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Abstract: The urban heat island (UHI) effect has detrimental impacts on building cooling demand, public and ecological health, and climate
change. Because UHIs are caused by the concentration of construction materials that absorb and retain heat, buildings in urban areas present
challenges and opportunities to mitigate them. Specifically, innovative building skin solutions, such as those covered with smart materials
(SMs) that respond to environmental stimuli with their dynamic time and temperature-dependent behaviors, have significant potential to re-
duce the UHI effect. This research provides a review of the state-of-the-art applications of SMs in building skins for urban heat island mit-
igation (UHIM). It highlights the knowledge gaps and opportunities for future research with an extensive literature review and in-depth
analysis. This research classifies the application of skin-integrated smart materials (SISMs) for UHIM into five main groups that included
thermal, light, air pollution, humidity and ventilation control, and energy generation, and highlights their challenges and prospects.
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Introduction

Building envelope materials, especially in dense urban fabrics, con-
tribute to urban heat islands (UHIs) by absorbing and re-emitting
heat and solar radiation. Therefore, using proper materials could
play a noticeable role in mitigating UHIs. Specifically, building
skins that are integrated with materials, which have great potential
to adapt to changing environmental conditions, could be an innova-
tive smart solution to indicatively address UHIs. Therefore, this re-
search aims to investigate the role of smart materials (SMs) and
study their potential performance in mitigating UHIs.

UHI Effect: An Overview

Urban built environments are characterized by imbalanced microcli-
mates that are caused by high building density, the concentration of
building materials, few green surfaces, and excessive anthropogenic
heat generation. These parameters lead to a higher temperature in
urban areas (e.g., a UHI) by affecting the radiant surface heat balance,
convective heat exchange between the ground and buildings, wind
flows, and evapotranspiration processes (Kandya and Mohan 2018).
The UHI was coined by the British climatologist Gordon Manley in
the 1950s (Adamowski and Prokoph 2013; Manley 1958). However,
the study of the effects of urban structures and human activities on
temperature in urban and suburban areas dates back to the nineteenth
century when Luke Howard, the British chemist and meteorologist,
examined the climate of London (Howard 1833).
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The intensity of a UHI is measured as the difference in temper-
ature between the downtown and suburban areas and is up to 5°C—
10°C higher in the downtown areas of cities such as New York
(Gedzelman et al. 2003) and London (Bohnenstengel et al.
2011). The current trends in global warming and the anticipated in-
crease in global temperature above 1.5°C and 2°C are going to af-
fect the extreme heat events in cities and exacerbate UHIs (Hoegh
et al. 2018). For example, Lee et al. (2021) examined the uncer-
tainty of nonstationary heat wave extremes in Korea and concluded
that the intensity of the extreme heatwave events would probably
increase in the range of 1.23°C—1.69°C in 2050. In addition, the
combined effects of UHIs and extreme heatwave events negatively
impact public health and increase heat-related hospitalization and
mortality risks, particularly in the elderly and those with existing
health conditions (Heaviside et al. 2017). In addition, reports of a
reduction in cold-related mortality risks due to UHIs in winter sea-
sons exist (Vardoulakis et al. 2014). de Moraes et al. (2022)
showed that the risk of mortality among adults above 65 years
was high during the extreme air temperature from 2006 to 2015
in Sao Paulo, Brazil. Another study demonstrated that Madrid’s,
Spain urban population, compared with rural populations, was
more susceptible to heatwave mortality during 2000-2020 (Lopez-
Bueno et al. 2021). Abadie and Polanco-Martinez (2022) evaluated
the probability distributions of mortality between 2025 and 2100.
They showed that an attributable mortality of 1,614 people is ex-
pected under representative concentration pathways (RCP 8.5)
for 2100 in Madrid, where temperatures in excess of 3.6°C over
the 38°C threshold are anticipated.

An UHI could cause thermal discomfort inside and outside
buildings and affect the well-being of urban residents (Kandya
and Mohan 2018) in different climates (Leal Filho et al. 2018; Maz-
zeo et al. 2023; da Silva Espinoza et al. 2023). In Manaus, Brazil,
for example, a 6°C heat index difference between urban and rural
areas and a nighttime UHI of 4°C is reported to have caused signif-
icant outdoor thermal discomfort (da Silva Espinoza et al. 2023). In
addition, the UHI intensity in Beijing, Shanghai, and Guangzhou,
China is reported to have increased by 0.9°C, 0.3°C, and 0.8°C, re-
spectively (Jiang et al. 2019).
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In addition, a UHI has bilateral relationships with energy con-
sumption and climate change; where the increased temperature in
urban areas leads to greater cooling energy demand in the building
sector and a feedback loop is created when higher energy consump-
tion and the corresponding carbon dioxide (CO,) emissions lead to
anthropogenic climate change and aggravated UHIs (Kamal et al.
2023; Wang et al. 2022). Specifically, the literature reports a
20%—-100% growth in cooling energy consumption due to UHIs
(Kandya and Mohan 2018; Santamouris et al. 2001). Other envi-
ronmental impacts that are associated with UHIs include a contri-
bution to ozone layer depletion (Bartholy and Pongricz 2018),
deterioration in the living environment (Sadik-Zada and Gatto
2022), increase in ground level smog (Fallmann et al. 2016), and
the concentration of air pollutants (Santamouris and Osmond
2020).

To mitigate UHIs and their adverse impacts on the environment
and public health, multidisciplinary collaboration is required
among architects, engineers, urban planners, health professionals,
and other stakeholders at local, regional, and national levels. Archi-
tects, planners, and engineers affect UHI parameters with their pro-
fessional decisions and, therefore, play important roles in urban
heat island mitigation (UHIM). Some decisions include materials
that are selected for building skins, the building height-to-width
ratio, sky view factor (Zhang and Yuan 2023), or wall and roof
areas, which all affect the absorbed and reflected solar radiation
(Dirksen et al. 2019). Building skins and their materials are espe-
cially important for UHIM, because roof surfaces make up approx-
imately 20%—25% of urban surfaces (Akbari and Matthews 2012),
and facades cover approximately double the building footprints
(Kdhler 2008).

SMs: An Overview

The SMs (Bahl et al. 2020) are materials with the ability to change
shape and properties in response to environmental, mechanical,
chemical, electrical, or other stimuli (Bandyopadhyay and Sinha
Ray 2012). A SM is a sensor and actuator (Sobczyk et al. 2022).
Therefore, they could sense (i.e., receive a stimulus and respond
with a signal) and actuate (i.e., produce a certain action in response)
simultaneously (Newnham 1997). Cao et al. (1999) suggest that
SMs have sensing, actuating, and control functions; for instance,
they possess “an optimized control algorithm that could guide the
actuators to perform required functions after sensing changes.”
The terms smart and intelligent are sometimes used interchange-
ably in the literature to refer to SMs. However, Liu et al. (2020)
suggest that SMs are different from intelligent materials because
the ability of SMs to sense and respond does not extend to self-
optimizing. In addition, Newnham (1993) distinguished intelligent
materials in that they integrated sensing and actuating with infor-
mation processing, feedback circuitry, and power supply.
Addington and Schodek (2004) suggest that five characteristics
distinguish SMs from conventional non-SM materials: (1) immedi-
acy (i.e., real time responsiveness); (2) selectivity (i.e., discrete and
predictable responsiveness); (3) transiency (i.e., responsiveness to
more than one environmental condition); (4) self-actuation (i.e., in-
ternal intelligence); and (5) directness (i.e., local responsiveness).
The SMs are different in their level of intelligence, based on re-
sponsiveness and agility in response and recovery (Laws and
Parachuru 2021) and could be classified based on their response
to external stimuli. Some SMs change properties (e.g., chemical,
optical, mechanical, electrical, or thermal), and others could ex-
change energy, discretely change in size and location, or change
directions (Addington and Schodek 2004). Newnham (1997) clas-
sified SMs into three categories that include passive, active, and
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very smart materials. Passive SMs, such as fiber optics, function
as sensors, not actuators. Active SMs, such as shape memory alloys
(SMAs), magnetostrictive, piezoelectric, and electrorheological flu-
ids, function as sensors and actuators as they modify geometry or
properties in response to external stimuli and could inherently trans-
duce energy. Ritter (2013) grouped SMs into property-changing,
energy-generating or exchanging, and matter-exchanging classes.
In addition, Lépez et al. (2015) classified building SMs as light, tem-
perature, humidity, and CO,-reactive materials.

