021) calculated the amount of phys-
ical and chemical variables and heavy metals at 25 stations on the Ergene River Basin in Turkey. It revealed a

decrease in the aforementioned parameters during the lockdown period. However, there was no significant
decrease in BOD, COD, TSS, EC, Mn, and turbidity, which could be due to the increased domestic sewage.
Khan et al. (2021) computed that the DO rate during and after the lockdown period in the Gomati River in

India were 69 and 79%, respectively. Also, the BOD rates during the lockdown period and after the lockdown
period were 69 and 75%, respectively, which indicates a decrease in the rate of these parameters during the lock-
down period. Najah et al. (2021) examined the WQI of Lake Putrajaya in Malaysia and concluded that it

increased from 24% in February 2020 to 94% during the lockdown period. Their results showed that NH3N
and COD factors play a key role in determining the WQI class, whereas pH, DO, and TSS are less effective.
Xu et al. (2021) studied a series of time series of Landsat 5 and 8 satellite images taken from November 2019
to April 2020 on the China Min River. Their investigation resulted in a 48% reduction in TSS concentration

during this period due to the reduced industrial, urban, and shipping activities on the corresponding river.
Ritchie et al. (2003) examined water quality parameters such as temperature, chlorophyll, and suspended par-

ticles in water using satellite images. They concluded that the use of satellite data, global positioning system, and

geographic information system is versatile to expand management programs for natural resources. Gholizadeh
et al. (2016) tabulated various specifications of airborne sensors to be used as a guide. They also assessed the
most common sensors in evaluating and calculating 11 water quality parameters, such as Chl-a, TSS, water temp-

erature, DO, BOD, and COD.
The first case of COVID-19 was observed in Iran in February 2020. The Iranian Ministry of Health quickly

intervened and tried to control the spreading of the disease by imposing restrictions and closing schools, univer-

sities, and shopping malls. However, it spread rapidly across the country. In March 2020, more restrictions were
imposed. In this regard, people were asked to follow new regulations surrounding social distance in their daily
activities and stay home, if possible. In addition, all industrial activities, trains, planes, and travel were stopped.
On 10 March 2020 and 9 April 202, a full lockdown was imposed in Iran. As a result, factories and tourist sites

were closed, industrial production was stopped, and agricultural activities were minimized.
The current study aims to investigate the effects of the lockdown imposed in Iran on two water quality par-

ameters (turbidity and Chl-a) of the western part of Anzali Wetland. The investigation of the water quality of

Anzali Wetland is very important, particularly due to its extensive impacts on the environment and the regional
economy. Anzali Wetland is one of the largest natural wetlands in Iran and is highly valuable for preserving bio-
diversity, water regulation, water resource provision, and natural resource conservation (Fallah & Zamani-

Ahmadmahmoodi 2017). This lagoon, as a sensitive ecosystem, requires protection and care. Assessing water
quality can help us address environmental issues such as water pollution, depletion of water resources, and
destruction of natural habitats. For this purpose, ground-based data and remote sensing techniques were used
to accounting for various influential factors including natural and human factors. The data gathered in this
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study were compared with each other to quantify variations of water quality parameters in the lockdown periods
of 2020 and 2021. The results help not only to understand the factors affecting changes in water quality but also to
identify the impact of human activities on the wetland system.

2. MATERIALS AND METHODS

2.1. Study area and datasets

2.1.1. Study area

Anzali Wetland is one of the international natural wetlands and is located in Guilan province, Iran. The approxi-

mate area of the wetland catchment is 3,740 km2, of which about 2,000 km2 is plains and other mountainous
areas. Moreover, it is in the geographical range of 36 degrees and 55 min to 37 degrees and 32 min north and
also 48 degrees and 45 min to 49 degrees and 42 min east. The average length of the wetland from east to

west is about 30 km, while its average width from north to south is about 3 km. Furthermore, the average
long-term annual rainfall is 1,300 mm with a considerable spatial and temporal variation, while 40% of rainfall
is commonly limited to the autumn season (September to January) (Aghsaei et al. 2020).

