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Abstract 

Accurate human gait phase detection is imperative in 

rehabilitation and robotics, forming the foundation for 

developing adaptive technologies and interventions.  
Precise gait detection enables the timing and coordination 

of robotic assistance or rehabilitation exercises tailored to 

specific gait cycle phases. In this study, a custom  designed 

inertial measurement unit was fixated on an individual's 

lower back, and a peak detection method was developed 

for detecting heel strike and toe-off events. The method 

solely uses the linear acceleration data along the subject's 

walking direction. Two insoles with push button switches 

were placed in the subject's custom-designed shoes to 

identify instants of foot contact and lift-off. The differ -
ences between the timing and peak linear accelerations of 

the switches were measured. Subsequently, distinct  
phases of gait on the right and left feet were detected, and 

data labeling was performed. This process was repeated 

for 14 trials, generating a dataset comprising the linear 

acceleration and angular orientation. Finally, a neural 

network model was designed, trained, and evaluated using 

this dataset. The proposed technique demonstrated a 

notable performance in detecting the defined phases with 

approximately 85% accuracy on average for all phases. 
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Introduction 
Detection of human gait phases is crucial in advancing 
research on musculoskeletal biomechanics [1], rehabi -
litation [2-4], and development of assistive devices [5]. It  
also provides important information for generating appro -
priate torque and force to assist the patients' walking in 
exoskeleton robots [6-8]. By tracking and precisely 
analyzing the walking stages, researchers and physicians 
can gain insights into movement patterns [9], identify the 
abnormalities [10], and conduct suitable interventions to 
enhance the mobility and overall walking performance 
[11].  

Various tools including the image-based optical 

motion capture systems and wearable devices equipped by 

force sensing resistor (FSR) sensors, electromyography 

(EMG) sensors, and inertial measurement units (IMU) are 

widely used for walking phase detection. Among 

these equipments, IMUs offer a more flexible and cost-

effective solutionwith an increasing demand for use as a tool 

for detecting and measuring various parameters in walking 

analysis. Several techniques have been introduced for 

detecting walking phases using an IMU.  Zhao et al. [11] 

applied the time-frequency analysis method on the accel -
eration signals measured by two IMUs placed on the ankle. 

With the help of Vicon motion capture system, they could 

develop a rule-based algorithm for detecting the Swing and 

Stance phases. In another study, Yan et al. [12] used the 

acceleration data measured by three IMUs on ankle, shin, 

and thigh in order to identify these phases by using a neural 

network trained based on the labeled data derived from phase 

segmentation percentages [13]. Binbin Su et al. [14] 

developed a convolutional neural network to detect five 

phases including the loading response, mid-stance, terminal 

stance, pre-swing, and swing. They trained the network using 

linear acceleration, angular velocity, and magnetic field data 

measured by seven IMUs, along with labels obtained from 

the insole switch. Based on data from a single IMU placed 

on the ankle Pérez-Ibarra et al. [15] proposed an adaptive 

thresholding algorithm using genetic algorithm to detect 

phases of Heel-Off (HO), Toe-Off (TO), Heel-Strike (HS), 

and Toe-Strike (TS). They used the labeled data obtained 

from videos of the individual during walking. Miguel et al. 

[16] labeled four phases (Swing, Foot Flat, HO and HS) 

using FSR insoles based on linear acceleration and angular 

velocity data from an IMU placed on foot. To detect these 

phases, they proposed two algorithms: a threshold-based 

algorithm and a hidden Markov model utilizing IMU data. 

Zakria et al. [17] introduced a sophisticated rule-based 

algorithm for identifying four distinct phases (Initial contact 

(IC), TO, Mid Stance (Mst), and Mid Swing (MSw)). This 

algorithm utilized angular velocity data from a sensor 

positioned on the shin and data acquired from floor switches. 

In the present study three IMUs and two footswitch 

insoles were used to record the human walking data. Then, a 

method was proposed to accurately estimate the key 

instances during walking and identify four gait phases, 

including: Stance, Swing, Double Support, and Single 

Support phases, for both right and left legs. Subsequently, the 

acquired data was labeled accordingly to train a neural 

network.  

