

SOME NOTES ON SUBGROUP TOPOLOGIES

*BEHROOZ MASHAYEKHY

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran; Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Mashhad, Iran. bmashf@um.ac.ir

ABSTRACT. In this talk, by reviewing the concept of subgroup topology on a group and its applications to fundamental groups and covering maps, we investigate more results for subgroup topologies. Among presenting some properties, we present a necessary and sufficient condition on a subgroup topology to make a topological group.

1. Introduction and Motivation

The notion of Subgroup topology was introduced by Bogley and Sieradski [2] in order to study some properties of the universal path spaces. Also, Wilkins [5] defined a covering topology on the fundamental group on a topological space X, $\pi_1(X)$, in order to study universal covers of geodesic spaces. Moreover, Abdullahi et al. [1] using the concept of subgroup topology introduced and studied some topologies on the fundamental group and used them to classify coverings, semicoverings, and generalized coverings of a topological space.

A collection Σ of subgroups of a group G is called a *neighbourhood* family if for any $H, K \in \Sigma$, there is a subgroup $S \in \Sigma$ such that $S \subseteq H \cap K$. As a result of this property, the collection of all left

²⁰¹⁰ Mathematics Subject Classification. Primary 54H11; Secondary 55Q05. Key words and phrases. Subgroup topology, Neighbourhood family of subgroups, Fundamental group, Covering map.

^{*} Speaker.

B. MASHAYEKHY

cosets of elements of Σ forms a basis for a topology on G, which is called the subgroup topology determined by Σ , and we denote it by G^{Σ} . Bogley and Sieradski [2] focused on some general properties of subgroup topologies and by introducing the intersection $S_{\Sigma} = \cap \{H \mid H \in \Sigma\}$, called the *infinitesimal subgroup* for the neighbourhood family Σ , they showed that the closure of the element $g \in G$ is the coset gS_{Σ} .

Let H be a subgroup of a group G. Then we define Σ^H as follows:

$$\Sigma^H = \{ K \leqslant G \mid H \subseteq K \}.$$

It is easy to see that Σ^H is a neighbourhood family. We consider the subgroup topology on G determined by Σ^H and denote it by G^H . Note that the infinitesimal subgroup for the neighbourhood family Σ^H is H. Some famous neighbourhood families of the fundamental group $\pi_1(X, x_0)$ are as follows (see [1]):

 Σ^{Span} : The collection of all Spanier subgroups $\pi(\mathcal{U}, x_0)$ of the fundamental group $\pi_1(X, x_0)$ (see [1]).

 Σ^{pSpan} : The collection of all path Spanier subgroups of the fundamental group $\pi_1(X, x_0)$ (see [1]).

 Σ^{gcov} : The collection of all generalized covering subgroups of $\pi_1(X, x_0)$ (see [3]).

 Σ^{wh} : It is known that the whisker topology on the fundamental group, $\pi_1^{wh}(X, x_0)$, is a subgroup topology with respect to $\Sigma^{wh} = \{i_*\pi_1(U, x_0) | \text{U is an open neighborhood of X at } x_0\}$ (see [1]).

 Σ_K : For a compact geodesic space X, Wilkins [5] by defining a neighbourhood family of subgroups of $\pi_1(X)$, Σ_K , introduced a subgroup topology on the fundamental group of X, denoted by $\pi_1^{\mathcal{C}}(X)$, which is called covering topology on $\pi_1(X)$.

In Section 2, by reviewing some known results on subgroup topology, we investigate more results for subgroup topologies. Among presenting some properties, we present a necessary and sufficient condition on a subgroup topology to make a topological group.

2. Main results

First, we review some basic properties of subgroup topologies (see Bogley and Sieradski [2]). Let the group G have the subgroup topology determined by a neighbourhood family Σ of subgroups of G. Then the following statements hold.

- (a) The infinitesimal subgroup S_{Σ} is a maximal indiscrete subspace of G.
- (b) Given $g \in G$, the connected component of g in G is the coset gS_{Σ} .

SOME NOTES ON SUBGROUP TOPOLOGIES

- (c) The group G is discrete if and only if Σ contains the trivial group.
- (d) When the group G is totally disconnected but not discrete, it is perfect in the topological sense that each element of G is an accumulation point of G.
- (e) When the group G is not totally disconnected, it consists of non-trivial indiscrete components, which are the cosets gS_{Σ} of the infinitesimal subgroup.

