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Abstract
Flood risk management is a critical task which necessitates flood forecasting and identifying 
flood source areas for implementation of prevention measures. Hydrological models, multi-cri-
teria decision models (MCDM) and data-driven models such as the Artificial Neural Networks 
(ANN) have been used to identify flood source areas within a watershed. The aim of this study 
was to compare the results of hydrological modeling, MCDM and the ANN approaches in 
order to identify and prioritize flood source areas. The study results show that the classification 
results of the hydrological model and the ANN have a significant correlation. The correlation 
between the TOPSIS method with the hydrological model indicate no meaningful correlation. 
Since the ANN model has simulated the HEC-HMS classifications very accurately, it can be a 
good substitute for the hydrological models in watersheds with limited data.
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1  Introduction

Floods have been one of the most prevalent (47%) climate-related disasters in the last two 
decades; more hazardous than landslides, earthquakes, and volcanoes, affecting 2.3 billion 
people and causing the third biggest amount of economic damage (662 billion USD) accord-
ing to the CRED and UNISDR analysis (Bolt et al. 2013; CrED 2015). Floods are expected 
to increase in frequency and intensity in the coming years due to the rising sea levels and 
heavy rainfall events (Wang et al. 2015). As a result, flood management and risk reduction 
are critical, which necessitate flood forecasting and identifying flood source areas for imple-
mentation of flood control and prevention measures (Hong et al. 2018). The intention of flood 
risk assessment is to arrive at an accurate risk level. The multivariate and nonlinear relation 
between indicators and risk levels is the fundamental issue with this procedure (Solin and 
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Skubincan 2013). One of the most important tasks in flood control is identifying the best 
methods for locating flood source areas (FSA) within a watershed in order to improve flood 
prevention techniques (Singh et al. 2021). In response to this need, many systematic meth-
ods such as hydrological models (Abdulkareem et al. 2018; Dehghanian et al. 2019; Magh-
sood et al. 2019; Soomro et al. 2022), GIS-based methods (Cabrera and Lee 2019; Hong and 
Abdelkareem 2022; Mukherjee and Singh 2020; Osei et al. 2021), remote sensing methods 
(Sadiq et  al. 2022; Sharma et  al. 2019; Syifa et  al. 2019), multi-criteria decision methods 
(Ajjur and Mogheir 2020; dos Santos et al. 2023; Hadian et al. 2022; Pham et al. 2021; Roy 
et al. 2021; Solaimani et al. 2023), and machine learning and data mining methods (Costache 
et al. 2022; Ghobadi and Ahmadipari 2024; Ha and Kang 2022; Islam et al. 2023; Luu et al. 
2021; Rahman et al. 2021; Zohourian and Hosseini 2023) have been used.

Hydrological models are used to simulate the hydrological cycle and facilitate the 
understanding and simulation of complex hydrological processes. Hydrological mod-
els can be based on physical principles, empirical relationships, or a combination of both 
(Beven 2001). They are typically used for water resources management (Loucks and Van 
Beek 2017; Xu et al. 2023), flood forecasting (Koya et al. 2023; Pappenberger et al. 2006), 
drought analysis (Van Loon 2015), and environmental impact assessment (Dong et  al. 
2023; Viviroli et al. 2007). However, hydrological models require extensive data inputs and 
calibration, which can be time-consuming. Model accuracy can be affected by uncertainties 
in input data, model structure, and simplifications of complex processes, and interpretation 
and application of the results may be limited due to model complexity and uncertainties 
(Beven 2001). Therefore, hydrological models are not sufficient for flood hazard studies in 
ungauged catchments. A valuable tool for overcoming this limitation in hydrological mod-
eling is the use of multi-criteria decision models and machine learning algorithms.

Multi-criteria decision methods (MCDM) are decision-making tools used for evaluat-
ing and comparing alternatives based on multiple criteria or objectives (Saaty 1980). These 
methods aim to find the best or optimal solution among a set of alternatives by considering 
multiple criteria, which can be quantitative or qualitative in nature (Belton and Stewart 2002). 
Some commonly used MCDM methods in hydrology include Analytic Hierarchy Process 
(AHP) (Wijesinghe et  al. 2023), Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) (Hwang and Yoon 1981; Mitra and Das 2023), and Preference Rank-
ing Organization Method for Enrichment Evaluations (PROMETHEE) (Brans et  al. 2005; 
Dadrasajirlou et  al. 2023). Multi-criteria decision methods provide a structured approach 
to consider multiple criteria and objectives in decision-making (Saaty 1980). Multi-criteria 
decision models often cost less and are easier to implement in hydrological applications than 
other types of conceptual/physical rainfall-runoff models (Belton and Stewart 2002).

