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Abstract Among the various methods of density estimation, kernel smoothing 
is particularly appealing for both its simplicity and its interpretability. The main 
goal of this article is to study the large-sample properties of the kernel density 
estimator in the setting of length-biased and right-censored data. The almost sure 
representation of the distribution function estimator will be the key to obtaining 
the asymptotic representation for the kernel density estimator. This representation 
enables us to establish the asymptotic normality and uniform consistency of the 
estimator. A small simulation study is conducted to show how the estimator behaves 
for finite samples, and an application is also presented using real data. 
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1 Introduction 

A prevalent cohort sample consists of individuals who have experienced disease 
incidence but not failure events at the sampling time. Let . Ai be the current age 
of the i-th subject from onset. An individual would be qualified to be included in 
the sampling population at the recruitment time only if the survival time of i-th 
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subject from onset (. Ti) is greater than . Ai . Of course, some of these subjects will 
have censored failure times due to loss of follow-up or survive until the end of the 
study. This scheme is a left truncation and right censoring (LTRC) model. Note that 
in situations where the incidence rate is constant, the right-censored survival data 
collected on a cohort of prevalent studies are termed length-biased. Therefore, the 
observed data are referred to as length-biased data with right-censoring (LBRC). Let 
.(V, C) be random variables, where V represents the time from recruitment to death 
or censoring by the termination of study or lost follow-up during the study period, 
and C denotes the censoring time from enrollment to censoring occurrence. Here, 
the censoring is never non-informative because the censoring variable .A + C and 
survival time .T=A+ V share the same A. Due to this, the Kaplan-Meier estimator 
is not an appropriate estimator of the length-biased survival function (Vardi, 1989). 
Several authors have studied nonparametric estimation for the survival function 

in the presence of LTRC data. Winter and Földes (1988), Tsai et al. (1987) and Wang 
(1991), have suggested a solution based on a conditional approach for estimating the 
lifetime distribution from left-truncated and right-censored data. However, when 
stationarity holds, the estimators based on the conditional approach for the survivor 
function lose some information (Asgharian et al., 2002; Huang & Qin, 2011). Vardi 
(1989) considered the problem of finding the nonparametric maximum likelihood 
estimate (NPMLE) of the length-biased survivor function for LBRC data. Asgharian 
et al. (2002) derived an estimator for the survival function using Vardi’s (1989) 
estimator. The NPMLE of both the length-biased and unbiased survival functions 
for LBRC data assumes that the number of censored and uncensored observations 
in known a priori, which is not valid for a prevalent cohort study. Vardi (1989) noted 
that the likelihood remains the same if this assumption is not fulfilled. Asgharian and 
Wolfson (2005) studied the asymptotic properties of NPMLE of the length-biased 
survival function under the prevalent cohort sample with follow up. 
However, the NPMLE of the survival functions for LBRC is inconvenient in 

practice because it does not provide a closed-form estimator. Luo and Tsai (2009), 
and then Huang and Qin (2011), proposed an explicit form for the survival estimator 
that does not lose much efficiency compared to the NPMLE. Additionally, Wang 
et al. (2017) suggested a new nonparametric estimator of the survival function of the 
lifetime that is simpler than Huang and Qin’s estimator. One of the quantities used in 
the modeling of lifetime data is the density function, which is related to the survival 
function. Nonparametric density estimation can be very helpful in exploratory data 
analysis, and descriptive features of the density estimate, such as the number of 
modes, the volatility clustering, the skewed property, and the tail behavior. 
Some authors have discussed estimation for the density function via various 

methods. For instance, Devroye and Györfi (1985), Devroye (1987) and Silverman 
(1986) have explored this topic. Among the various methods of density estima-
tion, kernel smoothing is particularly appealing for both its simplicity and its 
interpretability. The pioneer of kernel density estimation were Parzen (1962) and 
Rosenblatt (1956). The kernel density estimation for censored data has been widely 
studied, and the most important references include Mielniczuk (1986), Marron 
and Padgett (1987), Lo et al. (1989), and Stute and Wang (1993), among others.
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Improvements for truncated data problems have been made by He and Yang (1998). 
References dealing with strong consistency under left-truncated and censored data 
can be found in Gijbels and Wang (1993). The bandwidth needed for this estimator 
can be found in Sánchez-Sellero et al. (1999). Asgharian et al. (2012) established 
the problem of estimating the density function under the multiplicative censoring 
model, which arises as a degenerate case in a prevalent cohort setting. Further, 
Brunel et al. (2009) proposed an estimator for the density function under bias 
selection and right censoring using the projection method. In this approach, they 
assume that the censoring variable is independent of the variable suffering from 
selection bias. 
This paper considers an adaptation of kernel density estimation to LBRC data 

