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Time-varying coefficients models for
recurrent event data when different
varying coefficients admit different
degrees of smoothness: application to
heart disease modeling
Ehsan Eshaghi, Hossein Baghishani*† and Davood Shahsavani

We consider a class of semiparametric marginal rate models for analyzing recurrent event data. In these mod-
els, both time-varying and time-free effects are present, and the estimation of time-varying effects may result
in non-smooth regression functions. A typical approach for avoiding this problem and producing smooth func-
tions is based on kernel methods. The traditional kernel-based approach, however, assumes a common degree of
smoothness for all time-varying regression functions, which may result in suboptimal estimators if the functions
have different levels of smoothness. In this paper, we extend the traditional approach by introducing different
bandwidths for different regression functions. First, we establish the asymptotic properties of the suggested esti-
mators. Next, we demonstrate the superiority of our proposed method using two finite-sample simulation studies.
Finally, we illustrate our methodology by analyzing a real-world heart disease dataset. Copyright © 2016 John
Wiley & Sons, Ltd.
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1. Introduction

In many research disciplines, such as medicine, engineering, and environmental sciences, the data col-
lected for statistical analysis include interesting events that repeatedly occur in time. Such events are
called recurrent events, and the corresponding data are called recurrent event data [1]. Disease relapses,
recurrent opportunistic infections in human immunodeficiency virus patients [2], repeated transient
ischemic attacks in patients with cerebrovascular disease [3], recurrent pyogenic infections in chronic
granulomatous disease [4–6], repeated asthma attacks in children [7,8], and repeated failures in software
systems [9, 10] or industrial equipment [11] are examples of such events. Other examples include tumor
metastases, myocardial infarctions, and heartbeat patterns in patients with arrhythmias, who may expe-
rience too fast, too slow, or irregular heartbeat patterns. These changes in heartbeat rhythm can happen
suddenly and unexpectedly and sometimes may result in the death of the patient.

In regression models for analyzing survival data, it is common to assume that the covariates are
independent of time. However, this assumption is often violated in recurrent event data. Therefore, eval-
uating the temporal effects of the covariates is of interest in these applications. Survival semiparametric
regression models provide a flexible method to analyze such data [1].

1.1. Related works

Several semiparametric conditional [12, 13] and marginal [14] regression models have been proposed
to analyze recurrent event data. Researchers widely use conditional hazard regression models [15] to
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describe the dependency of survival times on covariates. The Cox proportional hazard model [16] is a
well-known example of such models. In practice, using the mean or total number of event occurrences
is often more interpretable than hazard rate for analysis of recurrent event data. Murphy and Sen [17],
Hastie and Tibshirani [18], Grambsch and Thearneau [19], and Fahrmeir and Klinger [20] studied the
time-varying intensity models. Some authors have also used regression models for the mean and rate func-
tions [5, 21–23]. Lin et al. [5] used a Cox-type link function to analyze marginal mean and rate models.
Martinussen et al. [24] proposed an efficient procedure for estimating the time-varying and time-constant
effects in a general semiparametric multiplicative intensity model. Zucker and Karr [25] proposed a penal-
ized partial likelihood approach for fitting a Cox regression type model with time-varying regression
coefficients for right censored data. Cai and Sun [26] and Tian et al. [27] used a local partial likelihood
technique for this model. Amorim et al. [28] used regression splines to fit time-dependent coefficient
models for the recurrent event data. Recently, Sun et al. [6] proposed a model with a mixture of time
dependent and invariant coefficients in which the non-parametric component of the model is estimated
by using kernel methods. In their proposed approach, a common smoothing parameter is used to estimate
baseline hazard and all time-varying regression coefficients.

1.2. Motivation

In practice, each time-varying coefficient has its own degree of smoothness. Therefore, to obtain the
optimal estimators, in the general case, it is necessary to use different bandwidths for different coeffi-
cients. This becomes especially important, and the gain could be substantial, as the number of functions
that need to be estimated increases. Fan and Zhang [29] proposed a two-step estimating procedure for
a linear-varying coefficient model with different bandwidths. However, their work suffers from a few
limitations. First, they developed their approach for linear models only. Second, for p time-varying regres-
sion coefficients, p ⩾ 2, they assumed that only one coefficient is smoother than the rest, and all other
functions have equal, smaller degrees of smoothness. They demonstrated that considering these two
different bandwidths is always more reliable than considering a fixed bandwidth for all functions. Never-
theless, in general, this is still a limitation if the functions have several different degrees of smoothness.
Third, in real applications, we typically do not know in advance which regression function is smoother
than the others.

We develop the work of Sun et al. [6] by considering different smoothing parameters for different
functions in a kernel-based approach. Our proposed method avoids the limitations of Fan and Zhang [29]
but retains its strong advantages: each time-varying coefficient has its own degrees of smoothness, and the
estimation method could be extended to a broad class of survival semiparametric models. We also show
that all coefficients of the model can be estimated consistently at the rate

√
n, where n is the sample size.

1.3. Outline

This paper is organized as follows. In Section 2, we describe the heart disease dataset used in the anal-
ysis. Section 3 presents the proposed method: We consider different bandwidths for different regression
functions, and incorporate Taylor expansions and kernel methods into our estimation procedure for the
resulting model, which leads to improved performance. We also present a simple iterative algorithm for
estimating the proposed model and an adaptive algorithm for selecting the optimal bandwidth. Section 4
provides our theoretical results, establishing the consistency and asymptotic normality of our estimators.
In Section 5, we evaluate the performance of our approach using two simulation examples. In Section 6,
we apply our method to a real-world application in analyzing heart disease data from Mashhad, Iran.
Section 7 concludes the paper with a discussion. Finally, two technical appendices summarize the notation
used in our theoretical results, as well as the missing proofs.

