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In this paper, our focus is on exploring the gauge-invariant basis for bosonic couplings within the
framework of heterotic string theories, specifically examining three-, five-, and seven-derivative terms. We
thoroughly analyze the invariance of these couplings under T-duality transformations and make a notable
observation: the T-duality constraint enforces the vanishing of these couplings. We speculate that this result
likely holds true for all higher odd-derivative couplings as well. This is unlike the result in type I superstring
theory, where, for example, the couplings of five Yang-Mills field strengths are nonzero. The vanishing of
couplings is consistent with the Oðd; dþ 16Þ symmetry of the cosmological reduction of the effective
action.
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I. INTRODUCTION

The classical effective action of string theory exhibits a
global Oðd; d;RÞ symmetry at all orders of derivatives
when the effective action is dimensionally reduced on a
torus TðdÞ [1–3]. The nongeometric subgroup of this
symmetry allows us to construct the covariant and
gauge-invariant effective action of string theory at any
order of derivatives. The construction involves first deter-
mining the independent basis at each order of derivatives
with arbitrary coupling constants and then imposing
T-duality symmetry to determine the coupling constants
in each basis. For circular reduction, this method has been
employed in previous works, such as [4–6], to derive the
Neveu-Schwarz-Neveu-Schwarz (NS-NS) couplings up to
eight-derivative orders. More recently, a truncated T-duality
transformation has been shown to be applicable in finding
the Yang-Mills (YM) couplings, as well as NS-NS cou-
plings, in the heterotic theory [7].
In constructing covariant NS-NS bases, it is crucial to

account for all contractions of the NS-NS field strengths at
each derivative order. Subsequently, one may eliminate
from the list of couplings those that are redundant, meaning
they can be removed via field redefinitions, integration by
parts, and application of Bianchi identities, to find the
independent couplings in the minimal scheme [8]. The
circular reduction of such redundant couplings is also

invariant under T-duality [4–6]. This symmetry of the
redundant couplings may result from the Buscher trans-
formations for the NS-NS fields being linear in the
reduction scheme introduced in [9]. However, when
T-duality is extended to include YM fields, the correspond-
ing Buscher transformations become nonlinear [10].
This may cause the redundant couplings to no longer be
invariant under the full T-duality. In such cases, one should
consider the couplings in the maximal scheme, where the
redundant couplings due to field redefinitions are not
removed. In this paper, we first assume the redundant
couplings in the presence of YM fields are invariant
under the truncated T-duality transformations [7]. Hence,
to address the coupling constants, we apply the truncated
T-duality transformations to the minimal bases. Further-
more, in the Discussion section, we will explore applying
the same truncated T-duality transformations to the maxi-
mal bases in order to fix their coupling constants.
To enforce the Bianchi identities for the covariant NS-NS

couplings, one can utilize the diffeomorphism symmetry to
select a specific gauge where the Levi-Civita connection is
zero, while its derivatives are nonzero. This gauge selection
greatly simplifies the identification of independent gravity
couplings within the given basis [11]. Similarly, in order to
impose the Bianchi identities for the YM gauge-invariant
couplings, the YM gauge symmetry can be employed to
choose a specific gauge where the YM connection is zero,
while its derivatives are nonzero. This gauge choice aids in
determining the independent YM couplings within the
basis, effectively eliminating the commutator term in the
YM field strength [7].
To validate the elimination of commutator terms, even

for the derivatives of the YM field strength, we employ the
following reasoning. When the YM field is present, the
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derivative of the field strength involves both the Levi-Civita
and YM connections. This derivative is given by
∇̃F ¼ ∇F þ 1ffiffiffi

α0
p ½A;F�, where ∇ represents the ordinary

covariant derivative involving only the Levi-Civita con-
nection. We assume that the YM field is dimensionless and
use the fact that each derivative should come with a factor
of

ffiffiffiffi
α0

p
to make the corresponding coupling dimensionless.

Therefore, in the chosen gauge where A ¼ 0, the first
derivative of the YM field strength simplifies to the
ordinary covariant derivative.
The second derivative of the YM field strength can be

expressed as the sum of symmetric and antisymmetric
derivatives,

∇̃ ∇̃F ¼ ½∇̃; ∇̃�F þ f∇̃; ∇̃gF: ð1Þ

The symmetric part involves f∇;∇gF, along with other
terms involving the YM gauge field A without derivatives,
which become zero in the chosen gauge. On the other hand,
the antisymmetric part satisfies the following Bianchi
identity:

½∇̃; ∇̃�F ¼ ½∇;∇�F þ 1ffiffiffiffi
α0

p ½F;F�: ð2Þ

This indicates that either the couplings on the left-hand side
are independent, or the couplings on the right-hand side are
independent. The second term on the right-hand side has
fewer derivatives than the other terms in this equation. On
the other hand, in our procedure for finding the basis, we
assume a derivative expansion for the bases and first
construct the independent bases at the two-derivative level.
We then proceed to construct the bases at three-derivatives,
four-derivatives, and so on. Consequently, the terms FF on
the right-hand side are already chosen as independent
couplings in the basis at the lower derivative order.
Therefore, these terms can only modify the coefficient of
the independent terms that have already been chosen as
independent couplings. As a result, the FF terms can be
removed from the antisymmetric part, and the second
derivatives reduce to just the ordinary covariant derivatives.
This pattern continues for all higher derivatives of the YM
field strength.
Hence, in finding the basis at any order of derivatives, we

use the YM gauge symmetry to utilize the following YM
field strength and B-field strength:

Fμν
ij ¼ ∂μAν

ij − ∂νAμ
ij;

Hμνρ ¼ 3∂½μBνρ� −
3

2
A½μijFνρ�ij; ð3Þ

and their ordinary covariant derivatives. Here, the YM
gauge field is defined as Aμ

ij ¼ Aμ
IðλIÞij, where the

antisymmetric matrices ðλIÞij represent the adjoint

representation of the gauge group SOð32Þ or E8 × E8 with
the normalization ðλIÞijðλJÞij ¼ δIJ. Note that whenever H
appears in the basis, one can set the second term in the
above field strength expression to zero in our chosen gauge.
However, the second term has a nonzero contribution for
the derivative of H, which should be taken into account.
Once the basis at the n-derivative order is found, it is

important to also include the Lorentz Chern-Simons three-
form Ωμνρ in the B-field strength. This three-form arises
as a result of the Green-Schwarz mechanism [12]. Its
inclusion leads to couplings at derivative orders higher than
n with the same coefficients as those in the basis with n
derivatives. Moreover, to establish a basis suitable for
unfixed YM gauges, one should replace the ordinary
covariant derivatives with covariant derivatives that incor-
porate both the Levi-Civita and YM connections.
Additionally, the commutator term in the YM field strength
should be replaced as follows:

Fμν
ij ¼ ∂μAν

ij − ∂νAμ
ij þ 1ffiffiffiffi

α0
p ½Aμ

ik; Aνk
j�: ð4Þ

This replacement should also be applied to the covariant
derivatives of the YM field strength.
Determining the coupling constants in the bases involves

applying the nongeometric T-duality constraint to the
reduction of the effective action. If the parent couplings
are in unfixed YM gauges, the reduced couplings become
covariant and invariant under YM gauge transformations in
the base space. We can then leverage these symmetries to
choose gauges in which the Levi-Civita connection and
YM connections in the base space vanish, while their
derivatives do not. This allows us to apply the logic
described earlier in the base space, effectively eliminating
all commutators in the YM field strength and its derivatives
in the bases, resulting in ordinary covariant derivatives. On
the other hand, if the parent couplings are in the chosen
gauge where A ¼ 0, the reduced couplings do not contain
commutator terms, and the derivatives in the base space are
already in the form of ordinary covariant derivatives. In our
approach for finding the coupling constants, we follow the
latter case where the parent couplings and their circular
reductions are in the chosen gauge where the commutator
terms are zero, and the derivatives in both spacetime and in
the base space are treated as ordinary covariant derivatives.
Using the fact that the coupling constants are gauge
invariant, the resulting coupling constants should be valid
for any other gauges as well.
In the context of circular reduction, the nongeometric

aspects of T-duality transformations at the leading order of
derivatives are described by the Buscher transformations
[13,14]. These transformations, along with their higher
derivative generalizations, play a crucial role in determin-
ing the coupling constants. Within the reduction scheme
[9,10], the Buscher transformations exhibit linearity for the
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NS-NS fields but introduce nonlinearity for the YM field in
the base space. Specifically, the scalar component of the
YM gauge field appears nonlinearly in the corresponding
Buscher transformation [10]. Furthermore, this scalar field
manifests in a nonlinear manner during the circular
reduction of the effective actions. It is a nontrivial task
to find higher-derivative couplings that are invariant under
the full nonlinear Buscher transformations and their higher-
derivative extensions.
A previous study [7] introduced a truncation approach

for generalized Buscher transformations and the reduced
action. This truncation involves removing terms that
include derivatives of the scalar field, as well as terms
with second and higher orders of the scalar field. It was
proposed that these truncated Buscher transformations and
reduced action contain sufficient information to determine
the coupling constants at each derivative order. The validity
of this proposal was confirmed by evaluating the four-
derivative couplings in the heterotic theory, which were
found to be consistent with the corresponding couplings
obtained using the S-matrix method, as reported in the
literature [15,16]. Similar truncation schemes for the
NS-NS fields were also observed in [4], where the removal
of the Levi-Civita connection and all its derivatives in the
base space still retains enough information in the T-duality
constraint to determine all NS-NS couplings in a basis. In
that case, it would be straightforward to include the Levi-
Civita connection and its derivatives in the base space by
writing the resulting couplings in the base space in
covariant form. That step would not produce any further
constraint on the original couplings. However, it would be a
nontrivial task to include the terms in the base space that
involve the scalar component of the YM field and its
derivatives nonlinearly. This step would presumably pro-
duce further constraints on the original couplings, which
may fix the scheme of the original couplings. In other
words, we expect the couplings to be invariant only in a
specific scheme under the full nonlinear T-duality trans-
formations. In this paper, we adopt the truncated T-duality
transformation introduced in [7] to investigate the cou-
plings involving odd derivatives in the heterotic theory.
The paper is structured as follows: In Sec. II, we explore