Data-driven models, such as the ANNs models, have also been developed to simulate rain-
fall-runoff processes in flow prediction because the runoff process is a complex, nonlinear pro-
cess. The ANNs are computational models inspired by the structure and function of biological 
neural networks, such as the human brain (McCulloch and Pitts 1943). These models have the 
ability to capture complex nonlinear relationships and can be trained using historical hydro-
logical data to simulate or predict hydrological variables. They are used in hydrology for vari-
ous tasks, including stream flow forecasting (Liu et al. 2023), rainfall-runoff modeling (Dawson 
and Wilby 2001; Mohseni and Muskula 2023), and groundwater level prediction (Bai and Tah-
masebi 2023). The ANNs learn from input data through a process called training, where the 
network adjusts its parameters to minimize the difference between predicted and actual outputs. 
The ANNs require a large amount of training data, and data quality and representativeness are 
crucial for model performance. Interpreting the internal workings of the ANNs can be challeng-
ing, limiting their use in decision-making and model understanding (Dawson and Wilby 2001).
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Since the use of hydrological models in determining flood prone areas is associated with 
many challenges, the application of data-driven methods and MCDM methods have received 
more attention in recent years. However, a comprehensive evaluation and comparison of the 
results attained from these three approaches has not been provided yet. The novelty of this 
research is to compare the accuracy of hydrological modeling, multi-criteria decision-making 
and the ANN approaches for identifying and prioritizing flood source areas. For this purpose, 
hydrological process and flood generation simulated by HEC-HMS model and the results of 
hydrological model used for training the ANN models. Also, using morphometric parameters 
in a MCDM model (TOPSIS), sub-basins were prioritized based on flood generation.

2 � Materials and Methods

2.1 � Study Area

The study area of this research is the upper Darungar watershed in northeastern Iran, spans 
the latitudes of 37°17′56" N to 37°40′50" N and the longitudes of 58°11′17" E to 58°41′44" 
E. (Fig. 1). The Darungar watershed covers an area of 941.1 km2. Its lowest elevation is 
990 m above sea level, while its maximum height is 2922 m above sea level. The research 
area has a cold, semi-arid climate according to the Emberger method, with 304.2 mm of 
annual rainfall and average yearly temperature is 12.1 degrees Celsius as well. The basin’s 
topography is rough and abrupt, with a slope of 63.8 percent on average. Sandstone and 
limestone make up the majority of the geology in the study region. Rangelands, which 
make up 39 percent of the total area and low dense forest, which cover 21.1 percent, are the 
predominant land-use types in the watershed.

Fig. 1   Location of study area in Iran
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2.2 � Data

2.2.1 � Rainfall Runoff Data

In this study, appropriate rainfall runoff events were selected through examining the 
flood hydrographs and relevant hyetographs. Due to the lack of sufficient data for sub-
basin s, the data of 6 flood events available in the Iranian Water Resources Management 
Company at the main outlet were used to calibrate and validate the HEC-HMS model 
(Table 1). Rainfall data of the meteorological stations were received from the National 
Meteorological Organization.

2.2.2 � Digital Elevation Model (DEM)

The DEM provides a three-dimensional view of the earth’s surface to investigate hydro-
logical processes. DEM of the Darungar watershed with a resolution of 30 m was acquired 
from the US Geological Survey (USGS) website. The DEM data was subsequently pro-
cessed using the HEC-GeoHMS in ArcGIS 10.2 interface (Fig. 2b). Also, the DEM was 
used for creating slope map of the watershed (Fig. 2c). The slope has a direct relationship 
with the infiltration of runoff. The higher the slope, the lower the infiltration depth and the 
higher the runoff.

2.2.3 � Land Use /Land Cover data (LULC)

Different LUs have different permeability of runoff. For example, dense forests have 
a higher permeability than other LULCs (Bonell et al. 2010). In this study, the LU map 
including 10 groups (Table 2) was achieved from Iran’s Natural Resources and Watershed 
Management Organization (Fig. 2d).