2. Heart disease data

Heart disease is the number one cause of mortality around the world. This disease is the third leading
causes of burden of disease in 2030, and also, it kills more people than cancer in the world [30]. Con-
sequently, improving therapies to reduce the mortality rate has been an important research topic. One of
the treatments for patients with a high risk of heart diseases, particularly heart failure, is heart defibrilla-
tor. This device is a small battery-powered impulse generator that is implanted in patients who are at risk
of sudden death due to a dangerously fast heartbeat (ventricular fibrillation) or a chaotic heartbeat (ven-
tricular tachycardia). Heart defibrillators work by detecting irregular rhythms and intervening abnormal
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heartbeats: These devices continuously monitor the patients’ heartbeat and deliver extra beats or electri-
cal shocks to restore a normal heart rhythm when necessary. In this study, we consider two types of heart
defibrillators: implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy defib-
rillator (CRTD). Depending on what the heart needs, an ICD can have one or two wires that called leads.
One lead goes in the right ventricle (a single-chamber type of ICD), and if the person needs a second lead,
it will be placed in the right atrium (a two-chamber type of ICD). A CRTD system adds a third, attaching
a lead to the left ventricle so it can help both sides beat in synch and thus pump more efficiently.

In this work, we studied heart defibrillator-implanted patients with heart disease, in Ghaem Hospital
of Mashhad‡, affiliated with Mashhad University of Medical Sciences. The dataset was collected by
the clinical research center of Ghaem hospital between 2005 and 2008. The data includes a total of 44
patients, followed until death or censoring. The patients in this study were, on average, 48 years old, with
40% of them more than 52 years old.

Before implanting the heart defibrillator, the duration of ventricular depolarization (the so-called
QRS duration) was measured in the patients’ electrocardiogram with a digital caliper with an accuracy
of 1 mm. In order to increase the accuracy of the study, this duration was measured twice, and the
average was recorded. The duration, amplitude, and morphology of the QRS are useful in diagnosing car-
diac arrhythmias, conduction abnormalities, ventricular hypertrophy, myocardial infarction, electrolyte
derangements, and other states of heart disease [31]. The following information were recorded for each
patient: age, sex, type of decision for embedded heart defibrillator (primary or secondary prevention), and
a family history of sudden cardiac death in first-degree relatives. Before implanting the heart defibrillator,
the QTc interval duration in the electrocardiogram of patients was calculated by the Bazzet formula [32].
After embedding the heart defibrillator, patients were regularly followed up with for 1, 3, and 6 months.
In follow-up visits, patients were reviewed by an electrophysiologist, and the cases of arrhythmias were
recorded by the software. We focus on the patients’ age, QRS duration, and type of heart defibrillators
as the covariates for modeling the rate at which the defibrillator device delivers electrical shocks to the
heart of each patient.

Treatment depends on the type and severity of arrhythmia in each patient. In some cases, no treat-
ment is necessary. Treatment options include medications, lifestyle changes, invasive therapies, electrical
devices, or surgery. In this paper, we apply our new method to the aforementioned dataset. We show that
given the QRS duration, the patients’ age, and the type of the heart defibrillator device that is implanted
in that patient, we can infer the usefulness or harmfulness of the given heart defibrillator device for the
patient in question, and can decide whether to implant this type of heart defibrillator for other, new patients
or not.

3. Methodology

Consider n subjects that are observed over time. Let Ñi(t) and Ni(t) denote the number of failures and
observable events of an individual over the interval (0, t], respectively. Suppose that Ni(t) = Ñi(t ∧ Ci)
where a ∧ b = min(a, b), and Ci denotes the follow-up or censoring time. Because of the censoring,
Ni(⋅) may be less than Ñi(⋅). We also let Xi(⋅) and Zi(⋅) denote the vectors of covariate processes with
dimensions p and q, respectively. The at-risk process for each subject is denoted by Yi(t) = I(Ci ⩾ t),
i = 1,… , n, where I(⋅) is the indicator function.

We consider the following marginal regression model with time-varying coefficients [6]:

E
{

dÑi(t)|Xi(t),Zi(t)
}
= exp

{
𝜷0(t)TXi(t) + 𝝎T

0 Zi(t)
}

d𝜆0(t), (1)

where 𝜷0(t) and 𝝎0 are unknown p and q-vector of time-varying and time-independent coefficients,
respectively. Also, 𝜆0(t) is an unknown continuous baseline mean function. To derive more stable estima-
tors, it is preferable to use the cumulative regression functions B0(t) = ∫ t

0 𝜷0(u)du [24,33]. The functions
B0(t) and the regression parameter 𝝎0 can be estimated consistently at the rate n1∕2 and further lead to
a uniform asymptotic description of the estimators, which is needed when one is curious to examine
hypotheses about 𝜷0(t) [24, 33]. If one is interested in 𝜷0(t) directly, methods such as kernel estimation
may be used based on the estimate of B0(t) [6].

‡Mashhad is the second largest city in Iran, located in the north-east of the country
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We define N(t) = (N1(t),… ,Nn(t))T , N0(t) = n−1 ∑n
i=1 Ni(t), X(t) = (X1(t),… ,Xn(t))T , and Z(t) =

(Z1(t),… ,Zn(t))T . We also define the counting process by

Mi(t) = Ni(t) − ∫
t

0
Yi(u)E

{
dÑi(u)|Xi(u),Zi(u)

}
. (2)

Under model (1), Mi(t) is a zero-mean stochastic process. For given (𝜷(t),𝝎), we can estimate 𝜆0(t) by
the Breslow estimator

𝜆̂0(t;𝜷,𝝎) = ∫
t

0
S0(u; 𝜷,𝝎)−1dN0(u), (3)

where S0(u;𝜷,𝝎) =
1
n

∑n
i=1 𝜙i(u; 𝜷,𝝎) and 𝜙i(t; 𝜷,𝝎)=Yi(t) exp

{
𝜷0(t)TXi(t) + 𝝎T

0 Zi(t)
}

.