bases that incorporate three-, five-, and seven-derivatives,
encompassing both NS-NS and YM field strengths, along
with their covariant derivatives. These bases include
arbitrary coupling constants. In Sec. III, we employ

truncated T-duality techniques to explicitly determine the
coupling constants in each basis. We find that T-duality
fixes all the coupling constants in these bases to be zero.
The result for the three-derivative coupling is consistent
with the one obtained from the S-matrix method. While
higher odd-derivative couplings are extremely difficult to
explicitly calculate, we speculate that all couplings involv-
ing odd-derivatives, which include field strengths and their
derivatives, are zero. In other words, the couplings asso-
ciated with odd derivatives are not YM gauge invariant and
should arise from the commutator terms present in the
even-derivative couplings of field strengths. Section IV
provides a concise discussion of our findings and their
implications. In particular, we clarify in this section that the
vanishing of the odd-derivative couplings is consistent with
the Oðd; dþ 16Þ symmetry of the cosmological reduction
of the heterotic effective action. Throughout our calcula-
tions, we utilize the “xAct” package [17] for computational
purposes.

II. MINIMAL BASES

In this section, we focus on identifying the bases that
involve three-, five-, and seven-derivative orders, incorpo-
rating both the NS-NS and YM field strengths. It becomes
evident that the couplings in these bases must necessarily
include the YM field strength. Without the presence of the
YM field strength, it would not be possible to construct
couplings with odd-derivatives solely from the NS-NS field
strengths.
At the three-derivative order, we find a single coupling

given by

Lð1=2Þ ¼ a1
ffiffiffiffi
α0

p
Fα

γ
i
jFαβikFβγkj ¼ a1

ffiffiffiffi
α0

p
TrðFα

γFβγFαβÞ:
ð5Þ

Here, a1 represents the coupling constant.
At the five-derivative order, we encounter a total of 51

couplings. However, by eliminating redundancies arising
from field redefinitions, integration by parts, and employ-
ing the Bianchi identity, we discover that there are 23
independent couplings remaining. Hence, the minimal
basis should have 23 couplings. These couplings in a
particular scheme are given by (See the Appendix for a
step-by-step explanation of how to find them.)

Lð3=2Þ ¼ α0
ffiffiffiffi
α0

p �
b1Fα

ϵimFαβjkFβ
γ
i
lFγδkmFϵ

δ
jl þ b2Fα

ϵ
ilFαβilFβ

εjkFϵ
γ
j
mFεγkm

þ b3FαβilFαβilFϵ
γ
j
mFϵεjkFεγkm þ b4Fα

ϵ
i
mFαβikFβ

νjlFϵ
γ
jlFνγkm

þ b5Fα
ϵ
i
lFαβijFβ

ν
j
kFϵ

γ
k
mFνγlm þ b6Fα

ϵ
i
jFαβilFβ

ν
j
kFϵ

γ
k
mFνγlm

þ b7Fα
ϵ
i
kFαβijFβ

ν
j
lFϵ

γ
k
mFνγlm þ b8Fαβi

jFαβikFε
γ
j
mFεν

k
lFνγlm
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þ b9Fαβ
lkFαβjiFγδkmFν

δ
i
mFνγ

jl þ b10Fαβ
ikFαβjlFγδkmFεε

δ
i
mFνγ

jl

þ b11Fα
ϵ
i
kFαβijFνγ

jkHβν
δHϵγδ þ b12FαβijFγδ

jkFϵε
i
kHαβϵHεγδ

þ b13Fα
ϵ
i
kFαβijFνγ

jkHβϵ
δHνγδ þ b14Fα

ϵ
i
kFαβijFβ

ν
jkHϵ

γδHνγδ

þ b15Fα
ϵ
i
kFαβijFβϵjkHνγδHνγδ þ b16Fα

ϵ
i
kFαβijFνγ

jkRβϵνγ

þ b17Fα
βjiFϵ

γ
ikFϵε

j
kHβεγ∇αΦþ b18Fα

βijFβ
ϵ
i
kFνγ

jkHϵνγ∇αΦ

þ b19Fβ
ε
i
kFβγijFγεjk∇αΦ∇αΦþ b20Fαβij∇αFϵε

ik∇βFϵεj
k

þ b21Fα
γijFβ

ε
i
kFγεjk∇αΦ∇βΦþ b22Fα

γijFβ
ε
i
kFγεjk∇β∇αΦþ b23Fα

ϵ
i
kFαβijFνγ

jk∇ϵHβνγ

�
; ð6Þ

where b1; b2;…; b23 represent the corresponding coupling constants. It includes single-trace terms, namely TrðFFFÞ and
TrðFFFFFÞ, aswell as two-trace termTrðFFÞTrðFFFÞ. If one does not use field redefinition andonly removes the redundancy
due to integration by parts and various Bianchi identities, one would find the maximal basis, which has 31 couplings.
At the seven-derivative order, a comprehensive analysis reveals the existence of a total of 19,310 couplings. However, by

eliminating redundancies resulting from field redefinitions, integration by parts, and the application of the Bianchi identity,
it is possible to identify 1,288 independent couplings in the minimal basis. These independent couplings can be expressed in
a particular scheme as follows:

Lð5=2Þ ¼ α02
ffiffiffiffi
α0

p �
c1Fα

γklFαβijFβ
δ
k
mFγ

ϵ
m
oFδ

ε
o
nFϵ

ν
lnFενij þ c2Fα

γ
i
kFαβijFβ

δlmFγ
ϵonFδ

ε
onFϵ

ν
lmFενjk

þ � � � þ c1287FαβijFγδ
i
kHαϵν∇εHβγδ∇νFϵε

jk þ c1288Fα
γ
i
kFαβijFβ

δ
jk∇εHδϵν∇νHγ

ϵε
�
: ð7Þ

The expression above represents a subset of the indepen-
dent couplings, with the ellipsis symbolizing an additional
1,284 terms that are not explicitly listed. These terms
involve various combinations of F, ∇F, H, ∇H, ∇Φ,
∇∇Φ, and Riemann curvature. It includes single-trace
terms, namely TrðF3Þ, TrðF5Þ, and TrðF7Þ, as well as two-
trace terms, namely TrðF2ÞTrðF5Þ and TrðF3ÞTrðF4Þ.
Additionally, there is a three-trace term TrðF2ÞTrðF2Þ
TrðF3Þ. The parameters c1; c2;…; c1288 correspond to
the respective coupling constants associated with these
independent couplings. In this case, if one does not use
field redefinition and only removes the redundancy due
to integration by parts and various Bianchi identities,
one would find the maximal basis, which has 1941
couplings.
The coupling constants in the above bases are back-

ground independent and invariant under the YM gauge
transformations. Hence, they may be fixed in a particular
background, which has one circle and in the particular
gauge where the YM connection is zero, but the YM field
strength is not. In this background, the reduction of the
couplings should be invariant under T-duality. Furthermore,
in this YM gauge, the YM commutator terms are zero,
which greatly simplifies the imposition of T-duality. Once
the coupling constants are fixed in this particular back-
ground and YM gauge, the background and gauge inde-
pendence of the coupling constants guarantee that they are
valid for any other background and any other gauges. In the
next section, we will determine these coupling constants
through the T-duality of the circular reduction, specifically
within the chosen YM gauge.

III. T-DUALITY CONSTRAINT
ON THE MINIMAL BASES

The observation that the dimensional reduction of the
classical effective action of string theory on a torusTðdÞ must
be invariant under the Oðd; d;RÞ transformations [1–3]
indicates that the circular reduction of the couplings
in the effective Lagrangian should be invariant under the
discrete group Oð1; 1;ZÞ or Z2-group, which consists only
of nongeometrical transformations. Therefore, in order to
impose this T-duality on the classical effective Lagrangian
Leff , we need to reduce the theory on a circle to obtain the
(D − 1)-dimensional effective Lagrangian LeffðψÞ, where ψ
collectively represents the base space fields. Then, we
transform this Lagrangian under the Z2-transformations
to produceLeffðψ 0Þ, whereψ 0 is the T-duality transformation
of ψ . The T-duality constraint on the effective Lagrangian is
given by

LeffðψÞ − Leffðψ 0Þ ¼ 0: ð8Þ

If we apply the T-duality once more to the above equation,
we find Leff ½ðψ 0Þ0� ¼ LeffðψÞ. This indicates that the
T-duality transformation that satisfies the above relation
must satisfy the Z2-group, i.e., ðψ 0Þ0 ¼ ψ .
To utilize the aforementioned constraint on the effective

Lagrangian, one must first determine the basis in which
only the redundancies resulting from field redefinitions and
Bianchi identities are eliminated. This basis comprises
terms that are total derivative terms. Subsequently, the
aforementioned constraint can be employed to determine
the coupling constants in the bases as well as the T-duality
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transformations [18]. However, to work with bases that
have fewer couplings, it is necessary to remove the
couplings in the bases that are total derivative terms, as
demonstrated in finding the minimal bases in (6) and (7). In
this case, T-duality should be imposed on the effective
action Seff , which includes the minimal bases. Since some
total derivative terms are eliminated from the Lagrangian in
the constraint (8), the remaining terms do not satisfy the
relation (8) unless certain total derivative terms are included
in the base space to compensate for the absence of total
derivative terms in the effective action. The T-duality
constraint in this scenario is given by