Basically, Anzali Wetland is divided into four main parts (east, west, central, and Siah Kashim), while the cen-

tral part is connected to the Caspian Sea. The study region is the western part of the wetland, which is shown in
Figure 1. The western part is similar to a small lake due to the great stillness of water and deep water depth. This
part is remarkably important for native residents who primarily exploit the region for fishing (Hosseinjani et al.
2019).

2.1.2. In situ measurement

In this study, the focus is on two water quality parameters, namely, turbidity and Chl-a. In this regard, the first part
of the data, which were measured from 2016 to 2019, were prepared by the Regional Water Administration of
Guilan Province and reliable sources (ALabdeh et al. 2020). The location of the sampling stations is depicted

in Figure 1(c), and their coordinates are presented in Table 1. Generally, the standard units for turbidity and

Figure 1 | The study area (c) in Guilan province (b).
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Chl-a are nephelometric turbidity unit (NTU) and micrograms per liter, respectively. In addition, the second part
of the data, which belong to the years of 2020 and 2021, was not directly measured due to the lockdown restric-
tions, which include non-issuance of licenses for vehicle traffic between cities. Thus, there is a lack of field

measurements during the lockdown period.

2.1.3. Satellite images

In areas where investigating features is difficult or where data collection stations are absent, satellite imagery can

be of significant assistance (Goodarzi et al. 2022b). The Sentinel-2/MSI satellite imagery was used for obtaining
the second part of the data in this study. Sentinel 2 satellites have multispectral imagery and provide the right
dataset to monitor the quality of a water body (Buma & Lee 2020). Basically, it is an Earth observation project
developed by the European Space Agency as a part of the Copernicus program. The imaging sensor mounted on

this satellite operates in the visible, near-infrared (NIR), and infrared spectral ranges. Furthermore, it has 13 ima-
ging bands with a spatial resolution of 20, 10, and 60 m and an imaging width of 290 km (Garg et al. 2020). For
better clarification, the specifications of this sensor are presented in Table 2. The main objectives of Sentinel 2 are

not only to improve Earth observation missions but also to support remote sensing services, such as forest moni-
toring, land cover change monitoring, and natural disaster management. A total of six high-quality and free-cloud
satellite images of the study region were selected in this study. The selected images of the Sentinel-2/MSI satellite

were downloaded from the US Geological Survey (www.earthexplorer.usgs.gov) (Table 2).

2.1.4. Meteorological data

Meteorological data and information for the study area, such as temperature and rainfall and wind speed, were

gathered from the website of the Meteorological Organization of Iran (www.irimo.ir/eng/index.php) and the
World Weather online website (www.worldweatheronline.com) on a daily basis and monthly for March and
April from 2016 to 2021.

2.2. Images preprocessing

The current study utilized ENVI 5.3.1 software for satellite images preprocessing. The QUick Atmospheric Cor-
rection (QUAC) algorithm was also employed to correct the visible bands of Sentinel-2 (Mahdavifard et al. 2020).
The input of the QUAC algorithm can be both radiance and Top of Atmosphere (TOA) reflectance (the data used

by Sentinel in this study were TOA data). The output of this image algorithm is surface reflectance (SR) with pixel
values of the Earth.

2.3. Estimation of Chl-a

Estimating the amount of Chl-a by using remote sensing methods is one of the most widely used efforts in eval-
uating water quality. There are a variety of algorithms for calculating Chl-a, which may include the use of single
bands, rationing, or indicators, such as Normalized Difference Vegetation Index (NDVI). In this study, the Chl-a

data were extracted from satellite images, and its map was prepared from 2016 to 2021 (March 27–April 27). Prior
to the implementation of the Chl-a model, pixels that included sunlight and regions other than the water body
were covered using the SR threshold short-wave infrared band. In this regard, Equations (1) and (2) presented

the equations proposed by Mishra & Mishra (2012) to obtain Chl-a with a high accuracy (determination coeffi-
cient (R2)¼ 0.95; p, 0.0001; range¼ 1–60 μg/L; root-mean-square error (RMSE)¼ 2 μg/L) (Mishra & Mishra
2012). This relationship has been widely used by numerous remote sensing studies (Muduli et al. 2021). As
shown in Equations (1) and (2), the normalized index of Chl-a difference (NDCI) is first obtained. To be more