2.2.4 � Soil Data

Soils are classified by the Natural Resource Conservation Service into four Hydrologic 
Soil Groups based on the soil’s runoff potential (Bailey 1976). Hydrological groups 
have an important effect in predicting floods through runoff penetration. The informa-
tion related to soil hydrological groups was obtained from Iran’s Natural Resources 
and Watershed Management Organization (Fig. 2e). Hydrological groups B, C, and D 
occupy 29.5, 65.5, and 5 percent of the studied area, respectively.

Table 1   Flood events which used 
for calibration and validation of 
HEC-HMS

Flood event Date Peak flow(m3/s) Peak time

1 May 11,1991 49.2 16:00
2 May 13,1992 74.3 10:00
3 Jun 5,1992 92.6 1:00
4 Feb 21,1999 88.4 10:00
5 Jun 8,1992 110.6 16:30
6 May 4,2002 58 0:00
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Fig. 2   Flood conditioning factors maps: (a) Precipitation map, (b) Digital Elevation Model (DEM), (c) 
Slope map, (d) Land use/Land cover map and (e) Soil hydrologic map
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2.2.5 � Morphometric Data

Morphometric data used in the MCDM approach included 11 morphometric parameters 
which were divided into linear parameters (Drainage density(Dd), Stream length(Li), Drain-
age texture(T), Bifurcation ratio(Br), and Stream frequency(Fs)) and shape parameters 
(Basin Elongation(E), Compactness index(Cc), Circularity Ratio(Rc), Form Factor(FF), 
Relief ratio(Rr), and Ruggedness number(Rn)). Linear parameters are directly related to run-
off generation and shape parameters are inversely related to creating runoff. Table 1S shows 
the morphometric parameters and their values for the 74 sub-basins of Darungar Basin.

2.2.6 � Topographic Wetness Index (TWI)

The TWI quantifies changes in soil moisture according to the morphometric changes of 
the earth’s surface and can be used to identify soil saturation areas (Beven 2011). TWI 
values are calculated according to Eq. 1 and are shown in Fig. 3a.

2.2.7 � Terrain Ruggedness Index (TRI)

TRI is an important factor in flood event severity. This index has an inverse relationship 
with the probability of flooding, so that the occurrence of a higher probability of flood-
ing is related to a lower TRI value (Islam et al. 2021). In this study, a TRI map with a 
value between 0.009 and 0.943 was prepared in GIS (Fig. 3b).

2.3 � HEC‑HMS Model

The HEC-HMS model is a physically based and conceptually semi-distributed model 
which was developed to simulate rainfall-runoff processes in a variety of geographic 
locations, from big river basin to small urban and natural watershed. In this study, 
50-year rainfall were calculated using rainfall frequency analysis of long-term annual 

(1)TWI = Ln

(
As

tan�

)

Table 2   The area of different 
LULC classes in the study area

LULC Area (km2) Percent%

Mod Rangeland 485.5 52.5%
Low Forest 179.8 19.1%
Dry Farming 126.2 13.4%
Good Rangeland 52.7 5.6%
Poor Rangeland 52.3 5.5%
Wood Land 26 2.8%
Arboretum 6.5 0.69%
Very Low Forest 6.1 0.65%
Water Farming 6 0.64%
Residential area 1.2 0.12%
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maximum time series for rain gauge stations. The inverse distance weighted approach 
was used to spatially interpolate the point-wise 50-year design storm over the water-
shed. To illustrate the temporal pattern of the design storm in the watershed, the Pilgrim 
approach was applied (Pilgrim and Cordery 1975). The storm duration was designed to 
be roughly equal to the concentration time in the watershed (7  h). The gridded curve 
number method, MadClark method, recession method, and Lag method were selected 
for each component of the runoff process as loss method, Transform Method, base flow 
model, and channel routing, respectively. These methods were selected based on their 
applicability and limitations, the availability of data, their suitability for the same hydro-
logic situation and broad acceptability.

Sensitivity analysis of the model parameters was performed to determine the appro-
priate parameters for calibration of the model. For this purpose, sensitivity analysis was 
manually performed for the curve number, lag time, storage coefficient, and CNRatio. 
By doing so, each parameter was changed by 5, 10, and 15%, and the amount of flood 
hydrograph change in the basin outlet was determined. Then, the model was calibrated 
semi-manually by Simple-Split Sample Test (Ewen and Parkin 1996). In this method, 
observational floods are divided into two categories. The model parameters are cali-
brated with a set of data, then the model validation is performed by implementing the 
model with the optimized parameters for the second set of data. To evaluate the effi-
ciency of the extracted hydrographs, the statistical indices of root-mean-square error 
(RMSE), Nash–Sutcliffe coefficient (NSE), and Percent BIAS (PBIAS) are presented 
in Eqs. 2–4. Where, Qobs represents the observed flow and Qsim represents the computa-
tional flow.