SeffðψÞ − Seffðψ 0Þ ¼
Z

dD−1x
ffiffiffiffiffiffi
−ḡ

p ∇a½e−2ϕ̄JaðψÞ�; ð9Þ

where SeffðψÞ represents the circular reduction of the
effective action, and Seffðψ 0Þ denotes its transformation
under the T-duality transformation. In the above equation,
Ja is an arbitrary covariant vector composed of the
(D − 1)-dimensional base space fields. In this case, if we
apply T-duality once more to (9), we find Seff ½ðψ 0Þ0� ¼
SeffðψÞ up to certain total derivative terms in the base space.
Therefore, once again, the T-duality transformation that
satisfies the above relation must adhere to the Z2-group,
i.e., ðψ 0Þ0 ¼ ψ .
The constraint (9) can be employed to determine the

coupling constants in the effective action Seff as well as
the T-duality transformations. One approach is to impose
the symmetry ðψ 0Þ0 ¼ ψ on the T-duality transformation to
reduce the parameters in the most general T-duality trans-
formations. These reduced parameters can then be used in
the above constraint to fix the coupling constants in the
effective action, as well as the remaining parameters in the
T-duality transformations [4–6]. Alternatively, one can use
the most general T-duality transformations in the above
constraint and solve the equation to determine the coupling
constants of the effective action and the corresponding
T-duality transformation. It should be noted that the
resulting T-duality transformation must automatically sat-
isfy the symmetry ðψ 0Þ0 ¼ ψ. In this paper, we adopt the
latter approach.
In the context of the heterotic theory, it has been

proposed that the truncated reduced action, which should
be invariant under truncated T-duality transformations, can
fix all coupling constants in the effective action Seff and in
the truncated T-duality transformations [7]. The proposed
constraint is given by

SLeffðψÞ − SLeffðψLÞ ¼
Z

d9x
ffiffiffiffiffiffi
−ḡ

p ∇a

�
e−2ϕ̄JaðψÞ�: ð10Þ

In the above equation, ψL represents the truncated T-duality
transformation, which includes only the zeroth and first
order terms of the scalar component of the YM gauge field

in the base space. SLeffðψÞ also corresponds to the truncated
reduction of the effective action. In the second term of the
equation, only the zeroth and first order terms of the scalar
should be retained.
The truncated T-duality transformation ψL can be

expanded in powers of α0 as follows:

ψL ¼ ψL
0 þ

X∞
n¼1

α0n

n!
ΔψLðnÞ þ

X∞
n¼0

α0nþ1
2ΔψLðnþ1

2
Þ: ð11Þ

Here, n represents integer numbers and ψL
0 represents the

truncated T-duality transformations at zeroth derivative,
also known as the truncated Buscher rule. ΔψLðkÞ for k
being integer and half-integer numbers represents their
deformations at order α0k. If the truncated circular reduction
of the effective action and the vector Ja have the following
α0-expansions:

SLeff ¼
X∞
k¼0

α0kSLðkÞ; Ja ¼
X∞
k¼0

α0kJaðkÞ; ð12Þ

and SLðkÞðψLÞ has the following Taylor expansion around
the truncated Buscher rule ψL

0 :

SLðkÞðψLÞ ¼
X∞
m¼0

α0mSLðk;mÞðψL
0 Þ; ð13Þ

where m represents integer and half-integer numbers, then
the Z2-constraint in (10) can be written as

X∞
k¼0

α0k
h
SLðkÞðψÞ −

X∞
m¼0

α0mSLðk;mÞðψL
0 Þ

−
Z

d9x∂a½e−2ϕ̄JaðkÞðψÞ�
�
¼ 0; ð14Þ

where JaðkÞ is an arbitrary covariant vector composed of the

nine-dimensional base space fields at order α0kþ1=2. In the
above equation, we assume the base space is flat for
simplicity, as the Z2-constraint for the coupling constants
is the same for curved and flat base spaces, as observed
in [4]. To determine the appropriate constraints on the
effective actions, each term at every order of α0 must be set
to zero.
The T-duality constraint (14) at order α00 is given by

SLð0ÞðψÞ − SLð0ÞðψL
0 Þ −

Z
d9x∂a½e−2ϕ̄Jað0ÞðψÞ� ¼ 0; ð15Þ

where SLð0ÞðψÞ is the circular reduction of the effective
action at the two-derivative order, which includes the zeroth
and the first order of the YM scalar. The effective action at
the two-derivative order is [15,19]
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Sð0Þ ¼ −
2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e−2Φ

�
R −

1

12
HαβγHαβγ þ 4∇αΦ∇αΦ −

1

4
FμνijFμνij

�
: ð16Þ

To perform the dimensional reduction of this action on a circle, we utilize the reduction scheme for the NS-NS and YM
fields as proposed in [7,9,10]

Gμν ¼
�
ḡab þ eφgagb eφga

eφgb eφ

�
; Aμ

ij ¼
�
Āa

ij þ eφ=2αijga
eφ=2αij

�
; Φ ¼ ϕ̄þ φ=4;

Bμν ¼
 
b̄ab þ 1

2
ðbagb − bbgaÞ þ 1

2
eφ=2αijðgaĀb

ij − gbĀa
ijÞ ba − 1

2
eφ=2αijĀa

ij

−bb þ 1
2
eφ=2αijĀa

ij 0

!
; ð17Þ

where ḡab, b̄ab, ϕ̄, and Āij
a represent the metric, B-field,

dilaton, and YM gauge field in the base space, respectively.
Additionally, ga and bb denote two vectors, while φ and αij

represent scalars within this space. By employing the above
reduction scheme, one can derive the following reductions
for different components of the H-field [9,10]:

Haby¼Wab−
1

2
eφα2Vab−eφ=2αijF̄abij;

Habc¼H̄abcþ3g½aWbc�−
3

2
eφα2g½aVbc�−3eφ=2αijg½aF̄bc�ij;