using Wang et al.’s estimator (. Ŝn). One of the most important properties of the 
.Ŝn(·), employed in our proofs is the strong representation of this estimator as a 
sum of i.i.d. random variables plus a remainder term. Wang et al. (2017) obtained a 
remainder term of order o(1), which we will improve. This convergence rate allows 
us to establish the strong consistency of the kernel density estimator with a rate. 
The outline of this paper is as follows. Section 2 establishes the almost sure 

representation of the . Ŝn with a remainder term of order .O
�
n−1 log log n

�
. As an  

application, the kernel estimator of the density function is proposed and some 
asymptotic results of this estimator are established in Sect. 3. Section 4 deals with 
some simulation results for the quality of the kernel density estimation and a 
demonstration of the density function for the Oscar nominees dataset. The proofs 
of some theorems and preliminary lemmas are relegated to the Appendix. 

2 Strong Representation for the PL Estimator 

Let .f (·) and .F(·) denote the density function and distribution function of T and 
.S(·) = 1 − F(·) be its survival function. It is also assumed that the survival 
distribution function of C is denoted by .G(·). In this scheme, it is further assumed 
that C is independent of .(A, V ). Given a random sample 

. {(Ai,Yi,∆i), i=1, . . . , n},

where .Yi=Ai+min(Vi,Ci)=Ai+ Ṽi denotes observed lifetime, and . ∆i=I (Vi≤Ci)
indicates whether a lifetime is censored or not, the PL estimator of the survival 
function F, as defined in Wang et al. (2017), is as follows: 

.Ŝn(t) =
�
u∈[0,t ]

�
1− dHn(u)

Rn(u)

�
, (1)
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where 

. Hn(t) = n−1
n�
i=1
∆iI (Yi ≤ t),

Rn(t) = (2n)−1
n�
i=1

�
I (Ai ≤ t ≤ Yi)+∆iI (Ṽi ≤ t ≤ Yi)

�
.

The goal of this section is to establish an i.i.d. representation for . Ŝn in Eq. (1) 
and obtain the order of the remainder term. Before stating the main results of this 
section, we introduce some notations. Let us define the functions 

. R(t) = 1
2
E[I (A ≤ t ≤ Y)+∆I(Ṽ ≤ t ≤ Y)],

H(t) = E[∆I(Y ≤ t)],

w(t) =
� t
0
G(u)du,

which R and H can be consistently estimated by . Rn and . Hn, respectively. Note 
that .H(·) is a sub-distribution function corresponding to .F(·), which represents the 
proportion of uncensored failure events before time t in the presence of length-bias. 
Therefore, we have 

.R(t) = µ−1S(t)w(t), dH(t) = µ−1w(t)f (t)dt. (2) 

Thus, in view of (2), the cumulative hazard function of T can be derived as 

. Λ(t) =
� t
0

f (u)

S(u)
du =

� t
0

µ−1f (u)w(u)
µ−1S(u)w(u)

du =
� t
0

dH(u)

R(u)
.

Hence, a natural estimator of . Λ, based on n observations . {(Ai, Yi,∆i), i=1, . . . , n}
is given by 

.Λ̂n(t) =
� t
0

dHn(u)

Rn(u)
= 1
n

�
i: Yi≤t

∆i

Rn(Yi)
. (3) 

The following theorem provides the i.i.d. representation of .Λ̂n to obtain the 
strong representations for the estimator .F̂n(t) = 1− Ŝn(t). Let . τ= inf{x; F(x)=1}
and denote 

. φi(t) = ∆iI (Yi ≤ t)
R(Yi)

−1
2

� t
0
R−2(u){I (Ai ≤ u ≤ Yi)

+∆iI (Ṽi ≤ u ≤ Yi)}dH(u). (4)
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Theorem 1 If .b < τ , then we have uniformly in .0 ≤ t ≤ b, 

. Λ̂n(t) −Λ(t) = n−1
n�
i=1
φi(t) + Ln(t),

where 

. sup
0≤t≤b

|Ln(t)| = O
�
n−3/4 logn

�
a.s.