3.1. Estimation

To estimate 𝜷0(t) and 𝝎0, by using generalized estimating equation methods [34] and substituting (3)
back into (2), we have

X(t)TdM(t) = 0; 0 ⩽ t ⩽ 𝜏, ∫
𝜏

0
Z(t)TdM(t) = 0,

where dM(t) = (dM1(t),… , dMn(t)), and 𝜏 is a prespecified constant. For estimating 𝜷0(t) and 𝝎0, a
Newton–Raphson algorithm around the current estimate (𝜷 l(t),𝝎l) is then applied. Thus, the updating
equations are {(

𝜷 l+1(t) − 𝜷 l(t)
)
+ Λl

xx(t)
−1Λl

xz(t)
(
𝝎l+1 − 𝝎l

)}
Sl

0(t)
−1dN0(t)

= n−1Λl
xx(t)

−1X́l(t)TdN(t),
(4)

and

∫
𝜏

0

{
Λl

zz(t)
(
𝝎l+1 − 𝝎l

)
+ Λl

zx(t)
(
𝜷 l+1(t) − 𝜷 l(t)

)}
Sl

0(t)
−1dN0(t)

= n−1 ∫
𝜏

0
Źl(t)TdN(t),

(5)

whereΛk(t;𝜷,𝝎),Λl
k(t) = Λk(t;𝜷 l,𝝎l)(k = xx, xz, zx, zz), Sl

0(t), X́l(t), and Źl(t) are defined in Appendix A.
Substituting (4) into (5) and solving for 𝝎l+1, we obtain the iteration step 𝝎l+1 = Υ(𝝎l), where

Υ(𝝎l) = 𝝎l + Al(𝜏)−1

n ∫
𝜏

0

[
Źl(t)T − Λl

zx(t)Λ
l
xx(t)

−1X́l(t)T
]

dN(t), (6)

Al(𝜏) = A(𝜏;𝜷 l,𝝎l) and

A(𝜏;𝜷,𝝎)=∫
𝜏

0

[
Λzz(t;𝜷,𝝎) − Λzx(t;𝜷,𝝎)Λxx(t; 𝜷,𝝎)−1Λzx(t;𝜷,𝝎)T

] dN0(t)
S0(t;𝜷,𝝎)

.

As Martinussen et al. [24] have noted, it is not a good idea to try to iterate towards a solution for each
time point t, because the information about any particular time point is limited and even consistency
cannot be obtained. To stabilize the solution, smoothing is required.

For simplicity, as discussed in Sun et al. [6], 𝛽 l(t) and 𝜃l
0(t) are taken to be a simple kernel estimators of

𝜷0(t) and 𝜃0(t) = d𝜆0(t)∕dt based on Bl(t) and 𝜆l
0(t), respectively where Bl(t) is the estimate of B(t) after

the lth iteration and 𝜆l
0(t) = 𝜆̂

(
t;𝜷 l,𝝎l

)
. Sun et al. [6] proposed an estimation method by which only

one common smoothing parameter h is used to fit the baseline hazard and all time-varying coefficient
functions. However, the estimation of these functions may be further improved by using different degrees
of smoothness. In the following section, we propose our method for smoothing time-varying coefficients
while allowing each coefficient to have its own bandwidth.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4166–4182
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3.2. Different bandwidths

Let
(
h1, h2,… , hp

)
and h0 be the bandwidths for 𝜷0(t) = (𝛽01(t), 𝛽02(t),… , 𝛽0p(t)) and 𝜃0(t), respectively.

We define

K =
⎛⎜⎜⎜⎝

K
(

u−t
h1

)
… 0

⋮ ⋱ ⋮

0 · · · K
(

u−t
hp

)
⎞⎟⎟⎟⎠
,

and

H =
⎛⎜⎜⎝

h1 … 0
⋮ ⋱ ⋮
0 · · · hp

⎞⎟⎟⎠ ,
where K is a diagonal matrix of symmetric kernel functions with different bandwidths. We now enforce
smoothness for the underlying regression coefficients through the estimation of 𝜷 l(t) and also 𝜃0(t),
that is,

𝜷 l(t) = ∫ H−1KdBl(u), (7)

and

𝜃l
0(t) = ∫ h−1

0 K

(
u − t

h0

)
d𝜆l

0(u).

Using the updated coefficients 𝝎l+1 and replacing dN0(t)∕Sl
0(t) in (4), we have Bl+1(t) = Ψ(Bl)(t),

where

Ψ(Bl)(t) = ∫
t

0
𝜷 l(u)du + n−1∫

t

0
𝜃l

0(u)
−1Λl

xx(u)
−1X́l(u)TdN(u)

− ∫
t

0
Λl

xx(u)
−1Λl

xz(u)
(
𝝎l+1 − 𝝎l

)
du.

(8)

Given an initial estimates
(
𝜷̂

0(t), 𝝎̂0
)

, we obtain the estimation procedure summarized in Table I.

3.3. Bandwidth selection

Bandwidth selection is the most important characteristic of kernel estimation methods. This topic has
been widely studied by many researchers; see, for example, Sheather and Jones [35], Ruppert, Sheather
and Wand [36] and Marron [37]. Two usual approaches for selecting the optimal bandwidths are using
plug-in methods and cross-validation [38]. On the one hand, cross-validation methods usually suffer
from two problems: large running times, as well as high variance and undersmoothness. On the other
hand, there is strong evidence in favor of plug-in methods in comparison with cross-validation; see, for
example, Park and Marron [39] and Jones, Marron and Sheather [40]. Hence, in this section, we focus
on plug-in methods for bandwidth selection.

Table I. The steps of estimating procedure.

Estimation iterative steps

0. Choose initial estimates
(
𝜷̂

0
(t), 𝝎̂0

)
. Set l = 0.

(These estimates can be easily obtained by using the method proposed by [6]).
1. Compute the Breslow estimator (3) based on initial estimates and smooth it

to obtain 𝜃l
0(t).

2. Use equations (6) and (8) to obtain updated estimates 𝝎l+1 and Bl+1(t),
respectively.

3. Smooth Bl+1(t) using (7) to obtain 𝜷 l+1(t).
4. Increase l by 1 and repeat Steps 1 to 3 until the algorithm is judged

to have converged.
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Katkovnik and Shmulevich [41] proposed a plug-in type method with a varying adaptive bandwidth
based on the so-called intersection of confidence intervals (ICI) rule [42, 43]. As they have mentioned,
one of the several attractive properties of the ICI rule is that its quality is close to the quality that one
could achieve if the smoothness of the original function was known in advance.