(2)RMSE =

�∑n

i=1

�
Qobs − Qsim

�2
n

(3)NSE = 1 −

⎡⎢⎢⎣

∑n

t=1
(Qobs − Qsim)

2

∑n

t=1
(Qobs − Q̂obs)

2

⎤⎥⎥⎦

Fig. 3   Maps of (a) Topographic Wetness Index (TWI) and (b) Train Roughness Index (TRI)
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2.4 � Multi‑Criteria Decision Method by TOPSIS

The TOPSIS is one of the most popular multi-criteria decision models introduced by 
Wang and Yoon in 1981. This method is based on the fact that the best option should 
have the minimum distance from the ideal solution (best case) and the maximum dis-
tance from the negative ideal (worst case) (Tzeng and Huang 2011). Indicators have 
both positive and negative aspects. The index that has a positive aspect is profit and 
the index which has a negative aspect is cost (Chu and Lin 2009). In this study, 11 
morphometric indices (Form Factor, Compactness Coefficient, Basin Circularity, Basin 
Elongation, Drainage density, Ruggedness number, Drainage texture, Stream fre-
quency, Bifurcation ratio, Relief ratio, Shape factor, and Stream length) were used for 
the multi-criteria decision model.

To use the TOPSIS model, the following steps should be taken: 1. Construct the Primary 
matrix (Eq. 5), 2. Standardize the evaluation matrix (Eq. 7), 3. Determine the weight of 
each indicator (in this study the Shannon entropy (Shannon 1948)was used (Eqs. 13–16)). 
4. Multiply the standard Rij matrix by its corresponding weight (Wj) (Eq. 7), 5. Determine 
the best values of the positive ideal solution (A +) and the negative ideal (A-) (Eqs. 8 and 
9), 6. Calculate the distance of each option from the positive (di +) and negative (di-) ideals 
(Eqs. 10 and 11), 7. Calculate the relative proximity (Ai) to the ideal solution (Eq. 12), and 
8. rank sub-basins in descending order (Ozdemir and Bird 2009):

(4)PBIAS = 100 ×

�∑n

i=1
(Qobs − Qsim)∑n

i=1
(Qobs)

�

(5)Aij =

⎡⎢⎢⎣

a11

.

.

am1

.

.

.

.

.

.

.

.

a1n

.

.

amn

⎤⎥⎥⎦

(6)Rij =
aij∑m

i=1
aij

(7)Vij = RijWj

(8)A+ =
{(

maxVij|j ∈ j�
)
,
(
minVij|j ∈ j�

)|i = 1,2,… ,m
}
=
{
V+

1
,V+

2
,… ,V+

n

}

(9)A− =
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minVij|j ∈ j�
)
,
(
maxVij|j ∈ j�

)|i = 1,2,… ,m
}
=
{
V−

1
,V−

2
,… ,V−

n

}

(10)di+ =

√∑n

j=1
(Vij − V+

n
)
2;i = 1,2,… ,m

(11)di− =

√∑n

j=1
(Vij − V−

j
)
2;i = 1,2,… ,m
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2.5 � Artificial Neural Network (ANN)

2.5.1 � Dataset

Since the flood source areas obtained from observational data were not available, the 
HEC-HMS flood simulation results were used to run the ANN model (Dehghanian et al. 
2020). Numerous researchers have confirmed the efficiency of HEC-HMS in determining 
flood source areas in different conditions (Barbosa et  al. 2019; Dehghanian et  al. 2020; 
Ouédraogo et  al. 2018; Saghafian et  al. 2008; Saghafian and Khosroshahi 2005; Tassew 
et  al. 2019), and according to the simulation results of the rainfall-runoff process in 
Table 3, hydrological modeling can provide reliable results.