This research introduces a novel approach for gait 

phase detection and classification based on data of only 

one IMU mounted on the lower back, which can facilitate 

the data collection in Robotics and Rehabilitation. 
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Data Acquisition and Test Protocol 
This study employed the FUM-WIMU sensor, an in-house 
developed 9-axis IMU at the FUM Center of Advanced 
Rehabilitation and Robotics Research (FUM CARE). 
Additionally, two rubberized insoles whiched are 
synchronized were equipped with push-button switches 
for data acquisition, and the FUM-IMU software [18] was 
utilized to activate the system and store the acquired data. 
MATLAB R2021a was also used for data processing, 
while Python programming language and Pytorch 
framework were employed to implement the neural 
network. In order to collect data, a system of 3 FUM-
WIMU sensors connected to a central computer for data 
acquisition and storage was used. One sensor was placed 
on the lower back at the L4-L5 level, as shown in Fig. 1, 
and the two others were laterally attached to the subject's 
shanks using Elastic belts (Fig.1). Additionally, two 
insoles placed in the ordinary testing shoes were connected 
to the foot-mounted IMU boards via GPIO pins of the 
ESP8266 module. This way, the data measured by IMUs 
and insoles were synchronized and sent to the central 
computer. Fig. 1 illustrates the components of the utilized 
setup. 

 

 

Figure 1. Components of the experiment setup and lower 

back IMU alignment. Numbers 1, 2 and 3 indicate the 

embedded switches 

 

Thirteen adult males and one adult female (Table 1) 
were requested to wear the setup and walk on a straight, 
smooth surface along a 7-meter path at their daily preferred 
speed. Subjects were healthy when conducting the 
experiments. During the tests, data of IMUs, consisting of 
the linear acceleration, angular velocity, and the 
orientation of the sensors and insoles were recorded at 225 
Hz. 

Table 1. Subject Characteristics 

 
Subjects 

(n) 

Age 

(year) 

Height 

(m) 

Weight 

(kg) 

Male 13 23.5 ± 0.7 1.77 ± 0.0 73.2 ± 4.5 

Female 1 21 1.66 56 

Total 14 23.4 ± 0.1 1.76 ± 0.0 67.9 ± 5.7 

 
In the preprocessing stage, a second-order Butterworth 

low-pass filter with a cutoff frequency of 6 Hz was applied 
to the linear acceleration and angular velocity data. Figure 
2 compares the filtered and raw linear acceleration and 
angular velocity data along the z-axis measured by the 
lower back-mounted sensor. To prevent any potential time 
shifts due to data loss, the received data from insoles and 
foot-mounted sensors were resampled relative to the size 
of the lower back sensor's time vector. 

 
Figure 2. Raw and filtered IMU data 

 

Phase Detection and Labeling 

Human walking consists of repetitive and periodic steps. 

The time interval between two consecutive HSs of one 

foot is considered as one step, further divided into two 

phases: Stance and Swing. The Stance phase begining 

with the heel striking the ground continues until the toe 

lifts off the ground, while the remainder, from TO to the 

next HS, is called the Swing phase. The distance between 

the first HS of one foot and the TO of the opposite foot is 

known as Double Support, while the Swing phase of the 

foot under investigation is called Single Support. 

Therefore, the HS and TO moments serve as distin -
guishing points between different motion phases (as 

shown in Fig. 3). As a result, if a method can be used to 

find the moments of occurrence of these points during 

each gait cycle, it can be used to classify and assess the 

movement phases. 
In the current work, the foot-switch insole was 

employed to detect the key cycle points of HS and TO for 
the both legs, label the acceleration and angular velocity 
data, and identify the time intervals of each step. 
Specifically, the activation time of switch No. 3 shown in 
Fig. 1 indicates the HS point, whereas the moment of 
deactivation of switch No. 1 indicates the TO point. The 
sequence of these points during a step, for example, for 
the right foot, is such that, when the heel of the right foot 
first hits the ground, a few moments later, the tips of the 
toes of the left foot are separated from the ground. After 
a few moments, the heel of the left foot is also placed on 
the ground and then it is time to separate the toes of the 
right foot from the ground. Since two foot sensor switches 
were used in this experiment simultaneously, these two 
points were identified for both feet in each step, and this 
information was utilized to determine the phases and their 
respective timing.  

In order to recognize the mentioned time points, the 
zero or one interval of the corresponding switches is not 
important, but the moments when switches number 1 
become inactive and the moments when switches number 
3 become activated are important. 