We develop the proposed method of Katkovnik and Shmulevich [41] to determine the bandwidths(
h0, h1,… , hp

)
. This method is much faster than cross-validation. For example, in the first simulation

study of Section 5 comprising 36,403 grid points and p = 2 time-varying coefficients (three bandwidths),
the algorithm requires ∼ 47 s of CPU time to choose optimal bandwidths. But in the cross-validation
method, for only one grid point, the associated CPU time is ∼ 23 seconds. It is particularly useful in
practical situations when we have a large number of variables. The algorithm is as follows:

Algorithm 1. Adaptive Bandwidth Selection

1 L̄ ⇐ −∞ and Ū ⇐ ∞
2 while (L̄ ⩽ Ū) and (i ⩽ J) do

L ⇐ B̂H̄i
(t) − Γ.n−2 ∑n

i=1 𝜻̂ i(r)𝜻̂ i(t)T

U ⇐ B̂H̄i
(t) + Γ.n−2 ∑n

i=1 𝜻̂ i(r)𝜻̂ i(t)T
L̄ ⇐ max(L̄,L) and L̄ ⇐ min(Ū,U)
i ⇐ i + 1
end while

3 H̄opt ⇐ H̄i−1.

In this algorithm, H̄ is the matrix of bandwidth grids in which each column contains the grid points for the
corresponding bandwidth parameters; each row contains a possible combination of bandwidths values,
and J is the total number of grid points. The estimate of the cumulative regression functions for the ith
row of H̄ is denoted by B̂(t)H̄i

. Using a pilot estimate of B(t) with constant bandwidth, the corresponding
covariance function of B̂(t)H̄i

is n−2 ∑n
i=1 𝜻̂ i(r)𝜻̂ i(t)T . Finally, Γ is a design parameter of the algorithm,

and the selection of its value is discussed in [41].

4. Asymptotic properties

We present the asymptotic properties of the proposed estimators by three theorems in Appendix B. Espe-
cially, Theorem B.1 shows that 𝝎̂ is asymptotically normal and achieves a convergence rate of order n−1∕2

which is the optimal rate for parametric estimation. Theorem B.2 shows that B̂(t) is an asymptotically
Gaussian process. Hence, although the bandwidths for time-varying coefficients are different, B̂(t) still
enjoys convergence rate of n−1∕2, under certain regularity conditions. Theorem B.3 shows that 𝜆̂0(t) is an
asymptotically Gaussian process as well.

5. Simulation study

We conduct two simulation experiments to investigate the finite-sample properties of the proposed esti-
mators. The first example is the one used in Sun et al. [6] to make a comparison between our proposed
method and their results. The second simulated example is motivated by the number of coefficients to be
considered for analyzing heart disease data. For each simulated example, 1000 independent replications
were generated.

Example 1
In this example, a marginal rates model is considered as follows:

E
{

dÑi(t)|Xi(t),Zi(t)
}
= exp

{
− 0.5 + 0.5 cos(2t − 1.75)Xi1(t)

+0.7
(√

t − 1
)

Xi2(t) + 0.5Zi(t)
}

dt, i = 1,… , n,
(9)

where the event times were simulated from a Poisson process. The covariates Xi1 and Xi2 were gen-
erated independently from the standard normal distribution, Zi is a Bernoulli random variable with
success probability 0.5, and the follow-up time Ci was generated from a uniform distribution U(2, 5),

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 4166–4182
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Table II. Simulation results for the estimates B̂1(t) and B̂2(t) of the cumulative
time-varying regression coefficient functions in the first example.

Selected bandwidths h0 h1 h2 ISB1 ISB2 MISE1 MISE2

Equal 0.1 0.5 0.5 0.0031 0.0320 0.1394 0.1775

Different 0.1 0.5 0.2 0.0033 0.0132 0.1407 0.1775

Optimal 0.08 0.05 0.01 0.0002 0.0229 0.2018 0.2028

Table III. Simulation results for the estimate of time-independent coefficient with
𝜔0 = 0.5 in the first example.

Selected bandwidths h0 h1 h2 Bias SSE SEE CP

Equal 0.1 0.5 0.5 0.0014 0.0957 0.0992 0.9500

Different 0.1 0.5 0.2 0.0020 0.0966 0.0998 0.9500

Optimal 0.08 0.05 0.01 −0.0069 0.1185 0.1205 0.9460

which produced approximately three observed events per subject on average. We considered a sample
size n = 200, 𝜏 = 4.5, three sizes of bandwidth and Epanechnikov kernel K(x) = 0.75(1 − x2)I(|x| ⩽ 1).
The cumulative regression functions are B1(t) = ∫ t

0 0.5 cos(2s − 1.75)ds and B2(t) = ∫ t
0 0.7

(√
s − 1

)
ds.

Our main aim here is to study the capability of unequal and equal bandwidths for estimating time-
varying parameters B1(t) and B2(t). To do this, following Sun et al. [6], we used equal bandwidths h1 = 0.5
and h2 = 0.5 (setting 1) for smoothing the coefficients. Then, we repeated the same task with different
bandwidths h1 = 0.5 and h2 = 0.2 (setting 2) to compare the effect of equal and unequal bandwidths. In
both cases, we set the bandwidth for 𝜃0(t) to h0 = 0.1. Moreover, we obtained the optimal bandwidths
h0 = 0.08, h1 = 0.05, and h2 = 0.01 (setting 3) by applying the adaptive bandwidth selection algorithm.

We calculated the integrated squared bias (ISB) and the mean integrated squared error (MISE) for
Bi(t), i = 1, 2 for the aforementioned three settings. The results are presented in Table II. The values
of ISBs and MISEs reveal that the proposed estimators of the cumulative regression coefficients are
generally more precise than estimators of Sun et al. [6]. Especially, the results for B̂2(t) are improved
markedly when h2 decreases from 0.5 to 0.2. As the third line of Table II shows, our proposed method
based on the optimal bandwidths produces better bias results for B1(t), but a slightly increased MISE.

Table III presents the results of estimating the time-independent regression coefficient 𝜔0 = 0.5 in
model (9). The table shows the biases (Bias) which is the difference between the sample means of the
point estimates 𝜔̂ and the true value, the sampling means of the estimated standard errors (SEE) of 𝜔̂,
the sampling standard errors (SSE) of 𝜔̂, and the 95% empirical coverage probabilities (CP) for 𝜔0.
As it is evident from the results reported in Table III, the first two settings perform well regarding bias
and standard errors. It is clear that the estimates are unbiased, and the empirical and estimated stan-
dard errors are close to each other. The empirical coverage probabilities in these two settings are 0.95,
which are reasonable and show that asymptotic normal distribution provides a good description of the
variability of 𝜔̂.