Table 1 | Geographical location of four sampling stations in the western part of Anzali Wetland

Sampling stations

Geographical location

Longitude Latitude

ST1 49°2404.65″E 37°26030.4″N

ST2 49°20023.96″E 37°27049.7″N

ST3 49°2207.92″E 37°28027.4″N

ST4 49°18047.83″E 37°30026. 9″N
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Table 2 | Sentinel-2 MSI images of the Anzali western wetland used in this study

Name Bands

Central
wavele-
ngths (nm)

Resolution
(m)

Revisit
period

Swath
width

Date of image
acquisition Product ID

Sentinel
2/MSI

B1 443 10–20–60 5 days 290
km

2016-04-11 S2A_OPER_PRD_MSIL1C_PDMC_20160412T231157_R049_V20160411T073735_20160411T073735.SAFE
B2 490 2017-04-06 S2A_MSIL1C_20170406T072611_N0204_R049_T39SUB_20170406T073122.SAFE
B3 560 2018-03-27 S2B_MSIL1C_20180327T072609_N0206_R049_T39SUB_20180327T112210.SAFE
B4 665 2019-04-26 S2A_MSIL1C_20190426T072621_N0207_R049_T39SUB_20190426T093248.SAFE
B5 705 2020-03-31 S2A_MSIL1C_20200331T072611_N0209_R049_T39SUB_20200331T093103.SAFE
B6 740 2021-04-20 S2B_MSIL1C_20210420T072609_N0300_R049_T39SUB_20210420T082640.SAFE
B7 783
B8 842
B8a 865
B9 945
B10 1,375
B11 1,610
B12 2,190
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precise, Equation (1) gives NDCI from the Sentinel 2 outputs:

NDCI ¼ r(705)� r(665)
r(705)þ r(665)

(1)

Chl� a ¼ 14:039þ 86:115�NDCI þ 194:325�NDCI2 (2)

where ρ is the SR, which are calculated at 705 and 665 nm of the Sentinel 2-MSI bands.

2.4. Estimation of turbidity

Turbidity is a measure of the transparency of a liquid. It is a visual property of water and measured by the amount
of light emitted by the material irradiated into the water. Water turbidity may be caused by the presence of plank-

tons or microscopic organisms, suspended solids, such as clay and sludge, organic acids, dyes, and finely divided
organic matter (Nas et al. 2010). Several studies have extensively used visible and NIR bands to model turbidity in
lakes and reservoirs (Wang et al. 2006; Nas et al. 2010; Hicks et al. 2013; Baughman et al. 2015; Masocha et al.
2018; Martins et al. 2019; Abirhire et al. 2020).

Basically, the turbidity is calculated by preprocessing the satellite images, which is applied as a mask on the
study region. The method considered in this study involves the model developed by Abirhire et al. (2020). It
uses green, red, and NIR bands. This model is shown in Equation (3) and was selected because of its acceptable
precision (R2¼ 0.91, n¼ 37, P� 0.001). It was originally presented for Landsat 8/OLI satellite (Abirhire et al.
2020). However, equivalent bands were used for Sentinel 2/MSI in this study.

Turbidity ¼ �1:3790þ 55:3844�N þ 6:4725� R=G� 5:6511�N=G (3)

where G denotes green band, R is red band, and N is NIR2 (B8a).