The SMs are proposed for a wide range of applications in the
building sector. For example, phase change materials (PCMs) ex-
perience phase changes (e.g., solid to liquid or liquid to solid)
when exposed to heat and could be used in the building skin to fluc-
tuate temperature variations. The SMA deforms when exposed to
heating or cooling and stress and could be used in reinforced con-
crete to sense and heal cracks. Thermoresponsive hydrogels could
be used in the building skin for cooling (Rotzetter et al. 2012). Con-
sidering the fluctuations in the buildings’ surrounding environ-
ments, SMs could be integrated into building skins to adaptively
respond to the changing thermal and lighting conditions, enhance
indoor environmental regulation, increase building energy effi-
ciency, and reduce UHI effects. Previous studies on skin-integrated
smart materials (SISMs) focused on common cool materials, and
limited literature exists on the direct or indirect effects of building
SMs on urban overheating. Previous studies have investigated the
role of SMs in regulating air temperature and solar absorption, such
as the use of smart cool mortar (Rosso et al. 2017), photochromic
coating based on a sol-gel mesoporous coating matrix (Wu et al.
2017) and quantum dots (QDs) for building passive cooling
(Garshasbi et al. 2020). Some noticeable examples of SM applica-
tions in building skins include the integration of microalgae photo-
bioreactors (PBR) in the building facade of the BIQ House (Wurm
2013) or the application of different smart glasses in buildings
(Al-Qahtani et al. 2022; Gao et al. 2023).

The main goal of this research is to review the UHIM perfor-
mance of SMs that are integrated into building skins by exploring
their performance in adapting to changing ambient conditions and
urban overheating. In addition, this research will investigate the
underexplored aspects of the UHIM performance of SMs and their
potential to integrate with building envelopes to alleviate UHIs.

Following the “Introduction” section that provides a survey of
UHIs and SMs, this research proceeds to the “Methods” section,
where the key research objectives and the methodology of the re-
search are presented. The main body of this research then presents
a survey of the UHI parameters and smart building skins and clas-
sifies SMs based on their effect on UHIM. This research concludes
with a “Discussion and Conclusion” section that presents the
knowledge gaps for future research.

Methods

The key objectives of this research were to identify the main build-
ing skin design parameters that directly and indirectly affect UHISs,
present various SMs for UHIM applications with a focus on under-
explored SMs, and review the challenges when incorporating SMs
into building skins for UHIM. Specifically, the combinations of
main keywords in the study of UHIs, building envelopes, and
SMs were used during the search for relevant publications in Sci-
enceDirect, Scopus, Web of Science, Springer, and Google
Scholar. Multiple keywords that include urban heat island, building
envelope, and building facade were used to identify climatic, build-
ing, and urban-related parameters that affect UHIs. To identify the
SM literature for UHIM, the keywords used in the search included
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smart material, intelligent material, and adaptive material. In addi-
tion, “AND” and “OR” queries were used to yield a comprehensive
search. Finally, the challenges and limitations of incorporating SMs
and their opportunities when integrated with the building skins to
realize UHIM were presented, and the knowledge gaps for future
research were identified. Fig. 1 shows the methodological frame-
work of the review.

UHI Parameters

An UHI could affect the surface and air temperatures (Fig. 2). A sur-
face urban heat island (SUHI) is characterized by temperature differ-
ences between the surfaces in the urban environment, which is
commonly examined by the satellite land surface temperature data
(Zhou et al. 2019). In addition, air temperature could be studied at
the urban canopy (UCL) and urban boundary layers (UBL). The
UCL is measured from ground level up to approximately the

Knowledge field

mean building height (WMO 2023), and the UBL refers to the air
layer that extends just above the UCL (Tabatabaei and Fayaz 2023).

Parameters that affect UHIs could be categorized into two groups:
(1) uncontrollable; and (2) controllable (Kotharkar et al. 2019)
(Table 1). Uncontrollable parameters are natural climatic and envi-
ronmental parameters that cannot be regulated at a macro scale,
and controllable parameters include built environment and anthropo-
genic parameters that could be changed by human interventions in
the built environments at building and urban scales (Rizwan et al.
2008). In addition, these parameters could be categorized based on
their direct or indirect effects on UHIs (Rizwan et al. 2008). Direct
effects refer to direct changes in the temperature of the ambient envi-
ronment, and indirect effects indirectly change air temperature
through changes in energy consumption and greenhouse gas
(GHG) emissions. As given in Table 1, incident solar radiation, for
example, is an uncontrollable parameter with a direct UHI effect.
Solar radiation is a parameter that is naturally uncontrollable at the
macroscale; its effects could be controlled using design interventions
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such as material albedo. Solar radiation and anthropogenic heat that is
released from sources such as vehicles, power plants, and air condi-
tioners could be the main sources of heat in an area (Rizwan et al.
2008). To examine the contribution of anthropogenic heat to UHISs,
the following formula can be used (Dudorova and Belan 2022):

Orl

ATygy =—""——
UHl CpphUHI 14

Table 1. Key parameters that contribute to UHIs

where Q= anthropogenic heat (W/m?); /=linear city dimension
based on wind direction (m); Ay = UHI height; V'=wind speed
(m/s); C,=specific heat capacity (J/kg°C); and p=air density
(kg/m>).

Design parameters, such as surface albedo, sky view factor, and

total height-to-floor area ratio (building massing), are critical con-
trollable factors that directly affect UHIs and energy efficiency
1 (Giridharan et al. 2004). Albedo (i.e., the ratio of diffuse reflection
of solar radiation to total solar radiation) is very low in cities due to