To investigate the performance of estimators of time-varying regression coefficients and their asymp-
totic standard errors, we computed the point-wise estimates and empirical coverage probabilities for B̂1(t)
and B̂2(t) at 100 grid points that are depicted in Figures 1–4.

Figure 1 shows the true cumulative regression curves for B1(t), panel (a), and B2(t), panel (b), and their
estimates by considering settings 1 and 2. As it is apparent in panel (a), the performance of both equal and
unequal bandwidths are nearly the same for B1(t), whereas for B2(t), panel (b), the estimate provided by
different bandwidths has a lower bias. Figure 2 compares the performance of optimal different bandwidths
(setting 3) and different bandwidths (setting 2), in which the true cumulative regression functions and
their estimates were shown in the same manner as Figure 1. It can be seen, in panel (a), that the optimal
bandwidths for B1(t) result in more accurate and nearly perfect estimates. However, for B2(t), panel (b),
both approaches are well behaved, and there is no significant difference between them.

The empirical coverage probabilities for B1(t) and B2(t) are depicted in Figures 3 and 4, respectively.
In both figures, the panels (a)–(c) are devoted to the settings 1–3, respectively. One sees in Figure 3, panel
(c), that the difference between the coverage probabilities for B1(t) provided by optimal bandwidths and
the nominal level, 0.95, for the whole time period is negligible. In Figure 3, we see that the coverage
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Figure 1. Plots of the cumulative regression curves and their estimates: (a) B1(t) and (b) B2(t). The solid lines
are the real cumulative regression functions; the dot-dashed lines are the average estimates for the cumulative
regression functions when using equal bandwidths based on 1000 replications (setting 1), and the dashed lines are

the average estimates obtained by using different bandwidths (setting 2).
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Figure 2. Plots of the cumulative regression curves and their estimates: (a) B1(t) and (b) B2(t). The solid lines
are the real cumulative regression functions; the dot-dashed lines are the average estimates for the cumulative
regression functions using different bandwidths (setting 2) based on 1000 replications, and the dashed lines are

the average estimates obtained by using the optimal bandwidths values (setting 3).

probabilities for B1(t) provided by the other two settings, panels (a) and (b), are not as good an approxi-
mation as the output of setting 3 for time points within [0, 1]. As Figure 4, panels (b) and (c) shows, the
results for different bandwidths (settings 2 and 3) are in agreement; indeed one detects practically no dif-
ference between their empirical coverage probabilities for B2(t) and the nominal level. From panel (a),
however, the equal bandwidths method is not a good descriptor of the variability for B̂2(t). In summary,
the additional flexibility from our methodology resulted in substantial improvements in the asymptotic
standard errors of the estimators.

Example 2
In the second example, we consider four time-varying regression coefficient functions as follows:
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(a)

(b)

(c)

Figure 3. Coverage probabilities for B̂1(t): (a) Equal bandwidths (setting 1), (b) Different bandwidths (setting 2),
and (c) Optimal bandwidths (setting 3).

E
{

dÑi(t)|Xi(t),Zi(t)
}
= exp

{
− 0.5 + 0.5 cos(2t − 1.75)Xi1(t)

+ 0.7
(√

t − 1
)

Xi2(t) + sin(3t)Xi3(t)

+ cos(5t)Xi4(t) + 0.5Zi(t)
}

dt, i = 1,… , n,

where Xi1,… ,Xi4, i = 1, 2,… , n, were generated from standard normal distributions, and Zi is the same
as in the first example. In this example, all time-varying coefficients, except the second one, oscillate
with time. In practice, we may have many coefficients with different degrees of smoothness. Therefore,
this example demonstrates the power of our proposed method. To estimate all coefficients, we consid-
ered a sample size of n = 200. Similar to the first example, we investigated three settings for selecting
bandwidths: for equal bandwidths, we considered hi = 0.6 for i = 0, 1,… , 4, whereas for different band-
widths we used h0 = 0.3, h1 = 0.6, h2 = 0.4, h3 = 0.45, and h4 = 0.5. We also computed the optimal
bandwidths, h0 = 0.13, h1 = 0.13, h2 = 0.14, h3 = 0.12, and h4 = 0.19, similar to the first exam-
ple, by using our adaptive bandwidth selection algorithm (Section 3.3). Table IV summarizes the results,
showing that our proposed method results in a major improvement and enjoys lower bias and MISE for
time-varying coefficients.

Comparing Tables II and IV, it can be seen that by increasing the number of time-varying regres-
sion coefficients, our proposed method outperforms the method of Sun et al. [6]. It makes our
method particularly suitable in practical situations where there is a large number of time-varying
coefficients. Table V presents the simulation results on estimating the time-independent regression
coefficient 𝜔0 = 0.5. The results are similar to those from Table III, so we do not elaborate on the
details again.
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Figure 4. Coverage probabilities for B̂2(t): (a) Equal bandwidths (setting 1), (b) Different bandwidths (setting 2),
and (c) Optimal bandwidths (setting 3).

Table IV. Simulation results for the estimates B̂1(t), B̂2(t), B̂3(t), and B̂4(t) of the cumulative time-varying
regression coefficient functions in the second example.

Bandwidths h0 h1 h2 h3 h4 ISB1 ISB2 ISB3 ISB4 MISE1 MISE2 MISE3 MISE4

Equal 0.6 0.6 0.6 0.6 0.6 0.0110 0.0251 0.0175 0.3200 0.1158 0.1219 0.1607 0.5623

Different 0.3 0.6 0.4 0.45 0.5 0.0121 0.0059 0.0159 0.2721 0.1130 0.1046 0.1512 0.4847

Optimal 0.13 0.13 0.14 0.12 0.19 0.0095 0.0034 0.0308 0.0396 0.1818 0.1747 0.1926 0.2235

Table V. Simulation results for the estimate of time-independent coefficient with 𝜔0 = 0.5 in the
second example.