Proof See the Appendix. 

Theorem 2 below gives a rate for the strong consistency of the cumulative hazard 
function estimator. 

Theorem 2 For .b < τ , we have 

. sup
0≤t≤b

|Λ̂n(t) −Λ(t)| = O
�
n−1/2(log log n)1/2

�
, a.s.

Proof See the Appendix. 

The following theorem is crucial to obtain the convergence rate of the kernel 
density estimator of f , the density associated with F , in Sect. 3. 

Theorem 3 We have uniformly in .0 ≤ t ≤ b < τ , 

. F̂n(t) − F(t) = (1− F(t))(Λ̂n(t) −Λ(t)) + Ln(t)

= n−1
n�
i=1
(1− F(t))φi(t) + Ln(t)

with .sup0≤t≤b |Ln(t)| = O
�
n−1 log log n

�
a.s. 

Proof In view of .1 − F(t) = exp{−Λ(t)} and using Lemma 1, Lemma 2 in the 
Appendix and Taylor’s expansion, we have almost surely 

.F̂n(t) − F(t) =F̄n(t) − F(t)+O
�
n−1
�

=exp{−Λ(t)} − exp{−Λ̂n(t)} +O
�
n−1
�

=exp{−Λ(t)}(Λ̂n(t) −Λ(t))

− exp{−Λ
∗
n(t)}
2

(Λ̂n(t) −Λ(t))2 +O
�
n−1
�
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where 

. min{Λ̂n(t),Λ(t)} < Λ∗n(t) < max{Λ̂n(t),Λ(t)}.

The latter inequalities combined with Corollary 2 imply that .Λ∗n(t) → Λ(t), a.s., 
as .n → ∞. Since .exp{−x} is a continuous function, we get . exp{−Λ∗n(t)} →
exp{−Λ(t)}, a.s. Thus, the proof of the theorem will be completed using Corol-
lary 2 again. 

3 Kernel Estimate of Density Function 

In this section, we propose kernel density estimation under LBRC data using 
estimator (1) and establish a strong representation of the estimator under appropriate 
conditions as an application of Theorem 3. 
Let .{hn,n ≥ 1} be a sequence of positive bandwidths tending to zero, and . K(·)

be a smooth kernel function. In the sequel, we consider the well-known kernel 
estimator: 

.f̂n(t) = h−1n
� ∞
0
K

�
t − x
hn

�
dF̂n(x); (5) 

we obtain consistency and asymptotic normality of this estimator as an application 
of the strong representation given in Theorem 3. Assume that the kernel function 
.K(·) is symmetric, of bounded variation on .(−1, 1) and satisfies the following 
conditions: 

.

� 1
−1
K(u)du = 1,

� 1
−1
uK(u)du = 0,

� 1
−1
u2K(u)du > 0. (6) 

According to the second equality in (2), .g(t) = µ−1f (t)w(t) is the density of .H(t), 
and a kernel-type estimate of .g(t) is given by .gn(t) = h−1n

�
K( t−x

hn
)dHn(x). The 

aim of this section is to give a representation of .f̂n− f̄n in terms of a sum of random 
variables whose data are assumed to be LBRC, plus a negligible remainder. For this 
purpose, we suppose 

. f̄n(t) = h−1n
� ∞
0
K

�
t − x
hn

�
dF (x).

Theorem 4 Suppose the sequence of bandwidths .{hn} satisfies 

.
nhn

log log n
→∞.



Some Asymptotic Properties of Kernel Density Estimation Under Length-. . . 31

Under the assumptions of boundary of f on .[a, b], we have uniformly in . 0 < a ≤
t ≤ b, 

. |f̂n(t) − f̄n(t)| = µ

w(t)
|gn(t) − E[gn(t)]| +Rn a.s.

where . Rn = O
�
log logn
nhn

∨
�
log log n
n

�
a.s.

Proof See the Appendix. 

As a result of the Theorem 4, we establish that . fn is uniformly close to f and 
has asymptotically normal distribution. 