ð18Þ

where α2¼αijαij, Wab¼∂abb−∂bba, Vab ¼ ∂agb − ∂bga,
F̄ab

ij ¼ ∂aĀb
ij − ∂bĀa

ij, and H̄ represents the torsion in the
base space,

H̄abc ¼ 3∂½ab̄bc� −
3

2
g½aWbc� −

3

2
b½aVbc� −

3

2
Ā½aijF̄bc�ij:

ð19Þ

Our notation for antisymmetry is such that, for example,
3g½aWbc� ¼ gaWbc − gbWac − gcWba. The torsion obeys
the following Bianchi identity:

dH̄ þ 3

2
V ∧ W þ 3

4
F̄ij ∧ F̄ij ¼ 0: ð20Þ

The truncated reduction of the action (16) up to certain total
derivative terms, considering a flat base space, can be found
in [7]

SLð0ÞðψÞ ¼ −
2

κ02

Z
d9xe−2ϕ̄

�
−

1

12
H̄2 þ 4∂aϕ̄∂

aϕ̄ −
1

4
F̄abijF̄abij

−
1

4
∂aφ∂

aφ −
1

4
eφV2 −

1

4
e−φW2 −

1

2
eφ=2F̄abijVabαij þ 1

2
e−φ=2F̄abijWabαij

�
; ð21Þ

where κ0 is related to the nine-dimensional Newton’s constant. It has been observed in [7] that the above action satisfies the
constraint (15) for the following truncated Buscher transformations ψL

0 :

ga→ba; ba→ga; φ→−φ; αij→−αij; Āa
ij→ Āa

ij; η̄ab→ η̄ab; b̄ab→ b̄ab; ϕ̄→ ϕ̄; ð22Þ
where η̄ab is the flat metric of the base space.
The constraint in (14) at order

ffiffiffiffi
α0

p
becomes

−SLð0;1=2ÞðψL
0 Þ −

Z
d9x∂a½e−2ϕ̄Jað1=2ÞðψÞ� ¼ SLð1=2ÞðψL

0 Þ − SLð1=2ÞðψÞ: ð23Þ

Using the reductions in (17), one finds the truncated reduction of the couplings in (5),

SLð1=2ÞðψÞ ¼ −
2

κ02

Z
d9xe−2ϕ̄

�
a1F̄a

c
i
kF̄abijF̄bcjk þ 3a1eφ=2F̄a

c
i
kF̄bcjkVabαij

�
: ð24Þ

Its transformation under the truncated Buscher transformations (22) is

SLð1=2ÞðψL
0 Þ ¼ −

2

κ02

Z
d9x e−2ϕ̄½a1F̄a

c
i
kF̄abijF̄bcjk þ 3a1e−φ=2F̄a

c
i
kF̄bcjkWabαij�: ð25Þ
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Since these terms are single-trace and include only
field strengths F̄; V;W without their derivatives, it is
impossible to produce such terms by total derivative or
by corrections to the leading-order T-duality transformation
(22). Hence, the terms on the left-hand side of (23) are zero,
and the terms on the right-hand side must also be zero,
which fixes the parameter to be zero. Therefore, T-duality
dictates that

ΔψLð1
2
Þ ¼ 0; a1 ¼ 0: ð26Þ

The result for the effective action is consistent with the
S-matrix method [15].
Since Sð1=2Þ ¼ 0, its Taylor expansion is also zero; hence,

Sð1=2;mÞ ¼ 0. Moreover, since ΔψLð1=2Þ ¼ 0, the Taylor
expansion Sð1;1=2Þ is also zero. As a result, the constraint
in (14) at order α0

ffiffiffiffi
α0

p
becomes

− SLð0;3=2ÞðψL
0 Þ −

Z
d9x ∂a½e−2ϕ̄Jað3=2ÞðψÞ�

¼ SLð3=2ÞðψL
0 Þ − SLð3=2ÞðψÞ: ð27Þ

Using the reductions in (17), it is straightforward to find the
truncated reduction of the couplings in (6) to generate
SLð3=2ÞðψÞ. Then, by applying the truncated Buscher trans-
formations in (22), one can calculate its corresponding
SLð3=2ÞðψL

0 Þ. It is important to note that the right-hand side
is odd under the truncated Buscher transformation. Hence,
SLð0;3=2ÞðψL

0 Þ must also be odd, up to certain total deriva-
tive terms.
To determine the first termon the left-hand side of the above

equation, we require the inclusion of three-derivative correc-
tions to the truncated Buscher rules (22). In other words, we
need to consider the expanded form of the Buscher trans-
formations that includes terms involving three derivatives,

φL ¼ −φþ α0
ffiffiffiffi
α0

p
Δφð3=2ÞðψÞ þ � � � ; gLa ¼ ba þ α0

ffiffiffiffi
α0

p
eφ=2Δgð3=2Þa ðψÞ þ � � � ;

bLa ¼ ga þ α0
ffiffiffiffi
α0

p
e−φ=2Δbð3=2Þa ðψÞ þ � � � ; ḡLab ¼ ηab þ α0

ffiffiffiffi
α0

p
Δḡð3=2Þab ðψÞ þ � � � ;