To enhance the performance of the models, it is desired to eliminate elements that have 
no impact on modeling outcomes and may even impair the models’ prediction capacity (Bui 
et al. 2016). The OneRAttributeEval was used for assessing the parameters for modeling in 
this study (Holte 1993). OneRAttributeEval uses the OneR classifier to determine the value 
of an attribute. OneRAttributeEval creates a separate rule for each predictor in the data. The 
rule with the least overall error is then chosen as the “one rule”. The OneRAttributeEval was 
trained using a tenfold cross-validation methodology in Weka 3.9.5 software. Since it provides 
larger sigmoid training datasets than the hold-out method (Kim 2009), it delivers a lower esti-
mation of variance (Platt 1999). A greater OneRAttributeEval value indicates that the condi-
tioning factor is more predictive.

The collinearity of the conditioning factors is a feature that most regression analyses 
are sensitive to (Bai et al. 2011). When two conditioning factors are highly correlated, it 
is troublesome and could lead to an error in the study. This issue is referred to as multi-
collinearity. Spearman correlation coefficients (Sedgwick 2012), variance decomposition 
proportions (Schuerman 2012), conditional index (Belsley 1991), and variance inflation 
factors (VIF), and tolerances (Dormann et al. 2013) are some of the multicollinearity diag-
nostics techniques for quantifying factors. In the present study, the Spearman correlation 
coefficients method was used to test the correlation among the parameters. Spearman’s 
coefficient is a non-parametric measure of statistical dependence between two observa-
tional random sequences. It accesses the relationship between sequences where the coef-
ficient can be expressed using a uniform function as follows:

(12)cli+ =
di−

di+ + di−
;0 ≤ cli+ ≤ 1;i = 1,2,… ,m

Table 3   Results of calibration and validation events

Flood event Peak flow(m3/s) Peak time Performance indicators

Date Obs Sim Obs Sim NSE RMSE Percent Bias

Calibration May 11,1991 49.2 48.6 16:00 16:15 0.943 0.2 8.10%
May 13,1992 74.3 76.7 10:00 10:15 0.798 0.4 13.94%
Jun 5,1992 92.6 91 1:00 1:15 0.908 0.3 -23.14%
Feb 21,1999 88.4 84 10:00 10:15 0.973 0.2 -12.34%

Validation Jun 8,1992 110.6 107.5 16:30 16:30 0.826 0.4 -19.15%
May 4,2002 58 57.7 0:00 23:30 0.899 0.3 3.73%
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where ρ represents Spearman’s rank correlation coefficient, d is the difference between 
sequences and n is the number of sequences.

2.5.2 � Model Structure

An ANN is a processor made up of neurons that can learn and store information through a 
training process. The ANN has been widely used in pattern recognition and classification 
studies (Kawabata and Bandibas 2009). The ANNs can handle nonlinear processes well 
and is therefore widely used in many disciplines, including flood prediction in hydrology 
(Tayfur et al. 2018). In order to forecast flood hazard categorization at the cell size, a vari-
ety of multilayer perceptron (MLP) networks were used in this study. Watershed charac-
teristic layers served as the ANN model’s inputs, while the HEC-HMS simulation of flood 
hazard categorization served as the model’s output. Moreover, the transfer functions for 
the hidden and output layers were selected as sigmoid tangent and linear, respectively. The 
Levenberg–Marquardt method was chosen for this study because it is thought to deliver 
satisfactory outcomes for the majority of the ANN applications (Awchi 2014). One advan-
tage of the ANN model is that it can learn the model through nonlinear and complex rela-
tionships. It can also generalize the model and can predict unseen data in the model by 
understanding the hidden relationship (Band et al. 2020). The ANN algorithms were devel-
oped using the following Eqs. by Hagan et al. (1996):

The net input of the jth neuron of layer l and iteration

δ factor for the jth neuron in the ith output layer

δ factor for the jth neuron in the ith hidden layer

where α is the momentum rate and n is the learning rate.
The cost function (proportional function) of the ith particle can be defined based on the 

MSE in Eq. 25:
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6
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The model efficacy was assessed using statistical criteria for both the training and testing data-
sets. Model prediction results were evaluated using the statistical measures of Accuracy, Preci-
sion, Recall, F1 Score, and AUC (Eqs. 26–30). True Positive (TP) indicates the number of pixels 
correctly classified as positive predictions, True Negative (TN) indicates the number of pixels cor-
rectly classified as negative predictions, and False Positive (FP) and False Negative (FN) indicate 
the number of pixels incorrectly classified as positive or negative, respectively (Onan 2015).

where, (Yi) target valueand
(
Ŷi

)
 the predicted output.