UHI effect Controllability
Category Parameters Direct Indirect Controllable Uncontrollable References
Climatic and environmental Anticyclone conditions X X — X Akbari et al. (2015)
parameters Incident seasonal solar radiation X — — X Akbari et al. (2015)
Diurnal conditions X — — X Rizwan et al. (2008)
Wind speed X — — X Akbari et al. (2015)
Cloud cover or sky condition X — — X Akbari et al. (2015)
Geographical location X X — X Wang et al. (2021)
Built environment and — — — — — —
anthropogenic parameters
Urban scale Skyview factor X — X — Bernard et al. (2018) and Rizwan
et al. (2008)
Surface materials (e.g., green, X X X — Rizwan et al. (2008)
water, and construction)
Urban size, form, and density X X X — Santamouris (2015) and Wang
et al. (2021)
Population X X X — Santamouris (2015)
Anthropogenic heat (e.g., X — X — Han et al. (2020)
vehicles)
GHG emissions — X X — Wang et al. (2021)
Building scale Location — X X — Mert and Saygin (2016)
Orientation — X X — Mert and Saygin (2016)
Form (e.g., floor area and height) — X X — Mert and Saygin (2016)
Using natural ventilation — X X — Mert and Saygin (2016)
Using solar radiation X X X — Mert and Saygin (2016)
Skin material characteristics X X X — Lassandro and Di Turi (2017) and
Mert and Saygin (2016)
HVAC systems — X X — Alsharif et al. (2021)
User behavior — X X — Alsharif et al. (2021)
Anthropogenic heat X — X — Santamouris (2015)
Note: x = Yes; HVAC = heating, ventilation, and air conditioning.
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building surface materials and street canyon configurations (Feng
et al. 2022). It could be regarded as a main parameter that directly
affects UHIs (Li et al. 2021). Some other controllable parameters
with direct effects on urban overheating include the high roughness
of manufactured structures and limited green space in urban areas,
which are caused by land use patterns and lead to reduced con-
vective heat removal (Rizwan et al. 2008). In addition, UHIs are
strongly affected by environmental parameters such as wind
speed, cloud coverage, cyclonic or anticyclonic conditions, and
local meteorological features (Akbari et al. 2015; Santamouris
2013). Strong winds provide higher cooling rates that lead to
UHIM in urban and rural areas, especially during nighttime
(Rajagopalan et al. 2014). The heat islands prevent the sea breezes
from moving inland (Sakaida et al. 2011), and clouds could reduce
the surface UHI (Liao et al. 2022).

Building Skin Materials and UHIs

The extant literature has extensively studied the relationships be-
tween the building design, which includes skin materials and cli-
mate change, and UHIs (Steenbergen et al. 2012; Zuo et al.
2015). A study in Beijing, China has shown that the anthropogenic
heat flux in urban environments, a main contributor to UHIs, is pri-
marily caused by the contributions from buildings (45%), traffic
(30%), industrial activities (20%), and human metabolism (5%)
(Sun et al. 2018). With urbanization leading to urban population
growth and increased industrial activities, greater demand for
building construction and higher use of mechanical air conditioning
systems are expected. This increases the urban cooling energy con-
sumption of the building sector (Sun et al. 2018), generates waste
heat as a byproduct of the air conditioning systems, and causes
UHIs. The building skin and its materials directly affect cooling en-
ergy consumption and, in turn, associated waste heat generation by
regulating conductive, convective, and radiant heat flow through
the skin. The solar radiation that falls on buildings is reflected
and absorbed differently and depends on the material properties
that are used in building skin surfaces. Two important material
properties include albedo and thermal emittance. Albedo is the frac-
tion of incident solar radiation that is reflected off the surface of a
material and ranges between zero and one. Thermal emittance is the
ability of a material to re-emit the absorbed heat.

Therefore, building skin surface materials could be selected via
their albedo and thermal emittance to reduce UHIs directly through
the reflection of solar radiation and maintain low temperatures
at the building surfaces and ambient air. Applying high albedo
light-colored materials with high solar reflectance (SR) is a tradi-
tional solution for regulating building and urban thermal balance
(Santamouris and Yun 2020). Reflective materials with high SR
and infrared emittance are considered cool materials, because
they experience lower temperatures than conventional materials
under the same outside conditions and offer UHIM potential
(Hernandez-Pérez et al. 2014). Cool materials could be grouped
into four categories: (1) white or light-colored coatings; (2) cool-
colored materials with high near-infrared (NIR) reflectance; (3)
white or colored cool coatings that incorporate nanomaterials
with high sensible or latent heat storage capacity; and (4) cool ma-
terials with dynamic optical characteristics and capability to change
reflectivity based on incident solar radiation and ambient tempera-
ture (Santamouris et al. 2011). The literature reports a 5°C—14°C
temperature difference between the surfaces of cool materials and
conventional materials in summertime (Levinson et al. 2007; San-
tamouris et al. 2011). Revel et al. (2014a) developed a new cool
material for building skins, which consists of ceramic tiles, acrylic
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paints, and bitumen roof membranes. They improved the NIR re-
flectance of black ceramic tiles by applying an NIR transparent
layer onto a highly reflecting base coat. Their research showed
that the proposed improved material enhanced the thermal perfor-
mance of the building and led to greater indoor thermal comfort
(Revel et al. 2014b). Uemoto et al. (2010) studied the thermal per-
formance of cool-colored acrylic paints with infrared reflective pig-
ments and compared it with common acrylic paints of similar colors.
This experiment demonstrated a lower surface temperature and de-
creased radiation heat flow because of higher NIR reflectance and
lower absorbed solar radiation. Santamouris et al. (2018) studied
the advantages of UHIM strategies, such as global albedo materials
(0.1-0.6) in cities, and showed a decrease in the ambient tempera-
ture by 0.3°C and 3°C in Sydney. Synnefa et al. (2007) showed
that cool-colored coatings with NIR reflective color pigments
have greater potential to reflect solar radiation compared with
those of the color-matched, conventionally pigmented coatings. Al-
though reflective materials provide great UHIM advantages, they
are associated with limitations such as aging problems when ex-
posed to sunlight, glare, and increased discomfort in urban spaces
(Santamouris et al. 2017). In addition to directly reducing UHIs,
as discussed previously, building skin materials could indirectly af-
fect urban overheating through their effects on building energy con-
sumption (Mangkuto et al. 2016). Other factors that affect building
energy consumption include location and climate (Santamouris
et al. 2001), orientation, form (Mangkuto et al. 2016), energy sys-
tems (Alsharif et al. 2021), occupant behavior (Delzendeh et al.
2017), and socioeconomic characteristics. The increase in fossil
fuel energy consumption increases the concentration of GHG emis-
sions in the atmosphere. It leads to global warming by trapping heat
within the lower atmosphere (Yoro and Daramola 2020), which
worsens the UHI effects (Maxwell et al. 2018). Facade cladding ma-
terials with the ability to capture CO, emissions, such as green walls
(Pérez et al. 2018) or bioreactive facades (Talaei et al. 2020), could
reduce GHG emission concentration and, therefore, reduce urban
overheating directly and indirectly. Stache et al. (2022) reported
that typical urban materials convert more than 92% of the absorbed
radiative energy into convectional heat, and urban green surfaces
convert 27%— 50% of it into latent heat. By applying external insu-
lation, PCMs, green walls, and cool materials as retrofitting and
UHIM solutions, Lassandro and Di Turi (2017) concluded that
green walls surpass other systems by improving building perfor-
mance and mitigating UHI, simultaneously.

Smart Building Skin for UHIM

In their capacity as the mediator between inner space and the sur-
rounding environment, building skins are constantly exposed to
varying conditions of the external environment, and SMs could
be applied to sense, respond, and adapt to these conditions. Exam-
ples of these skins include climate-adaptive building shells
(Loonen et al. 2013), adaptive facades (Tabadkani et al. 2021), bio-
inspired interactive kinetic facades (Hosseini et al. 2021), smart
building skins (Kim and Kim 2017), and user-responsive microal-
gae facades (Talaei et al. 2022). Smart building skins could regulate
solar absorption and temperature fluctuations and reduce building
energy use and UHI effects.