2.5. Statistical metrics

Different statistical metrics have been employed for model assessment, each providing a distinct approach to
quantify the disparity between observed and estimated values. Among the three error evaluation metrics exam-
ined are the correlation coefficient (R), the RMSE, and the mean absolute error (MAE), with their respective

formulas provided below:

R ¼
Pn
1
(WQIO � WQIO)(WQIF �WQIF)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1
(WQIO �WQIO )

2
:
Pn
1
(WQIF �WQIF)

2

s (4)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1
(WQIF �WQIO)

2

N

vuuut
(5)

MAE ¼
Pn
1
jWQIF �WQIOj

N
(6)

3. RESULTS

3.1. Estimating Chl-a and turbidity

The Chl-a concentration was investigated in the western part of Anzali Wetland using ground-based and remotely
sensed data. Figure 2 illustrates the temporal variability of Chl-a concentration in March and April from 2016 to

2021. As shown, six images overall are presented in time series. According to the images depicted in Figure 2, it
can be interpreted that the concentration of Chl-a decreased during the first lockdown, which was in 2020. To be
more precise, the average value of the Chl-a concentration, which was 16.23 in 2019, reached 12.8 μg/L in 2020.
This decrease in the Chl-a concentration can also be seen in the satellite images. However, the concentration of
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Chl-a increased to 20.9 μg/L during the lockdown corresponds to the fourth peak of the COVID-19 pandemic
that occurred in 2021.

By using the model presented by Abirhire et al. (2020), the turbidity of the study area was achieved from the

Sentinel-2 images in the period of 2016 to 2021 (March 27–April 27). The corresponding images can be observed
in Figure 3. As shown, the results obtained in the first lockdown visually demonstrate a trend almost identical to
that obtained for the Chl-a concentration. There was a significant reduction in the turbidity of the west part water

in 2020. To be more specific, an average turbidity of 18.78 NTU in 2019 was reduced to 14.84 in 2020. According
to Figures 2 and 3, water turbidity levels in April 2021 have increased compared to the previous year, and the
central and southeastern parts of the lagoon have higher turbidity levels compared to 2020.

3.2. Validation of Chl-a and turbidity predictions

Previous studies calculated the correlation between Chl-a model (Mishra &Mishra 2012) and the turbidity model
(Abirhire et al. 2020) with the corresponding field data. In this study, the turbidity value and Chl-a of the study

area are compared in Figure 4 with 16 field-measured data obtained to ensure the accuracy of the estimation
results. The field data were gathered from four stations between March 27 and April 27 (2016–2019). According
to Figure 4, the results indicate a significant relationship between the field-measured values with the ones esti-

mated by Mishra and Mishra’s model (2012) (R2¼ 0.81; p, 0.001; RMSE¼ 1.43 μg/L) and Abirhire et al.’s

Figure 2 | Chl-a concentrations estimated for the western part of Anzali Wetland from March 27 to April 27 (2016–2021).
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model (2020) (R2¼ 0.76; p, 0.001; RMSE¼ 2.22 NTU). In addition, Table 3 displays the values of all three stat-
istical metrics. The results indicate that the parameter estimations have been conducted with acceptable

accuracy. Since the predicted values of Chl-a and turbidity are accepted in the validation step, the predicted
values are compared with the average Chl-a concentration and turbidity in Table 4. This comparison is conducted
between the measured and estimated values from March 27 to April 27 (from 2016 to 2021). Also, Table 4 pre-

sents the percentage decrease in 2020 and 2021 from the average of the previous years.

3.3. Factors affecting turbidity and Chl-a

The climatic conditions of the study region were evaluated using meteorological data from the Meteorological
Organization of Iran and the world weather website (www.worldweatheronline.com). This assessment was con-
ducted to determine conditions, e.g., rain and wind, affecting turbidity and conditions, e.g., temperature,

influencing Chl-a. For this purpose, Figure 5 presents time–series analysis of air temperature, rainfall, and
wind speed. As shown, the average temperature in March and April 2020 did not change much compared to
the previous years. However, the temperature increases by 5 °C in 2021. In addition, a significant decrease

(10 mm) in rainfall was observed in 2021. The wind speed, the effect of wind force on the regeneration of
some water components (algae and sediments), and their effect on water turbidity were also studied in previous
studies (Penning et al. 2013; Xing et al. 2018; Sun et al. 2021). Based on Figure 5(c), the average wind speed from

2016 to 2021 was close to 8 km/h with an almost constant trend during the 6 years in question.