Switch insole

1

2

3

IMU

Elastic Belt

Switch insole



 

9 to 11 May, 2024 

By comparing the insoles data and the recorded 
acceleration and angular velocity, it is evident that the 
local extremums of the linear acceleration data along the 
z-axis of the lower back sensor (as shown in Fig. 1) closely 
correspond to the observed HS and TO points, in such a 
way that, within the time interval of each stride, the linear 
acceleration data has four distinct local extremums. 
Specifically, two consecutive minimums are close to the 
time points, when switches No.3 in the insoles are 
activated for the first time in each stride. These points can 
be considered as HS points. Similarly, two consecutive 
maximums are close to the points when switches No. 1 in 
the insoles are deactivated for the first time after the recent 
activation. These points can be considered as TO points 
(see Fig. 3). 

 
Figure 3. Detection of HS incidence on the acceleration data 

of the lower back sensor 

 

     The peaks of the z-axis acceleration data from the 

lower back sensor were used to identify the HS and TO 

events (see Fig. 4). We then compared them with the 

events detected by the insoles in all the tests. Table 2 

shows the time differences between the two methods. 

 
Table 2. Time differences between switches and peak detection 

Point Mean Difference(sec) ± std 
Right HS 0.0162 ± 0.0108 
Right TO 0.0185 ± 0.0144 
Left HS 0.0207 ± 0.0102 
Left TO 0.0167 ± 0.0119 

 
     In the next step, a computer script was developed in 

MATLAB R2021a based on the collected information. 

This script identifies the peaks in the acceleration data of 

the back lower sensor along the z-axis and determines their 

occurrence order followed by labeling them as HS or TO. 

     According to the explained approach, The mean time 

difference between proposed method and the insoles was 

18ms, as shown in Table 2. This is a reasonable value for 

accurately detecting the HS and TO events for both legs, 

given a normal walking speed of 1-1.6 m/s, so the 

presented algorithm performed well in detecting the 

critical points of movement. However, in the absence of 

foot-switch insoles, the proposed method automatically 

does not enable to recognize whether the detected points 

are related to the left or right foot. Therefore, upon labeling 

the IMU data by means of the aforementioned algorithm, 

a neural network has been trained to detect the phases 

using the IMU data in the absence of foot-switch insoles. 

 

Neural Network Model and Gait Detection                                                                    

Considering that the proposed labeling algorithm is solely 

based on detecting peaks in the z-axis acceleration data of 

the lower back and the data trends between these key 

points are similar for both legs, it may not suffice for 

distinguishing between the phases in the left and right 

legs. Therefore, in addition to the linear acceleration data, 

the orientations have also been used in training the neural 

network. By use of the orientation data, a more compre -
hensive and accurate representation of the gait phases can 

be achieved, which enables a better differentiation 

between the phases in the left and right legs during the 

training process.  
For training the neurual network the linear accel -

eration and oritentations data of a randomly selected 
subject were used as the evaluation set, while the 
remaining data were used as the training set. This division 
ensures that the evaluation set remains independent and 
can be used to assess the performance of the trained 
model.  

To prepare for the model training, all the data were 
normalized in range of -1 to 1. This normalization helps 
standardize the data within a consistent range, which 
improves the training process and the generalization 
capabilities of the neural network. A sliding window  
approach was applied to extract the training sequences 
from the data. The signals were divided into sequences of 
1280 samples long. These sequences overlap with each 
other on a length of 640 samples. This window size and 
overlap configuration allows for identification and 
analysis of the local patterns in the data. This technique 
makes multiple sequences of acceleration and orientation 
data, which can be utilized in the neural network training 
and the subsequent analyses. 

The architecture of the proposed model is shown in 
Fig. 5. The selected network for this research is a 
Convolutional Neural Network and Gated Recurrent Unit 
(CNN-GRU) architecture. In the first layer of this 
architecture, a CNN layer and a Group Normalization 
(GroupNorm) layer were employed to reduce the 
sequence length from 1280 to 320 samples, bearing in 
mind that the recurrent neural networks forget the 
information over long sequences. In the second layer, a 
GRU layer was employed, considering that the labeling 
approach used in this study is dependent on the previous 
signals. Additionally, GRU was chosen due to its 
suitability for datasets with limited data and ability to 
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manage long sequncees better than simple Recurrent 
Neural Network (RNN). Moreover, a bidirectional 
structure was applied to the GRU model, which enables 
the signal analysis in both forward and backward 
directions. 

In the last block of network, a set of four linear layers 
was employed, where each layer is specifically 
responsible for estimating one of the intervals of 
swing/stance and single/double support of the right and 
left feet. Then an Upsample layer was used to resize the 
predictions to the input size. 