The application of SMs in mitigating UHIs has been explored in
previous literature. Santamouris and Yun (2020) studied the poten-
tials of cool and super cool SMs (e.g., natural, light color, infrared
reflective, PCM-doped, thermochromic, fluorescent, photonic, and
plasmonic materials) for UHIM. Feng et al. (2022) reviewed the
state-of-the-art techniques to raise high albedo in cities, which
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included advanced SMs (e.g., cool materials, thermochromic coat-
ings, PCMs, and fluorescent materials). Casini (2016a) investigated
the effects of reflective coatings on building energy efficiency and
UHIM and reviewed the advanced adaptive building skins. In addi-
tion, he categorized adaptive skin facades into two main categories,
which included temperature, light, and humidity-reactive systems
(or evaporative facade systems). The SMs have been well studied
by previous research that was based on their performance type or
the stimulus; a limited number of studies have considered the per-
formance of smart building skins in mitigating this. In this research,
the performance of smart building skins in UHIM was reviewed
under five classes: (1) thermal-control SMs; (2) light-control
SMs; (3) pollution-control SMs; (4) humidity or ventilation-control
SMs; and (5) energy-transducing or producing SMs (Fig. 3).

Thermal-Control SMs

A thermal-control SM for UHIM applications is a material that acts
as an actuator and sensor and interactively decreases the UHI di-
rectly by reducing the air temperature and indirectly by regulating
the heat transfer to the inner space and reducing the cooling load of
the building. The PCMs are examples of thermal-control SMs that
have drawn attention, because of their capability to store and re-
lease heat as latent heat through a reversible process.

From four groups of PCM materials that include solid—solid,
solid-liquid, gas—solid, and gas—liquid, solid-liquid PCMs (e.g.,
organic, inorganic, and eutectic) are commonly applied in buildings
due to their compatibility with building materials (Aridi and Yehya
2022). Various studies (Yang et al. 2019; Zhang and Yang 2019)
(Table 2) confirmed that the symbiosis between PCM-integrated
building coatings and urban surfaces could lead to building energy
efficiency, thermal comfort, and UHIM (Karlessi et al. 2011). For
example, the PCM cool roof systems could contribute to UHIM di-
rectly by decreasing the ambient temperature and indirectly by pro-
viding energy efficiency in the building (Yang et al. 2019).
Although PCMs provide cooling benefits when integrated with
buildings, their efficiency depends on the climate and PCM type
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(Aridi and Yehya 2022). Future research is required to study the
PCM-integrated facades in buildings with dominant cooling loads.

The SMA is another type of thermal-control SMs that reacts to
thermal conditions by changing shape when exposed to relatively
low temperatures and recovering when heated (Formentini and
Lenci 2018). By elastocaloric cooling, these materials contribute
to energy saving (Chen et al. 2021) and directly affect UHIs. In ad-
dition, they have great potential to act as actuators or sensors and
regulate daylight transmittance (Yi and Kim 2021), temperature,
natural air circulation (Formentini and Lenci 2018), solar heat
gain, and shading (Koukelli et al. 2022) and, therefore, lead to
building energy efficiency and UHIM when integrated with build-
ing facades. In addition, SMAs could be used as actuators in self-
shaping adaptive facade systems to control indoor daylight and
thermal conditions. The main challenges in building applications
of SMA materials include limitations in shape remembering, the
high cost of materials, and anticipating the behavior modeling
(Yiand Kim 2021). In general, SMA-integrated building skins, es-
pecially as the actuator, are in their infancy and require further in-
vestigation. Table 2 lists a selected number of previous
experimental and theoretical research on thermal-control SMs for
UHIM.

Light-Control SMs

Light-control SMs are SMs that control the UHI indirectly by pro-
viding shading for interior spaces, reducing energy consumption,
directly reflecting solar radiation, and decreasing heat gain.
Chromogenic materials that have gained popularity as light-
control SMs in smart windows (SW) include electrochromic-like
polymer-dispersed liquid crystals (Dahman 2017), liquid crystal
dispersion SWs (Castellon and Levy 2018), and photochromic,
thermochromic, and gasochromic materials (Shchegolkov et al.
2021). Thermochromic materials are smart optical materials that
regulate solar radiation by reversibly changing colors in response
to different thermal conditions (Feng et al. 2022). They are suitable
for locations with fluctuating temperatures (Pérez et al. 2021).
Therefore, these materials have high SR in summertime and high
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Fig. 3 Contribution mechanism of SMs to UHIM.
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solar absorptance in wintertime, which leads to low energy con-
sumption in buildings. Thermochromic materials are classified
into two main groups: (1) dye-based thermochromic materials,
which act based on the interplay between components; and (2)
nondyed thermochromics that act based on molecular rearrange-
ments or nanoscale optical effects (Garshasbi and Santamouris
2019; Manni et al. 2022). Garshasbi and Santamouris (2019) stud-
ied various advanced thermochromic SMs, which included QDs,
plasmonics, photonic crystals, conjugated polymers, Schiff bases,
liquid crystals, and nano-optical filters for leuco dyes. They showed
that leuco dyes were applied in the built environments with the po-
tential to reduce thermal loads with high SR in warm temperatures
and low SR in cold temperatures.

Plasmons, another light-control SM, are promising materials for
integration with building skins due to their daytime radiative cool-
ing potential, which makes them favorable for dry climate zones
(Santamouris and Yun 2020). These materials are collective oscil-
lations of the electrons that exist at the bulk/surface of conducting
materials and in juxtaposition with conducting particles (Mochan
2016). These materials could be used in asymmetric electromag-
netic windows, which reflect solar irradiation and emit thermal ra-
diation at the same time (Wong et al. 2018). An example of this
technology is plasmochromic SWs, which have demonstrated im-
proved energy efficiency and thermal and visual comfort in build-
ings (Cots et al. 2021). Thermochromic SMs perform better on the
northern facade of a building compared with a conventional facade
coating (Pérez et al. 2021). In addition, researchers have studied the
performance of thermochromic materials, such as PCM-integrated
thermochromic glazing systems (Jin et al. 2022), thermochromic
glazing or windows (Teixeira et al. 2022), and thermochromic mor-
tar (Pérez et al. 2021), paints (Soudian et al. 2020), and coatings
(Zhang and Zhai 2019).

Photoluminescent components are one type of light-control
SMs that remarkably reduce the conversion of light to heat by con-
verting light to photons instead (Chiatti et al. 2022a). Photolumi-
nescent materials could be fluorescent or phosphorescent
(Sobczyk et al. 2022). A fluorescent coating provides cooling by
re-emitting the absorbed light with a longer wavelength (Feng
et al. 2022), and a phosphorescent coating stores the received
light and re-emits it after the light source stops omitting light (Al-
Qahtani et al. 2022). Fluorescents are categorized into two main
groups: (1) bulk fluorescents, such as rubies, which have fixed fluo-
rescent properties; and (2) nanofluorescent materials, such as QDs,
which present versatile properties. An advanced algorithm was de-
veloped to improve the optical properties of QDs and showed tem-
perature reduction with a photoluminescence peak at 1,100 nm
from 5.8°C to 15.1°C (Garshasbi et al. 2019). Therefore, QDs
could play a key role in UHIM. Of note, the photoluminescence
characteristics of QDs diminish as the temperature increases,
which prevents them from being fully effective for heat mitigation.
However, the photoluminescence feature is enhanced when inte-
grated with specific polymers that could make them favorable for
heat reduction (Goswami et al. 2012; Santamouris and Yun
2020). Previous studies that focused on the integration of QDs
into building skins mainly focused on incorporating them into
solar cells to enhance energy production and building glazing for
improved daylight and visual comfort regulation (AbouElhamd
et al. 2019; Rastkar Mirzaei et al. 2023), which could have an indi-
rect role on UHIM.