Figure 3 | Turbidity estimated for the western part of Anzali Wetland from March 27 to April 27 (2016–2021).
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Another factor that may play a leading role in reducing Chl-a concentrations and turbidity is the decreased
human activities. Nitrogen and phosphorus are essential elements for plants and living organisms. However,
the entry of phosphorus and nitrogen from agricultural lands and completely untreated urban and industrial efflu-

ents into water can be one of the most important sources threatening water quality. Due to the COVID-19

Figure 4 | Relationships between the estimated and field measured of (a) Chl-a concentration, (b) turbidity; from 2016 to 2019
(March 27 to April 27).

Table 3 | Results of statistical metrics

Parameter R2 RMSE MAE

Chl-a 81 1.43 1.18

Turbidity 76 2.22 1.97
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lockdowns, human activities such as agriculture and factories were shut down. As a result, less nitrogen and phos-
phorus were entered into the wetland through sewage and runoff from agricultural lands. For this impact

assessment, the temporal variations of Chl-a and turbidity from 2016 to 2021 are plotted in Figure 6. As
shown, it is obvious that both Chl-a and turbidity reduced during the COVID-19 lockdowns, particularly
during the first peak in 2020.

Figure 7 depicts the daily number of positive and death cases due to COVID-19 in March and April of 2020 and
2021. The corresponding data were adopted from a reliable source. As shown, a decrease in the number of posi-
tive and death cases of COVID-19 in 2020 after the first quarantine, whereas a significant increase in casualties
and confirmed cases is observed in the fourth peak in comparison with the first one.

In addition to the factors mentioned in this study, factors such as the concentration of nutrients (nitrogen and
phosphorus) also affect the amount of turbidity and Chl-a. However, for two reasons, the effects of these par-
ameters were not directly considered in this study and were considered in the form of a possible decrease in

wastewater output during the quarantine period: (1) Due to traffic restrictions due to the COVID-19 epidemic,
it was not possible to sample phosphorus and nitrogen parameters on site. (2) The concentration of phosphorus
and nitrogen parameters cannot be accurately calculated everywhere through remote sensing.

The lockdown restrictions and human activity reductions imposed during the 2020 and 2021 periods varied
depending on the severity of the COVID-19 situation in different regions and countries. Here are some general
trends:

2020:

1. Strict lockdowns: Many countries implemented strict lockdown measures, including stay-at-home orders, clo-
sure of non-essential businesses, and restrictions on movement.

2. Reduced travel: Travel restrictions were widespread, with many countries closing their borders to non-essential

travel. This led to a significant reduction in domestic and international travel, including flights, trains, and
public transportation.

3. Remote work and education: To minimize the spread of the virus, businesses and schools transitioned to

remote work and online learning wherever possible. This led to a decrease in commuting and physical pres-
ence in workplaces and educational institutions.

4.Decreased economic activity: The closure of businesses and reduced consumer spending resulted in a decline in

economic activity, leading to financial hardships for many individuals and businesses.

2021:

1. Varied restrictions: As vaccination efforts ramped up and some countries managed to control the spread of the
virus, lockdown restrictions became more targeted and varied. Some regions experienced phased re-openings,

while others maintained stricter measures.
2. Continued travel restrictions: While some travel restrictions were eased as vaccination rates increased, inter-

national travel remained limited in many places. Quarantine requirements and testing protocols were often

in the place for travellers.
3. Hybrid work and education: Many organizations adopted hybrid work models, allowing employees to work

both remotely and in-person. Similarly, educational institutions implemented hybrid learning approaches, com-

bining online and in-person instruction.
4. Economic recovery efforts: Governments and businesses focused on economic recovery efforts, including stimu-

lus packages, financial assistance programs, and initiatives to support struggling industries.