Corollary 1 In addition to the conditions in Theorem 4, assume that .V ar(∆iYi) is 
bounded. Then by LIL for partial sums, we have 

. sup
a≤t≤b

|f̂n(t) − f (t )| = O
�
h−1n

�
log log n

n
∨ h2n
�

Corollary 2 Under assumption Theorem 4 and assuming 

. σ 2 = lim
n→∞ nhnV ar[f̂n(t)] =

µ

w(t )
f (t )

�
K2(u)du

Slutsky’s theorem implies that 

. 

�
nhn(f̂n(t) − f (t )→ N(0, σ 2)

3.1 Bandwidth Selection 

An automatic method for determining the optimal window width is cross-validation 
(CV). We apply the CV approach to obtain an asymptotically optimal bandwidth for 
the kernel estimator .f̂n(·). A commonly used measure is integrated squared error: 

. ISE(hn) :=
� ∞
0
(f̂n(x) − f (x))2dx.

To get the optimal . hn, it is sufficient to minimize: 

.

� ∞
0
f̂ 2n (x)dx − 2

� ∞
0
f̂n(x)dF (x) =

� ∞
0
f̂ 2n (x)dx − 2E(f̂n). (7)
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Since Eq. (7) depends on the unknown F through .E(f̂n), the leave-one-out method 
can be used as an estimate of .E(f̂n). Note that .F̂n(·) is a random step function with 
jumps only at the observed data points . Yi . Let .{wi, i = 1, . . . , n} be the jump at the 
observed point . Yi that does not have an explicit form, and let .f̂−i be the estimator 
in (5) calculated with all the observed data points except . Yi . Thus, for large n, we  
have 

. CV (hn) =
� ∞
0
f̂ 2n (x)dx − 2Ê(f̂n)

=h−1n
n�
i=1

n�
j=1
wiwjK ∗K

�Yi − Yj
hn

�
− 2

n�
i=1
wif̂−i (Yi),

in which .K ∗ K(t) = �∞0 K(t − x)K(x)dx. Hence, we can try to determine an 
optimal bandwidth .hopt for the kernel density estimator by 

.hopt = argmin
hn
CV (hn). (8) 

4 Simulations and Data Analysis 

4.1 Monte Carlo Simulations 

In this section, we carried out some simulations to evaluate the performance of the 
proposed estimator for the density function under LBRC data. The evaluation of the 
simulation results is based on the estimated ISE. We consider three different Weibull 
distributions for the survival variable T : (1). T ∼ W(2, 2), (2)  .T ∼ W(2, 1), and 
(3). T ∼ W(1, 1). The Epanechnikov density function 

. K(x) = 3/4(1− x2)I (|x| < 1)

was used as the kernel function. To generate the LBRC data, following Huang 
and Qin (2011), we set the recruitment time to be 100, so the onset variable 
was simulated from a .Uniform(0, 100). To investigate the effect of censoring on 
the estimator, we consider three levels of censoring. The censoring variable (C) 
generated from an .Uniform(0, c), where c is calculated to have approximately 
.10%, 30% and .51% censoring for each scheme. We use two sample sizes: . n = 50
and .n = 200. 
We compare the proposed estimator . f̂n with the kernel density estimators based 

on the NPMLE of Vardi (1989) (denoted by . f Vn ) and the product-limit estimator 
of the survival function proposed by Tsai et al. (1987) (denoted by .fT JW ). The 
estimators . f Vn and .fT JW can be obtained by replacing the NPMLE of Vardi (1989) 
and the distribution estimator of Tsai et al. (1987) with .F̂n(·) in (5), respectively. The
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estimator . f Vn needs to solve integral equations and is the same as the kernel density 
estimator proposed by Asgharian et al. (2012) under multiplicative censoring 
because the likelihood obtained under multiplicative censoring has the same form 
as the likelihood obtained from a cohort study. The estimator .fT JW is an estimator 
that ignores the assumption that the incidence rate is constant. 
In all models, we computed the estimators . f̂n and . f Vn from the reference sample 