Gasochromic windows could change their transmittance by em-
ploying a tungsten oxide (WO3) layer that is covered by a thin layer
of platinum (Hemati et al. 2013). This window changes to blue
when exposed to an argon and hydrogen mixture. This process re-
verses to create a transparent window state when exposed to argon
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and oxygen (O,) (Feng et al. 2016). Gasochromic SW with WO;
received wider attention at the start of the twenty-first century,
compared with electrochromic windows, due to the low-cost
layer configuration, simplicity, and higher solar transmittance
(Feng et al. 2016). However, this attention has largely faded. The
energy efficiency of building-integrated gasochromic windows
was highlighted by Feng et al. (2016). However, it was suggested
that due to the difficulty of gas provision and high life service costs,
it was sufficient to change status based on extreme weather
conditions.

Electrochromic light-control SMs materials could be applied to
building glazing to control light transmittance by changing the op-
tical properties by voltage variation. Transparent-reflective switch-
able (TRS) glass is an SW that could effectively contribute to the
regulation of light transmittance and building thermal loads
(Tong et al. 2021). The performance of different TRS, which in-
clude metal hydride-based (Maiorov 2020), reversible electrodepo-
sition mirrors (Han et al. 2020), cholesteric liquid crystal-based
(Zhang et al. 2019), and micro shutters (Mori et al. 2016), have
been investigated in previous studies. In addition, electrochromic
windows have been shown to surpass thermochromic and photo-
chromic windows with lower power consumption, more thermal
comfort provision, and controllability potential (Rauh et al.
2001). Various studies have demonstrated the energy-saving poten-
tial of electrochromic windows (Bui et al. 2021; Ganji Kheybari
et al. 2022; Isaia et al. 2021) and other switchable glazing systems
(Table 3). However, these systems must be selected based on the
climatic conditions and control strategies to achieve maximum en-
ergy efficiency. Therefore, future research is required to demon-
strate the efficiency of different window systems in various
climate zones.

Bio-SMs with light-controlling applications, such as microal-
gae, have not been extensively studied for UHIM. The UHIM ad-
vantages of microalgae PBRs as smart facades glazing or systems
potentially occur with energy savings that are achieved by adap-
tively controlling daylight with variations in culture densities in re-
sponse to the environmental conditions, which include light and
temperature and producing biomass for biofuel production (Kerner
etal. 2019). In addition, these windows could absorb CO,, produce
O, via photosynthesis, and contribute to reducing GHG emissions
(Ozbey 2019), which could potentially contribute to UHIM. How-
ever, further research is required to document the UHI and climate
change mitigation potentials of microalgaec PBR windows.

Air Pollution-Control SMs

Air pollution-control SMs contribute to UHIM by decreasing air
pollution and removing GHG emissions, especially CO, (Table 4).
Aside from plants that are integrated with facades as vertical gar-
dens, CO,-responsive polymers and CO,-capturing materials ac-
tively contribute to decreasing GHG emissions (Lin and Theato
2013). The CO,-responsive polymer surpasses other polymers
that respond to common stimuli (e.g., light and temperature) by di-
rectly absorbing CO, from the air (Lin and Theato 2013). One ar-
chitectural application of these polymers is in the Open Columns
Project (Khan 2010), in which nonstructural composite urethane
elastomers respond to the CO, content of the air. These materials
have been applied in architectural systems, which integrate them
with building facades; however, their possible performance has
not been explored extensively and demands further investigations
(Juaristi et al. 2018).

As another example of CO,-absorbing systems in buildings,
Azari and Asadi (2019) [R. Azari, and M. Asadi, “Artificial leaf-
based facade cladding system for energy production and carbon

© ASCE
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sequestration” US Patent No. W02020005483A1 (2019)] invented
artificial leaf-based facade cladding, which absorbs CO, and pro-
duces energy by the integration of photovoltaic (PV) and electro-
chemical cells. Another example is SolarLeaf (Wurm 2013), the
first bioreactive facade used in the BIQ House, Germany, where
CO, absorption occurs via natural photosynthesis. In this project,
a microalgae PBR was integrated with the building facade and con-
tributed to CO, absorption and energy production by producing bi-
omass and biogas, as well as applying a heat exchanger to exploit
the heat that was produced by the PBR and transferring it into the
building. Although living walls significantly contribute to mitigat-
ing GHG emissions, air pollution, and UHIs (Susca et al. 2022),
common plants in these systems cannot be regarded as SMs, be-
cause their reaction to environmental conditions is not as fast as mi-
croalgae. In addition, the growth of this system is not easily
reversible; however, the PBR medium density could be controlled
by the dilution of the medium or by controlling the necessary fac-
tors that are used for microalgae growth. Titanium dioxide (TiO,) is
another material in this group that has been studied for its ability to
increase the SR of surfaces and mitigate GHG emissions with pho-
tocatalyst processes (Khannyra et al. 2022). In addition, TiO, that is
applied with a thermochromic coating has enhanced the surface al-
bedo for UHIM (Karlessi et al. 2009). Saeli et al. (2017) introduced
an innovative mortar-based nanocomposite with TiO, for use in
buildings to mitigate urban pollution. Their proposed mortar re-
duces air pollution by photocatalytic antipollution activity and
omitting NOx and volatile organic compounds, which helps create
a long-lasting building facade. The synthesis of TiO,/silicon diox-
ide (SiO,) photocatalysts to create a durable self-cleaning material
that is applied to concrete surfaces is suitable for outdoor condi-
tions (Khannyra et al. 2022). In addition, the performance of
TiO; in the self-cleaning properties of concern and its effect on de-
creasing ambient air pollution, especially via photocatalysis, was
confirmed (Elia 2018).

Humidity or Ventilation-Control SMs

This group of SMs could control air humidity and provide cooling
by latent heat storage (Table 5). Hydrogel that is incorporated in
building facades, such as hydroceramic and TiO, coatings, are low-
tech SMs that contribute to building cooling load reduction by re-
sponding to humidity and act as cooling cladding. They highly ab-
sorb and store water, which leads to their increased size (Andrade
Santos et al. 2020). Because hydrogels have the potential to absorb
water 500 times greater than their weight, in experimental tests,
they provide significant evaporative cooling potential for the build-
ing skin by a 6°C temperature reduction and a 15.5% humidity in-
crease after a short time (20 min) (JAAC n.d. a). In addition,
researchers (Cui et al. 2016) have introduced sweating building
skins by applying double-network hydrogel (DN—Gel) that is incor-
porated into building roofs to reduce cooling loads. Previously,
TiO, was discussed as an air pollution-control SM and the most ef-
ficient commercialized photocatalyst material that reacts to solar ra-
diation (ultraviolet radiation) and provides self-cleaning properties
(Fernandez-Mira et al. 2021). In addition, TiO, provides evapora-
tive cooling by creating a hydrophilic water layer through the fa-
cade and enhancing the wettability of the TiO, surface. Although
various studies have explored the cooling effect of TiO, surfaces
that use sun reflection for UHIM (Fernandez-Mira et al. 2021;
Zhang et al. 2022), the research on evaporative cooling and
UHIM performances of a TiO,-integrated building facade is very
limited. When water was sprinkled continuously on a building fa-
cade that was integrated with TiO, in summer and with a clear sky,
the temperature decreased by 15°C and 40°C-50°C on window
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Table 3. Selected research on light-control SMs