Table 4 | The average concentration of Chl-a and turbidity from March 27 to April 27 (2016–2021) and the percentage decrease
in 2020 and 2021 from the average of the previous years

Sampling point

Mean

Average of 2016–2019

Mean (% decrease)

2016 2017 2018 2019 2020 2021

Chl-a (μg/L) 18.34 17.04 17.53 16.23 17.285 12.82 (�26%) 20.9 (21%)

Turbidity (NTU) 17.9 16.55 17.22 18.78 17.6125 14.84 (�16%) 17.38 (�1%)
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Overall, while there were similarities between 2020 and 2021 in terms of quarantine restrictions and reduced
human activity, 2021 saw more targeted approaches and efforts towards recovery as vaccination efforts pro-
gressed and more understanding was gained about controlling the spread of COVID-19. In addition, many

activities that were halted in 2020 resumed.

Figure 5 | Time series analysis of (a) temperature (°C), (b) rainfall amount (mm), and (c) max wind speed (km/h).
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4. DISCUSSION

The current article investigates the effects of COVID-19 lockdowns on Chl-a and turbidity in the western part of
Anzali Wetland and the cessation or reduction of pollutants entering the seas, lakes, and wetlands, as well as the
reduction of human activities (fishing and boating). The time period selected in this study is from March 27 to

April 27 from 2016 to 2021. This period was chosen for three reasons: (1) The weather and climate conditions
are quite the same in the study region. (2) It embraces the first peak (March 10–April 13) and the fourth peak
(April 9–30), which coincide with the COVID-19 lockdowns. (3) The free-cloud satellite imagery for the study

region is available for this time interval.

Figure 6 | Time line of temporal variation of Chl-a and turbidity from 2016 to 2021.

Figure 7 | Daily confirmed and death cases of COVID-19 in Iran in March and April of 2020 and 2021.
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Natural factors and human activities are two important factors that lead to changes in Chl-a concentration and
turbidity (Sun et al. 2021). The human activities that affect the water quality of Anzali Wetland may include dom-
estic sewage, adjacent residential regions, food industry effluents, and livestock that enter the rivers related to

Anzali Wetland without any treatment. Also, the diversity of land use in the field and subsequently the entrance
of organic and inorganic materials into the wetland are the most important reasons for reducing the water quality
of Anzali Wetland and intensifying the nutritional process, with three main sources, namely, fertilizers used in
agriculture, domestic sewage, and livestock waste (Fallah & Fakheran 2018). There are also natural factors

including temperature, wind speed, rainfall, and number of sunny days.
In this study, the models suggested by Mishra & Mishra (2012) and Abirhire et al. (2020) were used to estimate

the amount of Chl-a concentration and turbidity, respectively. Both models have shown good results in previous

studies (Watanabe et al. 2015; Beck et al. 2016; Abirhire et al. 2020; Lai et al. 2021; Li et al. 2021; Muduli et al.
2021). Ergo, the Chl-a concentration, and turbidity were estimated in the desired period, and output maps were
produced by ENVI and ArcGIS (Figures 2 and 3). As shown, it is observed that the Chl-a concentration in 2020 is

lower than that in the previous years, while water turbidity has decreased significantly in 2020. However, the Chl-
a concentration during the lockdown of 2021 has increased significantly compared with that of 2020 and reached
20.9 μg/L. The Chl-a concentration and turbidity were expected to decrease significantly due to COVID-19 lock-

downs as a result of the reduced nutrient input from industrial effluents and agricultural activities.
According to Table 4, Chl-a and turbidity showed 26 and 16% decrease in 2020 (the first peak lockdown),

respectively, compared to the average of 2016 to 2019. In 2021 (the fourth peak lockdown), water turbidity
decreased by 1% compared to the average of 2016 to 2019, whereas the Chl-a concentration increased by

21%. Natural and physical factors such as water temperature and sunlight may increase Chl-a (Ganguly et al.
2013; Vardhan Kanuri et al. 2013; Muduli et al. 2021). The estimations of water turbidity and Chl-a in the
study area were compared with the field-based measurements to check their accuracy. Based on Figure 4, the

results reveal a significant relationship between the measured values with the ones estimated by Mishra and Mis-
hra’s model (2012) and Abirhire et al.’s model (2020).