of the LBRC setting. The mean ISE (MISE) of the two estimators was estimated 
based on 1000 replications for different sample sizes and under different levels of 
censoring. In each replication, the optimal bandwidth (.hopt , say) for the density 
function .f̂n(·) is selected by minimizing the ISE as a function of h, as stated in 
Sect. 3.1. The comparison of the two estimators is given in Table 1, which indicates 
the estimated MISE and integrated bias of . f̂n and .f Vn based on 1000 simulation 
runs for each model. From this table, it is found that the proposed estimator does 
not lose much efficiency compared to the kernel density estimator based on NPMLE 
i.e., . f Vn . Increasing the percentage of censoring increases estimated MISE in almost 
all scenarios. Nevertheless, when the sample size is large and the level of censoring 
reaches .51%, the MISEs in the simulation are still small and reasonable. The impact 
of ignoring the information in the length-biased data can be seen in the last column 
of Table 1. 

Table 1 Simulation results of MISE and integrated bias (in the parenthesis) for nonparametric 
estimators based on 1000 replications 

Unbiased distribution n .C% . f Vn (NPMLE) . f̂n (Proposed) . fT JW

.exp(−t2/4) 50 10 0.054(0.051) 0.058(0.053) 0.068(0.064) 

30 0.058(0.053) 0.062(0.053) 0.073(0.061) 

51 0.086(0.047) 0.077(0.048) 0.099(0.069) 

200 10 0.017(0.049) 0.022(0.050) 0.018(0.050) 

30 0.018(0.049) 0.018(0.050) 0.020(0.056) 

51 0.021(0.052) 0.023(0.052) 0.025(0.053) 

.exp(−t2) 50 10 0.086(0.168) 0.093(0.169) 0.105(0.170) 

30 0.101(0.168) 0.103(0.169) 0.115(0.169) 

51 0.107(0.173) 0.120(0.175) 0.163(0.179) 

200 10 0.030(0.164) 0.032(0.166) 0.034(0.165) 

30 0.033(0.163) 0.032(0.165) 0.037(0.166) 

51 0.037(0.164) 0.041(0.165) 0.043(0.166) 

.exp(−t) 50 10 0.248(0.058) 0.306(0.059) 0.434(0.062) 

30 0.259(0.057) 0.331(0.057) 0.437(0.058) 

51 0.253(0.057) 0.276(0.057) 0.442(0.058) 

200 10 0.136(0.060) 0.136(0.060) 0.163(0.063) 

30 0.176(0.058) 0.225(0.060) 0.260(0.064) 

51 0.149(0.057) 0.185(0.058) 0.180(0.058)
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4.2 Real Data 

We applied the methods discussed in the previous sections to the Oscar nominees’ 
database, which is available in the supplementary materials by Han et al. (2011). The 
database collects performers’ information from the First Academy Award (May 16, 
1929) to July 25, 2007. One of the interesting aims of this section is to analyze 
the survival of Oscar nominees after their last nomination and estimate the kernel 
density function for their survival time. 
The dataset contains nine variables, but we focused on the most important 

variables for our purpose: date of birth, date of death, and nomination date. If the 
nomination date was after the date of death, we dropped the record. We computed 
age at each nomination, and there are 825 performers in total. We used the age at the 
last nomination as the truncation time A. It is obvious that the survival time is left-
truncated by the age at the last nomination. According to the formal test proposed 
by Addona and Wolfson (2006) (.Wn = 0.279, p-value=0.454), it is reasonable to 
consider this dataset as length-biased data. The censoring date for this database was 
July 25, 2007, and the censoring rate was about 46%. 
Figure 1 shows the density estimates of the lifetime of Oscar nominees using 

different survival functions and the CV function of the proposed estimator using 
several different bandwidths. The optimal smoothing parameter in all estimators 
was chosen to minimize the cross-validation score. It can be seen that the proposed 
density estimation . f̂n is closer to the density estimation with the NPMLE survival 
function than .fT JW . The resulting CV function for . f̂n shows that the optimal 
bandwidth in the figure is close to 2. 
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Fig. 1 Kernel density estimators and CV for the Oscar nominees data. Left: density estimator 
using NPMLE survival function (solid line), proposed density estimator (dashed line), and density 
estimator using TJW survival estimator (dash-dotted line). Right: cross-validation as a function of 
bandwidth for proposed density estimator
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Appendix 

This section first presents some preliminary lemmas that are used in the proofs of 
the main results, and then gives the proof of the theorems. Regarding Theorem 3, 
we need to make a slight modification to the product-limit estimator . F̂n to safeguard 
against .log 0 when taking logarithms of .1− F̂n(t). In the following lemma, we show 
that the estimator . F̄n behaves in the same way as . F̂n, where 

.F̄n(t) = 1−
�
i:Yi≤t

�
1− ∆i

nRn(Yi)+ 1
�
. (9) 

Lemma 1 If .
� b
0 dH(u)/R

2(u) <∞, then uniformly in .0 ≤ t ≤ b < τ , we have 

. F̄n(t) − F̂n(t) = O
�
n−1
�
, a.s.