Research method Directly
Name of SM or Location on considered
project building Key findings Experimental Simulation Numerical Mathematical UHI References
Thermochromic Roof Reduces cooling load by 6.59% per m? of roof compared with 7.84% reduction in X — X — X Fabiani et al. (2019)
conventional cool roof
Facade coating Developed thermochromic mortar is promising in building energy efficiency X — — — X Pérez et al. (2021)
Glazing Annual energy use intensity was decreased by 6.3 kW-h/m? in Toronto and 12 kW-h/m? in — X — — X Khaled et al. (2022)
Abu Dhabi
Facade or roof Decreases the peak temperature of the roof and facade by approximately 25°C and 15°C X X — — X Berardi et al. (2020)
paint —20°C, respectively
Envelope Less energy consumption in heating-dominated scenarios and the thermochromic coating — X — — X Butt et al. (2021)
coating with low switching temperature leads to more energy efficiency in cooling-dominated
scenarios
Envelope Integrating vanadium oxide with double-skin facade controls transmission rate of solar — X — — X Iken et al. (2019)
coating radiation, absorbs heat during winter, and prevents overheating in summer
Glazing Reduced energy use by 3%—-10% and enhanced daylight introduction by 5%—20%, X X — — X Giovannini et al.
compared with static average glazing (2019)
Electrochromic Window Less energy use by 9.3%-23.5% for Melbourne and 14.6%—19.6% for Texas X — — — — Bui et al. (2021)
Glazing Electrochromic glazing surpasses slightly better than solar-coating glazing X — — — X Ganji Kheybari
et al. (2022)
Window Electrochromic windows and polymer-dispersed liquid crystal switchable glazing surpass — X — — X Chidubem Iluyemi
single-glazed windows for energy saving by 23.56% and 22.35%, respectively et al. (2022)
Photochromic Glazing Spirooxazine-based photochromic films result in reduced cooling energy demand compared X X X — X Cannavale et al.
with clear glass and reduced artificial lighting compared with commercial solar control (2022)
glazing
Gasochromic Window Transmittance of gasochromic double-glazed units, which include solar and visual X — — — X Wittwer et al. (2004)
transmittance, was 76% and 77% in the bleached condition, and 5% and 6% in the colored
condition, respectively
Window Annual average shading coefficient of the sol-gel method-based gasochromic windows was X — — X — Gao et al. (2023)
0.64
Window WOs-based gasochromic window reduced annual HVAC load by 25%-35%, compared X X — — — Feng et al. (2016)
with float glass
Photoluminescent — — — — — —
Fluorescent Window Photoluminescent coating surpassed uncoated glass due to responsiveness to ultraviolet X — — — X Al-Qahtani
light, high durability and photostability et al. (2022)
Skin Translucent and photoluminescent skin decreased annual lighting electricity demand by up X — X — X Chiatti et al. (2021b)
component to 40% and provided up to 80% electricity savings
Surface Pollution and dust impact urban surfaces by reducing the efficiency of photoluminescent X — X — X Chiatti et al. (2021a)
coating paints and their potential to absorb and re-emitting light energy
Surface Photoluminescence effect leads to reduced surface temperature by applying QDs. It results X — X — X Garshasbi
coating in 35°C lower surface temperatures et al. (2022)
Phosphorescent Skin surface  Photoluminescent paints could save cooling and annual lighting energy by up to 30% and — X — — — Rosso et al. (2019)
paint 27%, respectively
Skin 15%-30% pigments should be used in photoluminescent glass tiles — — X — X Chiatti et al. (2022b)
Microalgae or Shading Enhances indoor environmental quality with indoor comfort improvement X X — — — Pagliolico et al. (2019)
PBRF system
Note: x=Yes.
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Table 4. Air pollution-control SMs

Name of SM or

Placement on

Research method

Directly

considered

project building Key findings Experimental Simulation Numerical Mathematical UHI References
Artificial leaf-based Cladding Integrates energy generation with CO, absorption in buildings, — — — — Azari and Asadi (2019)
facade cladding which reduces CO, to methane [R. Azari, and M. Asadi,
“Artificial leaf-based facade
cladding system for energy
production and carbon
sequestration.” US Patent
No. W02020005483A1
(2019)]

Microalgae or Facade Flue gas or CO, emissions were applied to produce biomass by X — — — — IBA_Hamburg (2013)
SolarLeaf microalgae, which reduced CO, emissions by 6 t/year
TiO, Facade TiO, application on half of the southern facade of a commercial — X — — — Li et al. (2020)

material building resulted in cleaning 25,666 m> of air per day with

20 ppb benzene, toluene, ethylbenzene, and O-xylenes
Facade Synthesized TiO,—SiO, coating demonstrated considerable X — — — — Khannyra et al. (2022)
photocatalyst potentiality and the efficiency was increased by
intensifying TiO, loading
Coating TiO,—Si0, nanocomposites could act as an active element to X — — — — Luna et al. (2022)
decrease air pollution as a self-cleaning protective material

Note: x =Yes.

Table 5. Selected research on humidity or ventilation control SMs

Research method Directly
Placement in considered
Name of SM or project building Key findings Experimental Simulation Numerical Mathematical UHI References
Hydroceramic Facade Integrating hydrogel with evaporative cooling effect into clay X — — — — IAAC (n.d.-a)
component resulted in temperature reduction by 5°C
Sweating skin Facade Using DN-Gels on a 100 m?* roof in a residential building X — — X — Cui et al. (2016)
material resulted in approximately 290 kW-h electricity demand
reduction for air conditioning. 160 kg CO, emission decreased
b evaporation
Super hygroscopic hydrogel Window Changing transparency of hygrochromic window led to energy X X — — — Nandakumar
saving et al. (2018)
Smart thermobimetal Skin Laminated metals reacted to temperature fluctuation with X — — — — Sung (2011)
self-ventilating skin different expansion coefficients and thicknesses and provided
natural ventilation
Cones of wooden veneer Skin Responded to humidity by opening or closing pores X X — — — Reichert et al.
(2015)

SMA Actuator or  Provides energy savings for the building by natural ventilation X X — — — Formentini and

sensor by opening or closing the facade Lenci (2018)
PNIPA AM-alumina/ Skin Multiple reversible shape alternatives were provided in X — — — — Erb et al. (2013)
alginate—alumina/gelatin— response to humidity or temperature and produced monolithic
alumina hydrogels composites
TiO, Coating Provided cooling for the ambient environment and building X — — — — Hashimoto et al.

along with energy efficiency

(2005)

Note: x =Yes.
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Directly
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Table 6. Selected studies on energy-producing or transducing SMs

Name of SM or

project
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References
Barone et al. (2022)

UHI

Mathematical

Numerical

Simulation

Key findings Experimental

buildings

Provided electric energy saving (13%—53%) for heating and cooling in

Glazing

Concentrating PV
glazing system

PV

Tampere and Palermo, respectively

Boccalatte et al. (2020)

Net zero energy district needed for energy was met 60% by roof solar

Facade or roof

energy harvesting and 60% by total facade area with an 11% decrease in

energy production per PV unit area
88%, 8%, and 4% solar energy is provided by the roof, walls, and

Panagiotidou et al. (2021)

Rooftop, wall,

window-integrated PV, respectively
PCM-PV integration results in decreasing the transient temperature of PV/

or window

Hasan et al. (2016)

X

Skin

PV/PCM

indoor and impeding peak indoor temperature

Tommasino et al. (2022)

Proposed method could be applied when optimizing more complex

Facade

Piezoelectric

harvesters, which include beams and cylinders

Improving energy efficiency, reducing materials used, and building
construction costs that consider wind analysis and building width or height