Selected bandwidths h0 h1 h2 h3 h4 Bias SSE SEE CP

Equal 0.6 0.6 0.6 0.6 0.6 −0.0053 0.0943 0.0928 0.9200

Different 0.3 0.6 0.4 0.45 0.5 −0.0052 0.0904 0.0889 0.9300

Optimal 0.13 0.13 0.14 0.12 0.19 −0.0034 0.1003 0.0831 0.9000

6. Application to heart disease data

In this section, we present the application of our method to the analysis of the real-world heart disease
dataset introduced in Section 2. The data include a total of 44 patients as mentioned before. We focus
on four covariates, namely QRS (time to ventricular depolarization), age of the patients, and type of the
heart defibrillator device recoded into two dummy variables: ICD1 (coded 1 for single-chamber and 0
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Figure 5. Estimates of (a) the coefficient functions and (b) the cumulative coefficient functions, in model (10)
using optimal bandwidths.

for CRTD) and ICD2 (coded 1 for two-chamber and 0 for CRTD). For the ith patient, we denote the
above variables by Wi(t), Vi(t), Xi(t), and Zi(t), respectively. The number of defibrillator shocks to the
corresponding patient’s heart is denoted by Ñi(t).

We start with the following time-varying marginal regression model:

E
{

dÑi(t)|Wi(t),Vi(t),Xi(t),Zi(t)
}
= exp

{
𝛽1(t)Xi(t) + 𝛽2(t)Zi(t)

+𝛽3(t)Vi(t) + 𝛽4(t)Wi(t)
}

d𝜆0(t).
(10)

First, we should check whether 𝛽1(t), 𝛽2(t), 𝛽3(t), and 𝛽4(t) are time-varying. To that end, we computed
the proposed estimators by using the Epanechnikov kernel with optimal bandwidths h0 = 300, h1 = 791,
h2 = 784, h3 = 772, and h4 = 740 days, resulting in smooth regression coefficients for ICD1, ICD2,
age, and QRS, respectively. To obtain these optimal bandwidths, we used our adaptive Algorithm 1,
presented in Section 3.3. To verify the significance of time-variation property in the coefficients, we
calculated the test statistics 𝒯1 and 𝒯2 of Sun et al. [6] for Bi(t) = ∫ t

0 𝛽i(s)ds (i = 1, 2, 3, 4), using
their proposed simulation technique based on 10,000 replications. The p-values of 𝒯1 and 𝒯2 for all
cumulative coefficients were found to be less than 0.002, implying that 𝛽1(t), 𝛽2(t), 𝛽3(t), and 𝛽4(t) are
indeed varying over time.

Figure 5 shows the estimates of the regression coefficients as a function of time (measured in days),
together with their cumulative versions.

The negative values of 𝛽1(t) throughout the time range in panel (a) indicate that, on average, ICD with
single chamber delivers fewer beats or electrical shocks than the CRTD. During the first 34 months of
the study, the differences between the number of delivered shocks from a single-chamber type of ICD
and a CRTD shrink continuously. Afterwards, their differences start to grow and keep growing until the
end of the study. Similarly, during the first 26 months of the study, the differences between the number
of shocks generated by a two-chamber type of ICD and a CRTD initially grow, but then start to shrink.
During a short period, around the 130th week of the study, these two devices have no difference and
deliver an equal number of shocks. Afterwards, for the next 6 months, the differences grow again; at this
period, the CRTD has better performance than ICD with two chambers. Then, differences shrink again.
Note that a two-chamber ICD almost always delivers fewer shocks than a CRTD.

As Figure 5 shows, the differences between the two-chamber type of ICD and CRTD are less than the
differences between the single-chamber and CRTD. Therefore, a single-chamber ICD delivered fewer
beats or electrical shocks (and, in particular, fewer inappropriate beats) compared with the other type
of ICD and CTRD. The figure also shows that the effect of age during the first 30 months of the study
is approximately constant; thereafter, the effect increases: an older age leads to more shocks or beats.
QRS behaves similarly as a function of age. Therefore, the longer the duration of the QRS, the larger the
expected number of shocks or beats.

The estimates of regression coefficients using equal bandwidths hi = 740; i = 0, 1, 2, 3, 4, and
their cumulative versions, are shown in Figure 6. The results are substantially different compared with
those obtained by using different bandwidths. For example, using the traditional method (with equal
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Figure 6. Estimates of (a) the coefficient functions and (b) the cumulative coefficient functions in model (10)
using equal bandwidths.

bandwidths), the second peak in the estimated number of shocks delivered by single-chamber devices is
not present; hence, unlike the estimates obtained by our proposed method, the differences between the
effects of the single-chamber type of ICD and CRTD increase.

6.1. Conclusion

For patients at risk of a fatally fast or chaotic heartbeat, a heart defibrillator device can be helpful for pre-
venting sudden death. However, this device may not have a positive result on every patient. It is, therefore,
crucial to correctly select patients for whom a heart defibrillator device might be helpful. Our analysis
of the data from patients suffering from heart disease shows that all interesting covariates, including age,
QRS duration, and type of the heart defibrillator device affect the frequency of shocks delivered to the
patients’ hearts. We estimated the time-varying effects of regression functions as well. Thus, if the values
of covariates for a new patient are given, we can use the results of our analysis to make a primary deci-
sion on whether using a heart defibrillator device is recommended for that patient, and if so, what type
of heart defibrillator should be prescribed.

7. Discussion

Many researchers have studied time-varying coefficient models under different conditions: for exam-
ple, Martinussen et al. [24], Winnett and Sasieni [44], Cai and Sun [26], Tian et al. [27], and Sun et
al. [6]. Despite the extensive literature, considering different smoothness parameters for time-varying
coefficients has received little attention. This study is an effort to incorporate this feature in a class of
time-varying coefficient models for recurrent events data. Our results match the findings of Sun et al. [6]
in situations where the number of time-varying coefficients is small. However, our proposed approach
significantly outperforms their method in estimating the parameters and their uncertainties as the number
of functions that need to be estimated increases.

Under some regularity conditions, we showed that the suggested estimators are root-n consistent and
asymptotically normally distributed. To obtain these asymptotic results, we do not need to make strong
regularity assumptions: the required conditions, except Condition (C5), are equivalent to the conditions
used by Sun et al. [6].