The possible effects of natural factors on the two water quality parameters were investigated in Figure 5. The

meteorological data of the study area included rainfall (rainy days and total monthly rainfall), temperature (daily
air temperature, the minimum, maximum, and average monthly temperature), and wind speed. As illustrated in
Figure 5, the average temperature in the period under study in 2021 has increased compared to the previous
years. Given the relationship between air temperature and water temperature, it may be possible that as the

air temperature rises, the water temperature also increases (Harvey et al. 2011). Increasing water temperature
can affect the growth of Chl-a (Ganguly et al. 2013; Vardhan Kanuri et al. 2013). In addition, the low rainfall
in April 2021 compared to the previous years reduced the likelihood of rivers entering and regenerating foam

(Penning et al. 2013; Sun et al. 2021) and played a smaller role in turbidity changes than in the previous
years. Furthermore, the sharp decline in human activities due to the COVID-19 lockdowns could be another
possible factor in significantly reducing water turbidity in 2020. Agricultural runoff, domestic sewage, and indus-

trial effluents were among these factors (Abedini et al. 2018; ALabdeh et al. 2020), many of which were reduced
during the COVID-19 lockdowns. The possible reasons for the increase in Chl-a in April 2021 were also
examined:

1. It is possible that human activities, such as agriculture and industrial activities, increased to compensate for the
economic losses caused by restrictions and lockdowns from April 2020 to April 2021. With increasing agricul-
tural and industrial activities, the nutrients introduced into the water increase and can affect Chl-a as well as

increasing turbidity.
2. Anzali Wetland is one of the tourist centres in Iran. At the beginning of the Iranian New Year on 21 March

2021, travel increased and tourist centres increased their activities. This can be another possible factor affecting

turbidity and Chl-a in the period under investigation.
3. The study of Chl-a and turbidity by satellite images in 2021 started only 10 days after the start of the fourth peak

lockdown, whereas the studies were 21 days after the start of the first peak lockdown in 2020. In this context,

the water body had more opportunity to revive itself.
4. Although the major benefit of investigating confirmed and death COVID-19 cases will become handy for

healthcare systems (Niazkar & Niazkar 2020), this information can be further used to testify environmental

findings. Based on Figure 7, it is indicated that quarantine practices were taken seriously by the people in
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the first peak owing to the new arrival of the virus in Iran and maybe a great fear associated with the disease,
which was unavoidably developed in public opinions. On the other hand, the numbers of positive and death
COVID-19 cases are relatively more than those of the first peak, as shown in Figure 7. This increase occurred

despite imposing a quarantine of the fourth peak in 2021. One of the possible reasons may be the lack of
serious quarantine conditions conducted by people or government regulations. To be more precise, travels
between cities because of the Iranian New Year increased in March 2021. Furthermore, factories attempted
to somehow continue working in favour of compensating for economic losses even though their activities

were restricted by quarantine regulations. As a result, the quarantine imposed in the fourth peak of the
COVID-19 pandemic turns out to be a partial lockdown in practice. Therefore, human activities during the
first peak were much fewer than those of the fourth peak. This evidence-based result deduced from Figure 7

is in agreement with variations of Chl-a and turbidity during the COVID-19 lockdowns. Moreover, Figures 6
and 7 clarify that the values of Chl-a and turbidity are lower in the first peak than those of the fourth peak
because human activities in the former are much fewer than those in the fourth peak. Thus, reduced human

activities due to the COVID-19 lockdowns are one of the vital factors, which may be responsible for the sig-
nificant reduction of Chl-a concentrations and turbidity in 2020 and 2021.