Zarrabi and Tavakoli (2018)

Facade

Aksamija et al. (2019)

Thermoelectric stand-alone element is unstable, and by adding a heat sink

Facade

Thermoelectric

its function for cooling or heating is enhanced
Ventilated active thermoelectric skin means no cooling or heating systems

Zuazua-Ros et al. (2018)

Skin

g (2013)

IBA_Hambur;

X

required
Produced energy and biogas from biomass are 345 kJ/m?/ day and 10.20 L

Facade

Microalgae or
SolarLeaf

methane/ m?/day, respectively
Provides an artificial photosynthesis process for energy generation by PV

X Azari and Asadi (2019) [R. Azari, and M. Asadi,

Cladding

Artificial leaf-based
facade cladding

“Atrtificial leaf-based facade cladding system for

panels and carbon removal

energy production and carbon sequestration.” US
Patent No. W0O2020005483A1 (2019)]

Note: x = Yes.
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glass and black roof tile surfaces, respectively, by creating a thin
water film (Hashimoto et al. 2005). The temperature of the water
film was lower than that of the water due to latent heat flux. There-
fore, integrating TiO, into building facades could potentially de-
crease the energy consumption in buildings. Of note, although
TiO, is regarded as a cool material with potential in UHIM, be-
cause this ability is not smart, such as in chromogenic materials,
it has not been mentioned in the light-control SM section. In addi-
tion, some SMs that were integrated into building facades could
smartly control air movement and natural ventilation. Therefore,
thermal comfort and energy efficiency were created in buildings.
Hydromembranes are another example of controlling humidity
and air movement. In addition, they are regarded as superabsorbent
polymers due to their potential to restore water due to sodium poly-
acrylate and slowly release it by air moving within the skin, which
regulates the indoor temperature and humidity (Casini 2016a;
IAAC n.d. b). Other SMs, such as SMAs and thermobimetals,
could regulate air movement and ventilation when applied in build-
ing facades as actuators or sensors, decrease energy consumption,
and indirectly mitigate UHIs. The performance of thermobimetals
is related to their anisotropic composition, in which two metal al-
loys with different thermal expansion coefficients are integrated
to act differently when exposed to thermal conditions. This self-
actuating building skin allows for ventilation by sheet curling.
An example is a self-ventilating building facade that uses thermo-
bimetals whose porosity and shape change with temperature, there-
fore allowing for air penetration into the building skin and natural
ventilation (Sung 2011).

Wood is a moisture-sensitive biomaterial due to its cellular
structure trying to gain balanced moisture leading to constant di-
mensional movement (Menges and Reichert 2012). Reichert
et al. (2015) developed an autonomous humidity-responsive low-
tech architectural system by applying the hygroscopic properties
of plant cones in a wooden veneer. With long-term experiments,
they evaluated the system and recorded thousands of responsive
motion cycles. Erb et al. (2013) conducted experiments to test
self-shaping synthetic hydrogel composites, which presented con-
siderable reversibility and autonomous twisting and bending move-
ments. Various studies have examined variations in building
cooling loads due to evapotranspiration and ventilation in building
skins; however, few have considered the effect on UHIM, espe-
cially in different climates and building forms.

Energy-Transducing or Producing SMs

Energy-transducing or producing SMs could alleviate UHIs by pro-
ducing energy or changing one form of energy into another
(Table 6). Several studies have investigated energy-producing
building facades, such as building-integrated PV (Azami and
Seving 2021), PV-PCM cells (Elarga et al. 2016), building-
integrated piezoelectric materials (Zarrabi and Tavakoli 2018),
building-integrated microalgae PBRs (Kerner et al. 2019), and ther-
moelectric skins (Martin-Goémez et al. 2021).

The PV elements in building skins convert solar radiation into
electricity using the PV effect (Rahman 2016) and have been ex-
tensively studied. Examples include PV glazing (Barone et al.
2022), windows (Peres Suzano e Silva and Flora Calili 2021),
rooftops and walls (Panagiotidou et al. 2021), and artificial leaf-
based facades (Azari and Asadi 2019), “Artificial leaf-based fa-
cade cladding system for energy production and carbon sequestra-
tion.” US Patent No. W0O2020005483A1 (2019)]. In addition, the
PV systems have been integrated into landscaping and pavements
for traffic lighting and contribute to UHIM by reducing the surface
temperature by 3°C-5°C and producing 11%-12% less heat
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Table 7. Categories of SMs and their mechanism and advantages to reduce UHIs

Mechanism
Category of smart skin Name of SMs
material or projects Example Key mechanism and advantages for UHIM Direct Indirect References
Thermal-control SMs PCMs Inorganic (salt-hydrate and metals), organic paraffin,  Cool air by storing and releasing thermal energy X — Karlessi et al. (2011);
nonparaffin, and eutectic Roman et al. (2016); Saffari
et al. (2018); Yang et al.
(2019)
Provide energy efficiency by decreasing cooling or — X Al-Yasiri and Szab6 (2021a;
heating energy demand b)
SMAs Copper—aluminum (Al)—nickel (Ni), copper—zinc—  Provide elastocaloric cooling and energy efficiency. X X Chen et al. (2021)
Al, Ni-manganese (Mn)—gallium, iron—Mn, and Act as actuator or actuator for controlling building — X Formentini and Lenci
Ni-Ti thermal load that results in energy efficiency (2018); Yi and Kim (2021)
Chromogenic — — — — —
materials
Light-control SMs Thermochromic Dye-based (dye—polymer and leuco dyes) Provide low cooling or heating load. Controlling X X Feng et al. (2022);
ambient air temperature by SR and changing color Garshasbi and Santamouris
2019), Nawade et al. (2020)
Non-dye-based (QDs, plasmonic, photonic crystals, — — — —
conjugated polymers, liquid crystals, and Schiff
bases)
Electrochromic Metal oxides of transition, in particular, WO;, Change color or transparency in response to altering ~ — X Yang et al. (2017a)
molybdenum trioxide (M0Os), iridium oxide, nickel  voltage and controlling light transmittance, which
oxide, and vanadium pentoxide results in energy efficiency
Photochromic Diarylethene, dithienylethene, and furyl fulgide Changing color when exposed to light and — X Shchegolkov et al. (2021)
controlling light transmittance
Gasochromic Nanoporous WO; and MoO; Change light transmittance through a window by a — X Shchegolkov et al. (2021)
thin layer of WO; and reducing energy demand
Photoluminescents — — — — —
Fluorescent Bulk fluorescent materials (e.g., ruby), and Providing cooling effect (fluorescent cooling) for X X Chiatti et al. (2021a);
nanofluorescent (QDs) ambient air temperature and controlling building Ulpiani et al. (2020)
thermal load by re-emitting absorbed light
Phosphorescent Zinc sulfide and calcium tungstate — — — —
Microalgae or Microalgae (e.g., Chlorella and Spirulina) Change their concentration or opacity and — X Wurm (2013)
PBRF system controlling light transmittance
Air pollution- control CO,-responsive Three types, which include amidine, amine, and Use CO, as a green trigger and capture CO, directly = — X Lin and Theato (2013)
SMs polymers carboxyl from air
Artificial Integrated PV and electrochemical cells Reduce CO, to hydrocarbon and decrease air — X Azari and Asadi (2019)
leaf-based facade pollution [R. Azari, and M. Asadi,
“Artificial leaf-based facade
cladding system for energy
production and carbon
sequestration.” US Patent
No. W02020005483A1
(2019)]
TiO, Decrease air pollution by photocatalyst reaction. — X Khannyra et al. (2022)
Reduce the surface temperature by high SR X — —
Humidity or Hydroceramic or — Use hydrogel for evaporative cooling. X X IAAC (n.d.-a)
ventilation-control SMs hydrogel
TiO, X — Hashimoto et al. (2005)

J. Archit. Eng., 2024, 30(4): 03124005



30SV O

Downloaded from ascelibrary.org by Maryam Talaei on 08/09/24. Copyright ASCE. For personal use only; al rights reserved.
€1-G00¥2LE0

Bu3z wyary

Table 7. (Continued.)