The main advantage of our approach is its flexibility and efficiency when the number of time-varying
functions grows. Our simulation results demonstrate that the proposed method provides more accurate
estimates for both time-varying and time-independent regression coefficients. This distinction becomes
more evident as the number of regression functions increases. It is particularly important in practical
situations, where we usually have a large number of time-varying coefficients. Despite being more gen-
eral, our method remains easy to implement. Nevertheless, our approach comes with its own limitations.
For instance, in the adaptive bandwidth selection algorithm, the optimum bandwidth depends on the ini-
tial choice of bandwidth. As an alternative, one could use spline regression for smoothing the coefficients.
Adapting this approach to the model we considered here is left for future study. Another limitation, which
also exists in the method of Sun et al. [6], is that our proposed method assumes the censoring and event
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processes are independent conditional on the covariates. This assumption does not hold if censoring were
caused by informative dropouts or failure events. Nevertheless, this is a standard assumption made in the
literature, and further discussion about this problem is beyond the scope of this paper.

One important issue not addressed here is the inherent problem with local constant kernel estimators
that we used for smoothing regression coefficients: As one of the reviewers of this manuscript pointed
out, from a practical point of view, this approach could lead to a substantial bias at boundary points.
One possible solution is to use biased reduction: by correcting the bias, we may further improve the
coverage accuracy for time-varying functions. While the idea of bias reduction has been widely used
for kernel density estimation, each bias reduction method has its own drawbacks. For example, Härdle
and Bowman [45] applied asymptotic expansions of the kernel estimators for correcting the bias. Their
approach requires two levels of smoothing that can be problematic in practice. Härdle and Marron [46]
proposed the application of bootstrap to reduce the bias of kernel estimators. However, their approach still
requires two levels of smoothing. Another alternative for bias reduction is to employ high-order kernels.
However, according to Scott [47]:

Care should be taken in their actual use... . In practice, second- and fourth-order methods are probably the most
one should consider, as kernels beyond the order 4 provide little further reduction in MISE.

As Park et al. [48] noticed, usually the extension of the previous bias reduction methods to kernel-
based nonparametric regression is not straightforward. Examples of work in this area include Hall [49],
Linton and Nielsen [50], Park et al. [48], and Choi et al. [51]. We do not study bias correction for kernel
estimators in our proposed model in this paper; progress in this direction is left for future work.

Appendix A. Notations

In the following, we introduce the notation needed in the presentation of the asymptotic properties of
the proposed estimators. Let

Θ(t,𝜷,𝝎) = diag{𝜙i(t;𝜷,𝝎)},

Sx(t) = Sx(t;𝜷,𝝎) =
1
n

n∑
i=1

𝜙i(t;𝜷,𝝎)Xi(t),

Sz(t) = Sz(t;𝜷,𝝎) =
1
n

n∑
i=1

𝜙i(t;𝜷,𝝎)Zi(t),

𝚲x(t) = 𝚲x(t;𝜷,𝝎) =
Sx(t;𝜷,𝝎)
S0(t; 𝜷,𝝎)

,

𝚲z(t) = 𝚲z(t;𝜷,𝝎) =
Sz(t;𝜷,𝝎)
S0(t;𝜷,𝝎)

,

X́(t) = {X(t) − X̄(t)},

Ź(t) = {Z(t) − Z̄(t)},

where X̄(t) = X̄(t;𝜷, 𝜸) is the n × p matrix with rows 𝚲x(t;𝜷,𝝎), and Z̄(t) = Z̄(t;𝜷, 𝜸) is the n × q matrix
with rows 𝚲z(t;𝜷,𝝎). Let also

Λxx(t) = Λxx(t;𝜷,𝝎) =
1
n

{
X(t) − X̄(t)

}T Θ(t;𝜷,𝝎)
{

X(t) − X̄(t)
}
,

Λzx(t) = Λzx(t;𝜷,𝝎) =
1
n

{
Z(t) − Z̄(t)

}T Θ(t; 𝜷,𝝎)
{

X(t) − X̄(t)
}
,

Λxz(t) = Λzx(t;𝜷,𝝎) =
1
n

{
X(t) − X̄(t)

}T Θ(t;𝜷,𝝎)
{

Z(t) − Z̄(t)
}
,

Λzz(t) = Λzz(t;𝜷,𝝎) =
1
n

{
Z(t) − Z̄(t)

}T Θ(t;𝜷,𝝎)
{

Z(t) − Z̄(t)
}
,
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Λl
xx(t) = Λxx

(
t; 𝜷 l,𝝎l

)
, Λl

zx(t) = Λzx

(
t;𝜷 l,𝝎l

)
, Λl

zz(t) = Λzz

(
t; 𝜷 l,𝝎l

)
Λl

xx(t) = Λxx

(
t; 𝜷 l,𝝎l

)
, Sl

0(t) = S0

(
t;𝜷 l,𝝎l

)
, Θl(t) = Θ

(
t;𝜷 l,𝝎l

)
,

X́l(t) =
{

X(t) − X̄
(
t; 𝜷 l,𝝎l

)}
, Źl(t) =

{
Z(t) − Z̄

(
t; 𝜷 l,𝝎l

)}
,

where l denotes the lth iteration step in the estimation procedure.
Further, let sj(t;𝜷,𝝎)( j = 0, x, z) and ek(t;𝜷,𝝎)(k = x, z, xx, zx, xz, zz) denote the limits of

Sj(t;𝜷,𝝎) ( j = 0, x, z) and 𝚲k(t; 𝜷,𝝎) (k = x, z, xx, zx, xz, zz), respectively, as n → ∞. Set sj(t) =
sj(t;𝜷0,𝝎0) ( j = 0, x, z) and similarly define ek(t)(k = x, z, xx, zx, xz, zz).