Proof According to (1), one has 

. F̄n(t) − F̂n(t) =
�
i:Yi≤t

�
1− ∆i

nRn(Yi)

�
−
�
i:Yi≤t

�
1− ∆i

nRn(Yi)+ 1
�
.

Then applying .|�ni=1 ci −�ni=1 di | ≤�ni=1 |ci − di |, |ci |, |di | ≤ 1, we have  
. F̄n(t) − F̂n(t) ≤

�
i:Yi≤t

n−2 ∆i
R2n(Yi)

≤ n−1
� b
0

1

R2n(u)
dHn(u)

≤ n−1 sup
0<u<b

����R2(u)R2n(u)

���� � b
0

1

R2(u)
dHn(u).

Note that since .
�n
j=1 I (Aj ≤ Yi ≤ Yj )≥1 for any .i = 1, . . . , n, conditions 

.|1− ∆i
nRn(Yi )

|≤1 and .|1− ∆i
nRn(Yi)+1 |≤1 hold. From the strong law of large numbers 

(SLLN), as .n→∞, 

. 

� b
0

1

R2(u)
dHn(u)→

� b
0

1

R2(u)
dH(u) <∞.

Further, by LIL for empirical distribution functions, we have 

. sup
0<t<b

|Rn(t) − R(t)| = O
�
n−1/2

�
log log n

�
a.s. (10)
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Consequently, it follows that 

. sup
0<u<b

����R2(u)R2n(u)

���� ≤ 1+ sup
0<u<b

|R2n(u)− R2(u)|
R2n(u)

≤ 1+ 2 sup
0<u<b

|Rn(u)− R(u)|
R2n(u)

= 1+O
�
n−1/2

�
log log n

�
a.s. (11) 

Thus, the desired conclusion follows. 

Lemma 2 Under the assumption of Lemma 1, we have uniformly in .0 ≤ t ≤ b < τ , 

. 1− F̄n(t) = e−Λ̂n(t) +O
�
n−1
�
a.s.

Proof Using .|e−x − e−y | ≤ |x − y|, x, y ≥ 0 and expanding . log expression, we 
have 

. |1− F̄n(t)− exp{−Λ̂n(t)}| ≤ | log(1− F̄n(t))+ Λ̂n(t)|

=
������
�
i:Yi≤t

log

�
1− ∆i

nRn(Yi)+ 1
�
+
�
i: Yi≤t

∆i

nRn(Yi)

������
=
������
�
i:Yi≤t

∆i

nRn(Yi)(nRn(Yi)+ 1) −
�
i:Yi≤t

∞�
m=2

∆i

m(nRn(Yi)+ 1)m

������ ,
(12) 

Therefore 

.(12) ≤
�
i:Yi≤t 

∆i 

n2R2 n(Yi) 
. 

Thus by SLLN and (11), we get uniformly in . 0 ≤ t ≤ b < τ

. |1− F̄n(t) − e−Λ̂n(t)| ≤ n−1 sup
0<u<b

����R2(u)R2n(u)

���� � b
0

dHn(u)

R2(u)
= O

�
n−1
�
a.s.

This completes the proof of the lemma. 

Lemma 3 For any .b < τ , we have 

. sup
0<t≤b

����� t
0

�
1

Rn(u)
− 1

R(u)

�
d[Hn(u)−H(u)]

���� = O�n−3/4 log n� a.s.
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Proof Let us divide the interval .[0, b] into subintervals .[xi, xi+1]; . i = 1, . . . , νn
such that .0=x1<x2< · · ·<xνn+1=b and .νn = O(n1/2/

√
log log n). Observe that 

. sup
0≤t≤b

��� � t
0
(
1

Rn(u)
− 1

R(u)
)d[Hn(u)−H(u)]

���
≤ max
1≤i≤νn

i−1�
j=1

� xj+1
xj

���( 1
Rn(u)

− 1

R(u)
)d[Hn(u)−H(u)]

���
· max
1≤i≤νn

sup
xi≤t≤xi+1

� t
xi

���( 1
Rn(u)

− 1

R(u)
)d[Hn(u)−H(u)]

���
=:I + II.