3 � Results and Discussion

3.1 � HEC‑HMS

3.1.1 � Sensitivity Analysis, Calibration, and Validation of HEC‑HMS

The results of the sensitivity analysis for the selected parameters including time of concen-
tration, lag time, storage coefficient, CNratio, and curve number showed that the param-
eters related to the curve number (Grided curve number and CNratio) have the highest and 
the storage coefficient has the lowest sensitivity. Since the changes of storage coefficient 
in the sensitivity analysis stage had a very small effect on the output hydrograph, it was 
considered constant in the calibration stage and the model calibration was performed with 
the parameters of time of concentration, lag time, CNratio, and curve number (Fanta and 
Feyissa 2021). The results of the model calibration and validation are shown in Table 3.

The NSE, RMSE, and PBIAS values were compared with the evaluation levels pre-
sented by Barbosa et  al. (2019). According to the results from Table 3, the NSE val-
ues (0.797- 0.973) are considered very good, the RMSE values (0.2- 0.4) are good and 
PBIAS values (-23.14%—13.94%) are desirable to very good. The results of the number 
of errors in Table  3 shows the good performance of the model, which is reasonably 
accurate compared to other studies (Gharib et al. 2018; Ghavidelfar et al. 2011).

(25)MSE =
1

n

∑n

i=1

(
Yi − Ŷi

)2

(26)Accuracy =
TP + TN

TP + FP + TN + FN

(27)Precision =
TP

TP + FP

(28)Recall =
TP

TP + FN

(29)F1 score = 2 ×
Precition × Recall

Precition + Recall

(30)AUC =

∑
TP +

∑
TN

P + N
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3.1.2 � Prioritization and Classification of Sub‑basins by HEC‑HMS

The amount of runoff produced in each sub-basin was used to determine the source of 
the flood and the sub-basins were ranked accordingly. Also, after the normalization of the 
results of the production runoff, the classification map of the sub-basins were categorized 
into five classes (Obeidat et al. 2021). The results in Fig. 4 show that sub-basins 74, 6, 66, 
and 53 have the highest amount of runoff and sub-basins 24, 23, 69, and 44 have the low-
est amount of production runoff. The map of the flood source areas shows that very high 
and high classes are located in the North and Northwest of the basin. These sub-basins are 
characterized by high precipitation and steep slope and are occupied by moderate and poor 
rangeland. According to Fig. 2e the Northwest of the basin consists of hydrologic group C 
which indicates a high potential for runoff generation. The southern sub-basins of the basin 
have low and very low flood hazard due to the relatively low slope, high permeability soils, 
and medium to good vegetation cover of the pastures (Natarajan and Radhakrishnan 2020).

3.2 � Prioritization and Classification of Sub‑basins by TOPSIS

The data used in the TOPSIS method included 11 morphometric parameters. The range 
of changes and weight of each criterion calculated through Shannon entropy method is 
presented in Table 4. Accordingly, the weight of the parameters varies from 0.009 to 0.197. 
The logic of Shannon’s entropy method is based on the fact that the higher the scatter in the 

Fig. 4   Flood hazard classification by HEC-HMS model
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values ​​of an index, the more important the index. More variation in the values ​​of a variable 
will lead to lower values ​​of entropy and vice versa. The results of weighting indicate the 
importance of Br index with a weight of 0.197 and then Li, Ff and Rr indices with weights 
of 0.188, 0.185 and 0.116, respectively, and Dd as the least effective criterion. From the 
above parameters, Compactness index(Cc), Elongation(E) and Bifurcation ratio(Br) have a 
negative effect on runoff generation, while the other parameters have a positive effect.

Sub-basins were prioritized using the TOPSIS method and after normalizing the rela-
tive proximity values ( cli+ ), the sub-basins were classified into 5 flood sensitivity groups. 
The final classification of flood susceptibility is shown in Fig. 4. In this method, sub-basins 
6 and 74, which cover 7% of the basin area are in the Very high class, sub-basins 27 and 
35, which constitute 4% of the basin area are in the High class, and 68.2%, 16%, and 4.5% 
of the basin area are in the Moderate, Low and Very low classes, respectively (Fig.  5). 
Sub-basins 6 and 74 are classified as Very high class. The main reason behind this include 
having Maximum Li which has a high weight, and encompassing a large area, and also the 
many land use changes which have occurred in these sub-basins. Sub-basins 27 and 35, 
which are in the high risk class, have fair rangelands and dry land agricultural land use. 
Medium risk areas that cover most parts of the basin are in a wide range of different condi-
tions such as the northwestern areas of the basin which have a mountainous topography 
with high slope and high rainfall; the vegetation of these areas is medium rangeland and 
low-density forest and soil hydrological group C and D. In the southwestern regions, the 
slope is low, the vegetation is of medium rangeland and rain fed agriculture type, and the 
soil hydrological group is B and C. In general, the sub-basins in this class do not follow a 
specific trend. These results also apply to the low-risk and safe classes, and the conditions 
in these sub-basins do not follow a specific pattern.