 
Figure 4. A complete one cycle of human walking gait and its classification based on represented algorithm 

 

Finally, a loss function calculated error between all 

predictions and targets. It is noteworthy that dropout 

layers were also applied between all layers for 

regularization purposes. 

 
 

 
Figure 5. Neural network architecture 

 

     The adopted loss function for training was Cross 

Entropy. This function computes the loss values for each 

one of the linear layers. Summation of these loss values 

gives the overall model loss. For optimizing the neural 

network weights, AdamW algorithm was employed with 

weight decay set to 0.05. The model was trained for 1000 

epochs, and during the training process, the learning rate 

linearly increased from 10−5 to 10−4 in the first 50 

epochs. Subsequently, the learning rate was reduced using 

the CosineAnnealingLR algorithm for the remaining 

epochs. At the end, the model performance was evaluated 

using two metrics: the mean Intersection over Union 

(mIOU) as represented in (1) and the accuracy as defined 

in (2). That is 

 
𝑚𝐼𝑂𝑈

=  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙 𝑝ℎ𝑎𝑠𝑒

𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙 𝑝ℎ𝑎𝑠𝑒 +  𝜖
 

(1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

where TP, TN, FP and FN stand for true positive, true 

negative, false positive and false negative, respectively, 

and 𝜖 is small positive fractional value to prevent the 

denominator from becoming zero. Moreover, the mIOU 

value represents the average intersection over union 

between the true phases and the predicted phases. 

 

Results and Discussion 
In the present study, data on the walking patterns of 14 

healthy individuals were collected using a system 

consisting of 3 IMUs and insoles with footswitch. One 

IMU was mounted on a subject’s lower back while the 

two IMUs were mounted on the subject’s shanks. The 

output of the three IMUs with that of the foot switches 

were compared. It was determined that the one IMU on 

the subject’s back best correlates with the foot switches  

4x

Out channels = 16In channels = 7

Stride = 4Kernel size = 71

Bias = FalsePadding = 30

Conv 1d

Group Norm Groups = 4 Channels = 16

P = 0.5Dropout

Dims = (0, 2, 1)Permute

Hidden dim = 16In dim = 16

Batch first = True Num layers = 2

Bidirectional = TrueDropout = 0.5  

GRU

Linear In features = 32 Out features = 3

Dims = (0, 2, 1)Permute

Scale factor = 4Upsample

P = 0.5Dropout
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timing. A labeling method, referred to as “Peak  
Detection” was introduced. The proposed method identi-
fies various phases of individuals' movements for both 

legs based on the single IMU, mounted on the subject's 

lower back. According to the results in Table 2, the 

proposed method resulted in detecting 18ms on average 

for the mean difference. Considering a normal speed of 

about 1-1.6 m/s, the 18ms seems to be acceptable to 

effectively identify the key cycle points of HS and TO for 

the both legs. The slight differences between the 

measured times with switches and the values calculated 

by the peak detection method are attributed to the fixed 

size of the insole for all subjects and the distance of switch 

placement on the insole relative to its edges, leading to 

delays or advancements in the moments of foot contact 

and lift-off. 

     In the next step, the proposed data labeling method was 

utilized to train a neural network responsible for 

automatically detecting gait phase cyles. The model's 

performance  was reported to have an accuracy of about 

85% for all phases according to Table 3. Clearly, the 

model accuracy can be improved by adding additional 

training data 

 
Table 3. Accuracy and mIOU of the CNN-GRU 

 Swing/Stance 
Double / Single 

Support 

 
Accuracy 

(%) 

mIOU 

(%) 

Accuracy 

(%) 

mIOU 

(%) 

Right Leg 78.82 65.00 86.00 70.35 

Left Leg 86.68 76.60 87.47 71.86 

Mean (%) 82.75 70.80 86.74 71.10 

 

Conclusion  

This work presents a simple method for gait phase 

detection based on data from only one IMU mounted on 

the subject's lower back. It has been demonstrated that the 

linear acceleration of the lower back sensor is beneficial 

for gait phase detection. Building upon this, a novel 

method has been developed to identify moments of heel 

strike (HS) and toe-off (TO) for both legs. The proposed 

method accurately estimates the key instances during 

walking and can classify the four gait phases for each leg. 

In the next step, a neural network is trained for gait phase 

detection. The proposed method provides reliable and 

accurate approaches for gait phase detection, which can 

be particularly useful in gait analysis and rehabilitation 

applications.  
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