Equation (10) and the modulus of continuity of the empirical process imply that 

. I ≤ sup
0≤t≤b

��� 1
Rn(t)

− 1

R(t)

���νn max
1≤i≤νn

|Hn(xi+1)−H(xi+1)−Hn(xi)+H(xi)|

= O(n−3/4 log n) a.s. (13) 

The next step is to obtain the convergence rate of . II . 

. II ≤ max
1≤i≤νn

sup
xi≤t≤xi+1

� t
xi

���( 1
Rn(u)

− 1

R(u)
− 1

Rn(xi)
+ 1

R(xi)
)d[Hn(u)−H(u)]

���
+ sup
0≤t≤b

��� 1
Rn(t)

− 1

R(t)

��� max
1≤i≤νn

sup
xi≤t≤xi+1

|Hn(t) −H(t)−Hn(xi)+H(xi)|

≤2 max
1≤i≤νn

sup
xi≤t≤xi+1

��� 1
Rn(t)

− 1

R(t)
− 1

Rn(xi)
+ 1

R(xi)

���+O(n−1 log n), a.s.
Since .sup0<t<b(Rn(t) − R(t))2 = O

�
n−1 log log n

�
a.s., we have 

.III := max
1≤i≤νn

sup
xi≤t≤xi+1

��� 1
Rn(t)

− 1

R(t)
− 1

Rn(xi)
+ 1

R(xi)

���
≤ max
1≤i≤νn

sup
xi≤t≤xi+1

���Rn(t) − R(t)
R2(t)

− Rn(xi)− R(xi)
R2(xi)

���
+O(n−1 log log n), a.s.

≤ sup
0≤t≤b

|Rn(t) − R(t)| max
1≤i≤νn

sup
xi≤t≤xi+1

��� 1
R2(t)

− 1

R2(xi)

���
+ max
1≤i≤νn

1

R2(xi)
max
1≤i≤νn

sup
xi≤t≤xi+1

|Rn(t) − R(t)− Rn(xi)+ R(xi)|

+O(n−1 log log n), a.s.
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Here we have .maxi |xi+1 − xi | = O(n−1/2√log log n). An application of the 
modulus of continuity of the empirical process yield 

. III = O(n−3/4 logn), a.s.

Moreover, we conclude 

. II = O(n−3/4 log n), a.s.

which together with (13) yields the result. 

Proof of Theorem 1 It is easy to check that 

. Λ̂n(t) −Λ(t) =
� t
0

dHn(u)

R(u)
−
� t
0

Rn(u)

R2(u)
dH(u) + Ln(t)

= 1
n

n�
i=1
φi(t) + Ln(t),

where . φi is defined in (4) and 

. Ln(t) =
� t
0

�
1

Rn(u)
− 1

R(u)

�
d[Hn(u)−H(u)] +

� t
0

(Rn(u)− R(u))2
Rn(u)R2(u)

dH(u)

=: Ln1(t) + Ln2(t).

In view of Lemma 3, .Ln1(t) is .O
�
n−3/4 log n

�
, a.s. Further, by (10) we have 

. Ln2(t) ≤ sup
0<u<t

(Rn(u)− R(u))2
� t
0

dH(u)

Rn(u)R2(u)

= O
�
n−1 log log n

�
a.s.,

This completes the proof of Theorem 1. 