One of the main limitations of this study was the inability to sample from the wetland due to the lockdown.
This study is limited to only two water quality parameters: Chl-a and turbidity. However, other important par-
ameters such as pH, DO, BOD, and COD exist, which should be evaluated for effective water quality
management. Due to traffic restrictions caused by the COVID-19 pandemic, sampling of phosphorus and nitro-

gen parameters onsite was not possible in this research. It is recommended that these aspects be investigated in
future studies. It is also suggested that, if possible, future studies investigate changes in land use during the quar-
antine period and articulate their impact on water quality.

Other studies have been conducted in various parts of the world, and their results, like this research, indicate
that the constraints related to COVID-19 have led to an improvement in water quality. Cheval et al. (2020)
reported that during the citywide COVID-19 lockdown in the spring of 2020, Venice witnessed a significant

improvement in water quality due to reduced water transport and tourist activities. Similarly, Germany and Aus-
tria observed a decrease in water consumption. The authors emphasized the effectiveness of monitoring SARS-
CoV-2 RNA in sewage waters as a tool for surveillance of coronavirus spread. They also highlighted the negative

impact of the pandemic on water bodies, noting numerous reports of significant harm caused by medical and per-
sonal hygiene products littering the shores in various regions, including Hong Kong and Canada. Rume & Islam
(2020) also noted in their research that the pandemic led to a decrease in water contamination across various
countries. However, it also resulted in increased amounts of medical waste, disinfectants, and untreated personal

protective equipment, all of which ultimately impacted the quality of water bodies. Rupani et al. (2020) reaffirmed
the positive impact of the COVID-19 pandemic on the water quality of the Ganga River, which showed significant
improvement. Reductions in water pollution were evident in Wuhan (China), Italy, France, Spain, and Los

Angeles (USA). Yusoff et al. (2021) evaluated the positive and negative effects of the pandemic on aquatic organ-
isms. The COVID-19 quarantine resulted in improved water quality and biodiversity. It also led to a reduction in
the concentration of macroplastics, Chl-a, phytoplankton, and nitrogen in the coastal area of India.

5. CONCLUSIONS

The current study investigates turbidity and Chl-a concentration in the western part of Anzali Wetland from 27
March to 27 April from 2016 to 2021 using Sentinel 2/MSI satellite images. Also, efforts were made to assess

impacts of the COVID-19 lockdowns on turbidity and Chl-a concentration of the study area. Satellite imagery
showed a significant difference between 2020 and 2021 for turbidity and Chl-a. Comparing the estimated results
in 2020 with the measured results of the previous years indicated 26 and 16% decreases in the amount of Chl-a

and turbidity, respectively. Furthermore, 1% decrease in turbidity and 21% increase in the concentration of Chl-a
were observed compared to the average amounts measured between 2016 and 2019. Natural factors, such as
temperature and rainfall, were also influential in controlling the water quality condition. The increase in water

temperature increased the probability of increasing the Chl-a concentration. On the other hand, the rainfall
decreased in April 2021 compared to that of the previous years. The rainfall variation left a slight effect on tur-
bidity changes. In addition to the low rainfall, the reduction of Chl-a and turbidity in 2020 could be attributed to a

significant reduction in human activities and less discharge of effluents because Anzali Wetland is very much
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affected by anthropogenic factors due to its proximity to urban regions and agricultural lands. On the other hand,
the possible reasons for the increase in Chl-a and turbidity in 2021 were the increase in human activities (fac-
tories, agriculture, domestic sewage) and also the increase in tourism activities due to the beginning of the

new year (before the start of the fourth peak lockdown). It is stipulated that the lockdown that restricted
human activities, like the one imposed in the first peak of COVID-19 in 2020 in Iran, would significantly
reduce the concentration of Chl-a and turbidity. Finally, factors affecting Chl-a and turbidity are various and com-
plex, while the extent to which human activities affect the concentration of Chl-a and turbidity in the western part

of Anzali Wetland still requires further research.
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