Appendix B. Proofs

Here, we present the asymptotic properties of the proposed estimators. For any vector v, let ‖v‖ =
(vTv)1∕2 denote the Euclidean norm of v. First the following regularity conditions are needed to establish
the asymptotic properties of the estimators:

(C1) 𝜷0(t) and 𝜆0(t) are three times continuously differentiable for t ∈ [0, 𝜏].
(C2) Xi(t) and Zi(t) are of bounded variation on [0, 𝜏].
(C3) exx(t) is non-singular for t ∈ [0, 𝜏].
(C4) sj(t;𝜷,𝝎) is uniformly continuous with respect to (t;𝜷,𝝎) ∈ [0, 𝜏]×ℬ×Θ, whereℬ is a compact

set of ℜp that includes a neighborhood of 𝜷0(t) for t ∈ [0, 𝜏], Θ is a compact set of ℜq including
𝝎, and j denotes 0, x or z.

(C5) K(⋅) is a symmetric and continuous kernel function on a compact support such that

∫ Kdw = ∫
⎛⎜⎜⎝

K
(
w1

)
… 0

⋮ ⋱ ⋮
0 · · · K

(
wp

) ⎞⎟⎟⎠ dw = 1
−
, ∫ K(w)dw = 1,

where 1
−

is the p-vector of ones. Also, for j = 0, 1,… , p, with 1∕8 < 𝛼j < 1∕4, we have

h0 = O(n−𝛼0), h1 = O(n−𝛼1),… , hp = O(n−𝛼p).

Remark B.1
Conditions (C1)–(C4) are equivalent to conditions of Sun et al. [6]. Condition (C1) imposes the smooth-
ness constraints needed to estimate the parameters of the model. In practical situations, condition (C2)
usually holds. Condition (C3) ensures that the limit of the information matrix of the parameters is
nonsingular.

Remark B.2
Condition (C5) is modified according to our given multiple bandwidths. This condition is crucial for√

n-rate of convergence for the parameter estimators.

Let h denote the element of
(
h0, h1,… , hp

)
whose convergence rate is n−𝛼 where 𝛼 = min

(
𝛼0, 𝛼1,… , 𝛼p

)
.

By this definition, we have

h0 = O(n−𝛼), h1 = O(n−𝛼),… , hp = O(n−𝛼).

Indeed h is the bandwidth with the slowest rate. The asymptotic properties of the estimators are presented
in the following three theorems, and the proofs are relegated to the supplementary material.

Theorem B.1
Under the regularity conditions (C1)–(C5), for Υ(𝝎) defined in (6), with probability approaching 1, there
exist solution 𝝎̂ to equation Υ(𝝎) = 𝝎, such that ‖𝝎̂−𝝎‖ = Op(n−1∕2), and n1∕2(𝝎̂−𝝎0) is asymptotically
normal with zero mean and covariance matrix that can be consistently estimated by n−1 ∑n

i=1 𝝑̂i(𝜏)𝝑̂i(𝜏)T ,
where

𝝑̂i(𝜏) = Â(𝜏)−1 ∫
𝜏

0

[{
Zi(t) − 𝚲̂z(t)

}
− Λ̂zx(t)Λ̂xx(t)−1

{
Xi(t) − 𝚲̂x(t)

}]
dM̂i(t),
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in which dM̂i(t) = dNi(t) − Yi(t) exp
{
𝜷̂(t)TXi(t) + 𝝎̂TZi(t)

}
d𝜆̂0(t), 𝜆̂0(t) = 𝜆̂0

(
t; 𝜷̂, 𝝎̂

)
, Â(𝜏) =

A
(
𝜏, 𝜷̂, 𝝎̂

)
and Λ̂k(t) = Λk

(
t; 𝜷̂, 𝝎̂

)
(k = x, z, zx, xz, xx).

Theorem B.2
Under the regularity conditions (C1)–(C5), for Ψ(B)(t) defined in (8), with probability approaching 1,
there exist solution B̂(t) to equation Ψ(B)(t) = B(t), such that sup0⩽t⩽𝜏

‖‖‖B̂(t) − B0(t)
‖‖‖ = Op(n−1∕2), and

the process n1∕2
(
B̂(t) − B0(t)

)
converges weakly to a Gaussian process with zero mean, and a covariance

function whose value at (r,t) can be consistently estimated by n−1 ∑n
i=1 𝜻̂ i(r)𝜻̂ i(t)T , where

𝜻̂ i(t) = ∫
t

0
Λ̂xx(u)−1𝜃̂0(u)−1

{
Xi(u) − 𝚲̂x(u)

}
dM̂i(u)

− ∫
t

0
Λ̂xx(u)−1Λ̂zx(u)Tdu𝝑̂i(𝜏),

and 𝜃̂0(t) = ∫ h−1
0 K

(
u−t
h0

)
d𝜆̂0(u).

Theorem B.3
Under the regularity conditions (C1)–(C5), for the Breslow-type estimator defined in (3),
sup0⩽t⩽𝜏 |𝜆̂0(t) − 𝜆0(t)| = Op(n−1∕4), and the process n

1
2

{
𝜆̂0(t) − 𝜆0(t) +

1
2
∫ t

0 ex(u)T
(∫ H2Ks𝜷

′′

0(u)

◦s2◦ds
)

d𝜆0(u)
}

converges weakly to a Gaussian process with zero mean and a covariance function

whose value at (r,t) can be consistently estimated by n−1 ∑n
i=1 𝝋̂i(r)𝝋̂i(t), where

𝝋̂i(t) = ∫
t

0

dM̂i(u)
Ŝ0(u)

− ∫
t

0
𝚲̂z(u)Td𝜆̂0(u)𝝑̂i(𝜏) − ∫

t

0
𝚲̂x(u)T 𝜃̂0(u)d𝜻̂ i(u).

In Theorem B.3, the notation ◦ denotes the Hadamard product known as the entrywise product. For
two matrices, say A and B, of the same dimensions, the Hadamard product A ◦ B is a matrix of the
same dimension in which the (i, j)th element is the multiplication of the (i, j)-th element of A by the

(i, j)th element of B. Moreover, s2 =
(

s2
1, s

2
2,… , s2

p

)T
, 𝜷

′′

0(t) is the second derivative of 𝜷0(t), ds =(
ds1, ds2,… , dsp

)T
, Ks is a diagonal matrix of

(
K
(
s1

)
,K

(
s2

)
,… ,K

(
sp

))
, H2 = HHT , and Ŝ0(t) =

S0

(
t; 𝜷̂(t), 𝝎̂

)
.
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