Proof of Theorem 2 Applying integration by parts, one can easily get the following 

.|Λ̂n(t) −Λ(t)| ≤
� t
0

���d[Hn(u)−H(u)]
R(u)

���+ � t
0

��� 1
R(u)

− 1

Rn(u)

���dHn(u)
≤ |Hn(t) −H(t)|

R(t)
+
� t
0

|Hn(u)−H(u)|
R2(u)

dR(u)

+
� t
0

|Rn(u)− R(u)|
R(u)Rn(u)

dHn(u)
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Thus we obtain the desired result by Eq. (10) and the LIL for the empirical processes 
.Hn(t) −H(t). 
Proof of Theorem 4 By integration by parts, Theorem 3 and assumption of 
bounded variation for kernel function K , we have  

. f̂n(t) − f̄n(t) = −h−1n
�
Bn

[F̂n(x) − F(x)]dK
�
t − x
hn

�
= −h−1n

�
Bn

(1− F(x))[Λ̂n(x) −Λ(x)]dK
�
t − x
hn

�
+O

�
log log n

nhn

�
a.s., (14) 

where .Bn = {x ≥ 0; (t − x)/hn ∈ (−1, 1)}. According to the definition of hazard 
function and its estimator and using integration by parts, the first term of the right-
hand side of the above equation can be viewed as 

. J := − h−1n
�
Bn

(1− F(x))[Λ̂n(x) −Λ(x)]dK
�
t − x
hn

�
=− h−1n

�
Bn

(1− F(x))
� x
0

d[Hn(u) −H(u)]
R(u)

dK

�
t − x
hn

�
− h−1n

�
Bn

(1− F(x))
� x
0

� 1

Rn(u)
− 1

R(u)

�
dHn(u)dK

�
t − x
hn

�
=h−1n

�
Bn

H(x)−Hn(x)
µ−1w(x)

dK

�
t − x
hn

�
+ h−1n

�
Bn

(1− F(x))
� x
0

Hn(u)−H(u)
R2(u)

dR(u)dK

�
t − x
hn

�
− h−1n

�
Bn

(1− F(x))
� x
0

Rn(u)− R(u)
R(u)Rn(u)

dHn(u)dK

�
t − x
hn

�
=:J1 + J2 + J3

Use change of variables to get 

. J1 =h−1n µ
�
Bn

H(x)−Hn(x)
w(t)

dK

�
t − x
hn

�
+ h−1n µ

�
Bn

Hn(x) −H(x)
w(t )w(x)

(w(x) −w(t))dK
�
t − x
hn

�
By LIL for empirical processes and noticing that .infa≤t≤b w(t)>0, the second term 
of the above expression is of order .

√
log log n/n, uniformly in .a ≤ t ≤ b. Thus, by
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Taylor’s expansion, we have uniformly in . 0 < a ≤ t ≤ b

.J1 = µ

w(t)
(gn(t) − E[gn(t)])+O

��
log log n

n

�
a.s. (15) 

Denote .Cn(x) =
� x
0
Hn(u)−H(u)
R2(u)

dR(u) and .V (K) as the total variation of K . As to  
. J2, put .u = (t − x)/hn, so that 

. J2 ≤h−1n
����� 1−1 (1− F(t − uhn)) (Cn(t − uhn)− Cn(t))dK(u)

����
+ h−1n |Cn(t)|

� 1
−1

����K � � t − xhn
����� du

≤ sup
0<x<∞

|Hn(x) −H(x)|
�
sup
a≤t≤b

��� R�(t)
R2(t)

��� � 1
−1
|K �(u)|du

+
� ∞
0

����dR(u)R2(u)

����V (K)�
=O
��
log log n

n

�
a.s. (16) 

Introduce .Dn(x) =
� x
0
Rn(u)−R(u)
R(u)Rn(u)

dHn(u). Now, by change of variables 

. J3 ≤h−1n
��� � 1
−1
(1− F(t − uhn))(Dn(t − uhn)−Dn(t))dK(u)

���
+ |Dn(t)|

��� � 1
−1
(1− F(t − uhn))dK(u)

���
≤h−1n sup

a≤t≤b

���Rn(t) − R(t)
RnR(t)

����2 sup
0<t≤b

|Hn(t) −H(t)|
��� � 1
−1
dK(u)

���
+ hnH �(t∗)

��� � 1
−1
udK(u)

���+ |Hn(t)| � 1
−1

����K � � t − xhn
����� du�

where . t∗ is between t and .t − uhn. Thus by (10) we can get uniformly in . 0 ≤ t ≤
b < τ

.J3 = O
�
log log n

nhn

�
+O

��
log log n

n

�
(17) 

Finally the proof of the theorem is completed by Eqs. (14)–(17).
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