3.3 � Prioritize and classification of sub‑basins by the ANN

3.3.1 � Considered flood‑influencing factors

In order to assess the variables for modeling in the current study, OneRAttributeEval approach 
and multicollinearity diagnostic method, namely Spearman’s correlation coefficient, were cho-
sen. The whole dataset is a matrix which included 1979 lines and each line includes 5 param-
eters as input and one output. The dataset was divided into two groups of training and testing 
data with a ratio of 70—30 percent (Khosravi et al. 2019; Tien Bui et al. 2016).

OneRAttributeEval was trained using a tenfold cross-validation method. A higher mean 
value of OneRAttributeEval (AM) indicates that the conditional factor has more predictive 

Table 4   Range of parameter changes, weight of each parameter and its relation with runoff

Parameter Ff Cc Rc E Dd Rn T Fs Br Rr Li

Min 0.12 1.59 0.13 0.38 1.89 0.57 3.65 2.99 1.44 0.06 5.64
Max 0.77 2.73 0.39 0.99 3.07 2.71 9.45 6.32 7.69 0.24 90
Variation range 0.66 1.14 0.26 0.61 1.18 2.14 80.5 3.33 6.26 0.18 84.4
STDV 0.17 0.29 0.07 0.15 0.23 0.50 1.07 0.69 1.33 0.04 13.6
Weight 0.185 0.020 0.073 0.05 0.009 0.099 0.041 0.021 0.197 0.116 0.188
Impact on runoff  +  -  +  -  +   +   +   +  -  +   + 
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ability. The feature selection results show that curve number is the most important factor 
for flood modeling (AM = 99.6), followed by DEM (AM = 99.46), maximum 50-year daily 
precipitation (P50) (AM = 99.44), TWI (AM = 99.4) and TRI (AM = 99.2), that indicates 
the good performance of these parameters in estimating the flood risk classes.

In the present study, Spearman’s correlation coefficient method was used to test the cor-
relation between the five input factors and the output. According to the results of multicol-
linearity diagnostics tests (Table 5), except for the maximum 50-year rainfall (P50) which 
had a relatively high correlation (-0.713) with the output of the model (Y), none of the 
parameters had a significant correlation with each other and the output (Y). Since rainfall is 
actually the most important factor in rainfall-runoff events, it should be considered in pri-
oritizing areas in terms of potential runoff production (Saghafian and Khosroshahi 2005). 
Therefore, the P50 layer should be used along with the most effective selected variables 
(Dehghanian et al. 2020).

3.3.2 � Model Structure and Performance

The MLP model was constructed with two layers and a number of 5 hidden neurons, batch 
size 64, learning rate 0.006, momentum 0.3, seed 0, and the number of repetitions 15,000 
times and was trained using the training dataset. Using the testing dataset, the model was 
validated (Table 6). The results show that the model worked perfectly in very high, high 
and very low classes, and in moderate and low classes with an F1 score of 0.995 and 0.997 

Fig. 5   Flood hazard classification by TOPSIS
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and an AUC of 0.999 and 0.997. The overall errors of the model are equal to 0.998, 0.998, 
0.998, and 0.999 for Precision, Recall, F1 Score and AUC respectively (Table  6). The 
results of the testing dataset showed that 99.83% of cells were correctly classified.

The ANN model was subsequently utilized to calculate the flood source areas for all 
the pixels inside the study area since it surpassed the benchmark models and performed 
successfully for both the training and validation datasets. These indices were entered 
to the ArcGIS 10.2 software to create the final flood source maps. The maps were then 
classified into five categories including very high (3.85%), high (6.15%), moderate 
(18.6%), low (31.96%), and very low (39.43%) levels of flooding (Fig. 6). These results 
show that the ANN model was successful in dividing the research region into different 
hazard classes (Fig. 6).