Also, the following statements are equivalent:

- (i) G is Hausdorff;
- (ii) G satisfies the T_0 separation property;
- (iii) The infinitesimal subgroup S_{Σ} is trivial;
- (iv) G is totally disconnected.

The following result can be obtained easily.

Theorem 2.1. Let $H \leq G$; then G^H is discrete if and only if H = 1. Also, G^H is indiscrete if and only if H = G.

Using [2, Theorem 2.9] and the above theorem, we have the following result.

Theorem 2.2. Let H be a subgroup of G; then the following statements are equivalent:

- (i) G^H is Hausdorff.
- (ii) G^H is T_0 .
- (iii) G^H is totally disconnected.
- (iv) G^H is discrete.
- (v) H is the trivial subgroup.

It is pointed out in [2] that although the group G equipped with a subgroup topology may not necessarily be a topological group, in general (it may not even be a quasitopological group), because right translation maps by a fixed element of G need not be continuous, but it has some of properties of topological groups (for more details, see [2, Theorem 2.9]). Wilkins [5, Lemma 5.4] showed that a group G with the subgroup topology determined by a neighbourhood family Σ is a topological group when all subgroups in Σ are normal. Moreover, it is proved in [1, Corollary 2.2] that a group equipped with a subgroup topology is a topological group if and only if all right translation maps are continuous. A Dedekind group is a group G such that every subgroup of G is normal. Clearly all abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. It is proved that every Hamiltonian group is a direct product of the form $Q_8 \times B \times D$, where Q_8 is the quaternion group, B is an elementary abelian 2-group, and D is a torsion abelian group with all elements

B. MASHAYEKHY

of odd order (see [4, p.190]). Using these facts, we have the following result.

Theorem 2.3. Let H be a normal subgroup of G such that the quotient group G/H is a Dedekind group. Then G^H is a topological group.

In the following theorem, we vastly extend the above result.

Theorem 2.4. Let G be a group and let Σ be a neighbourhood family on G such that $S_{\Sigma} \in \Sigma$. Then G^{Σ} is a topological group if and only if S_{Σ} is a normal subgroup of G. In particular, G^H is a topological group if and only if H is a normal subgroup of G.

In the following, we intend to compare two subgroup topologies.

Theorem 2.5. Let G be a group and let Σ and Σ' be two neighbourhood families on G such that $G^{\Sigma} = G^{\Sigma'}$. Then $S_{\Sigma} = S_{\Sigma'}$.

The following theorem shows that the converse of the above result holds under a condition.

Theorem 2.6. Let G be a group and let Σ and Σ' be two neighbourhood families on G such that $S_{\Sigma} \leq S_{\Sigma'}$ and $S_{\Sigma} \in \Sigma$. Then $G^{\Sigma'} \preccurlyeq G^{\Sigma}$. In particular, if $H \leq K \leq G$, then $G^K \preccurlyeq G^H$.

It is known that in every left (right) topological groups, any open subgroup is closed but the converse does not hold, in general. Note that by [1, Proposition 2.4] one can show that the converse holds for subgroup topology if the infinitesimal subgroup is an open subgroup. Hence every closed subgroup of G^H is also open.

In the following theorem, we consider the subgroup topology on the direct product of groups.

Theorem 2.7. Let G and G' are two groups, and let H and H' be subgroups of G and G', respectively. Then $G^H \times {G'}^{H'} \cong (G \times G')^{H \times H'}$.

References

- 1. M. Abdullahi Rashid, N. Jamali, B. Mashayekhy, S.Z. Pashaei and H. Torabi, *On subgroup topologies on fundamental groups*, Hacettepe J. Math. Stat. 49 (2020), no. 3, 935–949.
- 2. W.A. Bogley and A.J. Sieradski, *Universal path spaces*, 1998, http://people.oregonstate.edu/bogleyw/research/ups.pdf.
- 3. J. Brazas, Generalized covering space theories, Theory Appl. Categ. 30 (2015), 1132–1162.
- 4. M. Hall, The Theory of Groups, second edition, AMS Chelsea Publishing, 1999.
- J. Wilkins, The revised and uniform fundamental groups and universal covers of geodesic spaces, Topology Appl. 160 (2013), 812–835.