Category of smart skin Name of SMs
material or projects

Example

Key mechanism and advantages for UHIM

References

Hydromembrane or

sodium
polyacrylate

Thermobimetal
Meteorosensitive

architecture or
cones of wooden

veneer
SMAs
Energy-transducing or Piezoelectric
producing SMs
Artificial

leaf-based facade

PV cells

Thermoelectric

Microalgae or
PBREF system

Noncentrosymmetric crystals, quartz, lithium
niobate, lead zirconate titanate, and lead lanthanum
zirconium titanate
Integrated PV and electrochemical cells

Mono and polycrystalline silicone

Bismuth telluride alloy, lead telluride alloy, and
silicon—germanium alloy
Microalgae species

Provide evaporative cooling with a superhydrophilic
feature
Evaporative cooling by absorbing humidity
Provide ventilation by bending through absorbing
water
Provide ventilation for the building by reacting to
temperature, which results in material bending and
air movement
Provide ventilation by reacting to humidity with
hygroscopic properties and closing or opening pores

Act as an actuator for controlling natural ventilation

Converting mechanical force to electrical energy

Produce energy with PV cells

Convert light energy into electricity

Converting heat to electricity
Convert solar energy to biomass or biofuel

Convert solar energy into heat by photosynthesis

Casini (2016a), IAAC
(n.d.-b)

Sung (2011)

Reichert et al. (2015)

Formentini and Lenci
(2018)

Santamouris and Yun
(2020)

Azari and Asadi (2019) [R.
Azari, and M. Asadi,
“Artificial leaf-based facade
cladding system for energy
production and carbon
sequestration.” US Patent
No. W02020005483A1
(2019)]

Azami and Seving (2021);
Boccalatte et al. (2020);
Panagiotidou et al. (2021)
Martin-Gémez et al. (2021)

Elrayies (2018); Kerner
et al. (2019)

Note: x =Yes.
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Fig. 4. Category of SMs based on their stimuli and mechanism for UHIM when integrated with building skin. EC = electrochemical cell.

output (Xie and Wang 2021). The PV-integrated rooftops provide
greater solar energy for cities compared with PV-integrated win-
dows or walls (Panagiotidou et al. 2021). In addition, incorporat-
ing PCM with PV for electrical-thermal energy efficiency could
elevate electrical and thermal efficiency by up to 7.2% and
9.5%, respectively (Hasan et al. 2016).

The PV cells convert solar energy into electricity; however,
thermoelectric SMs convert heat into electricity and vice versa
(Steurer 2014). The conversion of thermal and electrical energy
is carried out using electrons and photons (Shastri and Pandey
2021). Kim and Kim (2021) studied solar thermoelectric generators
using an aerogel with high thermal insulation or solar light trans-
mittance characteristics and stated that their optical-thermal fea-
tures enhanced receiving solar energy. In addition, by integrating
a thermoelectric with a PCM, the cooling coefficient of the system
performance was improved by 56% (Tan and Zhao 2015). Piezo-
electric materials, another type of material in this category, are
energy-transducing SMs that convert mechanical energy into elec-
tricity (Bhagabati and Rahaman 2022). This process could be re-
versible by converting electricity to mechanical force (Addington
and Schodek 2004). Zarrabi and Tavakoli (2018) studied the opti-
mization of a piezoelectric facade layout for environmental perfor-
mance. Xie et al. (2013) investigated high-rise buildings that were
integrated with piezoelectric generators, which produced energy by
applying the piezoelectric patch onto the cantilever. Studies on in-
tegrating piezoelectric material with building facades are very lim-
ited and require further investigation, because this symbiosis has
challenges that need to be addressed that include high material
costs, constructability, and energy efficiency (Gkoumas et al.
2013). A photobioreactor facade (PBRF), another example of a
smart facade system, uses bio-SMs to produce energy, such as
energy-generating glazing (Casini 2016b). Energy efficiency in

© ASCE
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building-integrated PBRs is provided by solar thermal collectors
and light-to-biomass converters that produce biofuel and heat and
adaptable shading as well as thermal insulation (Pruvost et al.
2016; Talaei et al. 2020). The more the PBRF is exposed to solar
radiation, the more the microalgae concentration is increased,
which could regulate light transmittance through the panel. How-
ever, excessive sun radiation leads to photosaturation and photoin-
hibition, which are detrimental to cell growth (Raeisossadati et al.
2019) and should be considered during the operation and design.
An application of PBRs is in the BIQ House that uses 129 PBR
panels and is expected to produce 30 kW-h/m? of biomass and
150 kW-h/m? of heat and lower CO, emissions by 2.5 t/year
(Wurm 2013). Recent research on PBRFs has investigated the ad-
vantages of this symbiosis for energy efficiency and thermal regu-
lation. However, the challenges and efficiency of this system in
different climatic zones and its performance in UHIM should be in-
vestigated more comprehensively.

Discussion and Conclusions

The SMs (Table 7) that are applied on urban surfaces have received
attention as an adaptation solution to address UHIM (Feng et al.
2022) due to their potential to interactively respond to the varying
ambient environment (Fabiani et al. 2019; Feng et al. 2022), espe-
cially since the common cool materials present a disadvantage in
winter times considering their high SR (Fabiani et al. 2019). In
this research, the SMs are categorized into five main groups
(Fig. 4) based on the way they contribute to UHIM directly by the
reduction in the ambient environment temperature and heat absorp-
tion or indirectly by reducing building energy demand and the asso-
ciated CO, emissions that would alleviate global warming. The SMs
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that are integrated into building facades have been studied for their
performance in regulating light, heat, and humidity and acting as
sensors and actuators; however, limited research has considered
the UHIM performance of these materials. In addition, there are
SISMs and adaptive facade systems (e.g., piezoelectric, hydrocer-
amic, super hygroscopic hydrogel, and thermobimetal) whose
UHIM potentials have been underexplored. Therefore, the quantita-
tive and qualitative evaluation of the UHIM performance of differ-
ent SMs in various climatic zones is required to guide the selection
of SMs to address UHIs. In addition, the evaluation of the SMs for
durability and resistance to climatic changes and various environ-
mental conditions is critical when choosing suitable SMs. In addi-
tion, future research could explore the combination of various
SMs to improve their performance in different climates and building
facade orientations. In addition, the operational and constructional
aspects, maintenance, cause of failure, fatigue, and fire safety issues
that are associated with SMs that are used in buildings should be
studied to improve these systems. Some SMs (e.g., PCMs) and
PVs have been commercialized for integration into building fa-
cades; further commercialization efforts are needed to expand the
potentials of other SMs, such as piezoelectric or bioadaptive mate-
rials such as microalgae. In addition, the industry should address
the high costs for the operation and construction of some SMs that
prevent them from being widely applied in building facades.

Data Availability Statement

Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable
request.
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