3.4 � Comparison of ANN, HEC‑HMS and TOPSIS

The results of the sub-basin classifications in the HEC-HMS hydrological model were com-
pared by the TOPSIS method and the ANN. The results of orrelation, Precision, Recall, F1 
score and AUC indices between different methods are presented in Table 7. The results of 
the error rate between the hydrological model methods and the ANN in Table 7 indicate the 
good accuracy of the ANN in estimating flood areas. While the error rate in the TOPSIS 
methods and the ANN indicates the inefficiency of the TOPSIS method as compared to the 
other two methods. A comparison of the correlation between the TOPSIS method with the 
hydrological model (0.252) and the ANN (0.233) indicates that there is a significant dif-
ference between the two methods. However, the classification results of the hydrological 
model and the ANN have a significant correlation (0.992). Dehghanian et al. (2020) con-
cluded that the results of the ANN and hydrological model are highly correlated.

Figure 7 shows the percentage of area in each hazard class in different methods. In 
the methods of hydrological model and the ANN, one sub-basin with an area of 3.8% of 
the total basin and in the TOPSIS method, two sub-basins with an area of 7% of the total 

Table 5   Parameter correlations BasinCN DEM P50 TWI TRI Y

BasinCN 1.00 0.335 0.158 -0.538 0.323 -0.461
DEM 1.00 -0.034 -0.245 -0.194 -0.029
P50 1.00 -0.426 0.399 -0.713
TWI 1.00 -0.649 0.566
TRI 1.00 -0.296
Y 1.00

Table 6   Testing results Class Precision Recall F1 Score AUC​ NO. Cells

Very high 1.000 1.000 1.000 1.000 22
High 1.000 1.000 1.000 1.000 31
Moderate 0.991 1.000 0.995 0.999 108
Low 1.000 0.995 0.997 0.997 184
Very low 1.000 1.000 1.000 1.000 249
Overall 0.998 0.998 0.998 0.999 594
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basin are in a Very high class. In the High class in the hydrological model and the ANN, 
three sub-basins with an area of 57,917 Km2 (6.15% of the total basin) and in the TOP-
SIS method, two sub-basins with an area of 38.57 km2 (4.1% of the total basin) are in 
this class. The TOPSIS method has classified more than 68% of the basin area (52 sub-
basins) in the Moderate class, while in the hydrological model and the ANN 18.64% (12 
sub-basins) and 20.24% (13 sub-basins) are in this class, respectively. The hydrological 
model, the TOPSIS and the ANN have classified 31.92% (22 sub-basins), 16.07% (15 
sub-basins) and 30.32% (21 sub-basins) of the total basin area in the low class, respec-
tively. The number and overall area of ​​sub-basins in the very low class were equal in 
the methods of the hydrological model and the ANN (39.43% and 36 sub-basins), while 
in the TOPSIS method only three sub-basins with an area of ​​43.18 km2 (4.59%) were 
placed in this class.

Fig. 6   Flood hazard classification by the ANN

Table 7   Comparison of 
error indices and correlation 
coefficient(CC) for different 
methods

HEC-HMS-
TOPSIS

HEC-HMS-ANN TOPSIS-ANN

Precision 0.268 0.985 0.382
Recall 0.401 0.991 0.255
F1 score 0.254 0.987 0.243
AUC​ 0.602 0.994 0.527
CC 0.252 0.992 0.233
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4 � Conclusion

The purpose of this research was to investigate and compare the results of three common 
approaches including HEC-HMS model, the TOPSIS method and the ANNs for determin-
ing flood source areas. The results of the classification of sub-basins by HEC-HMS showed 
that sub-basins 74 and 6 have a high flood risk and sub-basins 69, 70, and 40 have a low 
flood risk. The results of classification by different methods as well as the results of the 
correlation and error indicate the difference in the flood classification of the basin. Since 
the ANN model has simulated the HEC-HMS classifications very accurately (Fig. 6), it can 
be concluded that this model has performed better than the TOPSIS multi-criteria deci-
sion-making method and is more efficient. Also, the results of the degree of correlation 
of the results presented in Table 7 indicate no meaningful correlation between the results 
of the TOPSIS classification and the hydrological model. Therefore, it can be concluded 
that the ANN model performed better as compared to the TOPSIS multi-criteria decision-
making method and can be used in other areas with similar hydrological and morphologi-
cal characteristics.
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