H̄L
abc ¼ H̄abc þ α0

ffiffiffiffi
α0

p
ΔH̄ð3=2Þ

abc ðψÞ þ � � � ; ϕ̄L ¼ ϕ̄þ α0
ffiffiffiffi
α0

p
Δϕ̄ð3=2ÞðψÞ þ � � � ;

ðĀL
a Þij ¼ Āa

ij þ α0
ffiffiffiffi
α0

p
ΔĀð3=2Þ

a
ijðψÞ þ � � � ; ðαLÞij ¼ −αij þ α0

ffiffiffiffi
α0

p
Δαð3=2ÞijðψÞ þ � � � : ð28Þ

Note that the corrections also contain nonzero terms at the two-derivative order, denoted as ΔψLð1Þ, which have been
derived in [7]. However, since we have ΔψLð1

2
Þ ¼ 0, these corrections do not appear in the Taylor expansion SLð0;3=2ÞðψL

0 Þ
because ΔψLð1ÞΔψLð1

2
Þ ¼ 0; hence, they play no role in studying the T-duality of the five-derivative couplings.

The T-duality transformed base space fields ψL must satisfy the Bianchi identity (20). Therefore, the correction ΔH̄ð3=2Þ
abc

is related to the corrections Δbð3=2Þa , Δḡð3=2Þab , ΔĀð3=2Þ
a

ij, and an arbitrary two-form ΔBð3=2Þ
ab , all of which are at the three-

derivative order. This relation is given by [7],

ΔH̄ð3=2Þ
abc ¼ 3∂½aΔB

ð3=2Þ
bc� − 3eφ=2V ½abΔg

ð3=2Þ
c� − 3e−φ=2W½abΔb

ð3=2Þ
c� − 3F̄½abijΔĀ

ð3=2Þ
c�ij : ð29Þ

Here, ΔBð3=2Þ
ab represents an arbitrary two-form at the 3-derivative order. It is important to note that the truncated T-duality

transformations (28) must satisfy the Z2-group. Consequently, the deformations at the order of α0
ffiffiffiffi
α0

p
need to adhere to the

following constraint:

−Δφð3=2ÞðψÞ þ Δφð3=2ÞðψL
0 Þ ¼ 0; Δbð3=2Þa ðψÞ þ Δgð3=2Þa ðψL

0 Þ ¼ 0;

Δgð3=2Þa ðψÞ þ Δbð3=2Þa ðψL
0 Þ ¼ 0; Δḡð3=2Þab ðψÞ þ Δḡð3=2Þab ðψL

0 Þ ¼ 0;

Δϕ̄ð3=2ÞðψÞ þ Δϕ̄ð3=2ÞðψL
0 Þ ¼ 0; ΔBð3=2Þ

ab ðψÞ þ ΔBð3=2Þ
ab ðψL

0 Þ ¼ 0;

ΔĀð3=2Þij
a ðψÞ þ ΔĀð3=2Þij

a ðψL
0 Þ ¼ 0; −Δαð3=2ÞijðψÞ þ Δαð3=2ÞijðψL

0 Þ ¼ 0: ð30Þ

The corrections need to be constructed by considering all possible contractions of ∂φ, ∂φ̄, eφ=2V, e−φ=2W, H̄, F̄ab
ij, and

their derivatives at the order of α0
ffiffiffiffi
α0

p
, with arbitrary coefficients. These corrections should include terms at both zeroth and

first order in the scalar αij. One approach is to impose the above constraint on these corrections, which would reduce the
number of parameters involved. These modified corrections can then be used in the constraint (27). Alternatively, one can
directly insert the most general form of the corrections into the constraint (27). In this case, the constraint (27) would
determine the coupling constants in the effective action and also fix the parameters in the T-duality transformations, such
that they satisfy the relations mentioned above.
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By employing the T-duality transformations (28) and the relation (29), one can derive the Taylor expansion of the
T-duality transformation of the truncated reduced action at the leading order (21), centered around the truncated Buscher
transformations ψL

0 . The resulting expression is as follows:

SLð0;3=2ÞðψL
0 Þ ¼ −

2α03=2

κ02

Z
d9xe−2ϕ̄

��
1

4
∂
aφ∂bφ − 2∂a∂bϕ̄þ 1

4
H̄acdH̄b

cd þ
1

2
ðeφVacVb

c þ e−φWacWb
cÞ

þ F̄acijF̄b
cij þ ðeφ=2Vac − e−φ=2WacÞF̄b

cijα
ij

�
Δḡð3=2Þab þ

�
2∂c∂

cϕ̄ − 2∂cϕ̄∂
cϕ̄ −

1

24
H̄2

−
1

8
∂cφ∂

cφ −
1

8
ðeφV2 þ e−φW2Þ þ 1

2
F̄abijF̄abij þ ðeφ=2Vab − e−φ=2WabÞF̄abijα

ij

�

× ðηabΔḡð3=2Þab − 4Δϕ̄ð3=2ÞÞ −
�
1

2
∂a∂

aφ − ∂aϕ̄∂
aφþ 1

4
ðeφ=2Vab þ e−φ=2WabÞF̄abijα

ij

−
1

4
ðeφV2 − e−φW2Þ

�
Δφð3=2Þ þ

�
2e−φ=2∂bϕ̄Wab − e−φ=2∂bWab þ e−φ=2∂bφWab

þ 1

2
eφ=2H̄abcVbc − 2

�
∂bϕ̄þ 1

4
∂bφ

�
F̄abijαij þ ∂bF̄abijαij

�
Δgð3=2Þa þ

�
2eφ=2∂bϕ̄Vab

− eφ=2∂bVab − eφ=2∂bφVab þ 1

2
e−φ=2H̄abcWbc þ 2

�
∂bϕ̄ −

1

4
∂bφ

�
F̄abijαij

− ∂bF̄abijαij

�
Δbð3=2Þa þ

�
1

2
∂aH̄abc − H̄abc

∂aϕ̄

�
ΔBð3=2Þ

bc þ
�
1

2
H̄abcF̄bcij − ∂bF̄ab

ij

þ 2∂bϕ̄F̄ab
ij þ αij

�
2

�
∂bϕ̄ −

1

4
∂bφ

�
eφ=2Vab − 2

�
∂bϕ̄þ 1

4
∂bφ

�
e−φ=2Wab − eφ=2∂bVab

þ e−φ=2∂bWab

��
ΔĀð3=2Þij

a þ 1

2
F̄abijðeφ=2Vab − e−φ=2WabÞΔαð3=2Þij

�
; ð31Þ

where we have also removed certain total derivative terms.
It is important to emphasize that the terms presented above
exhibit an odd behavior under the truncated Buscher
transformations. Assuming that the correction Δαð3=2Þij
includes terms at the zeroth order of αij, it becomes
necessary to consider the terms in the reduced action
that involve the second order of αij. Consequently, this
consideration introduces terms in the equation above
that contain αijΔαð3=2Þij. However, when multiplied by
the appropriate terms resulting from the corresponding term
in the reduced action, this contribution fails to maintain the
desired odd behavior under the Buscher transformations
(see the explicit form of this term in [7]). Therefore, it can
be concluded that Δαð3=2Þij cannot contain terms at the
zeroth order of αij.
The vector Jað3=2Þ in the total derivative term of the

T-duality constraint (27) should be constructed by consid-
ering contractions of ∂φ, ∂φ̄, eφ=2V, e−φ=2W, H̄, and F̄ab

ij

at the four-derivative order, with arbitrary coefficients.
These constructions should also include terms at both
the zeroth and first order in the scalar αij.
In order to solve the Eq. (27), it is crucial to impose

the Bianchi identities associated with the field strengths H̄,
F̄, V, and W. We impose the H̄-Bianchi identity in its

gauge-invariant form, while for the other Bianchi identities,
we impose them in a nongauge-invariant form. To enforce
the H̄-Bianchi identity, we introduce the gauge-invariant
tensorHabcd, which is totally antisymmetric and of order α0.
We then consider all possible scalar contractions involving
∂φ, ∂φ̄, eφ=2V, e−φ=2W, H̄, H, F̄ij, and their derivatives up
to the five-derivative order, which linearly include the
tensor H. These contractions should include terms at both
the zeroth and first order in the scalar αij, and the
coefficients of these gauge-invariant terms are arbitrary.
Next, we incorporate the following gauge-invariant relation
for the newly defined tensor:

Habcd ¼ ∂½aH̄bcd� þ
3

2
V ½abWcd� þ

3

4
F̄½abijF̄cd�ij: ð32Þ

We denote the resulting gauge-invariant scalar as BIðψÞ.
This scalar is then added to (27), thereby imposing the
H̄-Bianchi identity in a gauge-invariant form. To impose
the Bianchi identities corresponding to F̄, V, and W,
whenever there are terms with derivatives of these field
strengths, we replace them with their corresponding poten-
tials. As a result, Eq. (27) can be expressed in terms
of independent but nongauge-invariant couplings. The
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coefficients of these independent terms must be set to zero,
resulting in a system of linear algebraic equations involving
all the parameters.
Upon solving the system of algebraic equations, we

discover two distinct sets of solutions for the parameters
involved. The first set represents relationships exclusively
among the parameters in the deformations of the truncated
Buscher rules, the parameters corresponding to the
H̄-Bianchi identity, and the parameters in the total derivative
terms. These solutions satisfy the homogeneous equation
corresponding to (27), with the right-hand side being zero.
However, this general solution is not of interest to us.
The other solution, which is the particular solution of the

nonhomogeneous equation (27) and the one of interest,
provides an expression for these parameters in terms of the
coupling constants b1; b2;…. This solution also establishes
the relationships between the coupling constants. In our
analysis, we will consider this particular solution that sets
all parameters in the effective action and their correspond-
ing corrections to the Buscher rules to zero, i.e.,

ΔψLð3
2
Þ ¼ 0; b1 ¼ b2 ¼ � � � ¼ b23 ¼ 0: ð33Þ

In fact, there are 12 couplings with coefficients
b1; b5; b6; b7; b8; b9; b11; b12; b13; b17; b18; b20 that appear
solely in the algebraic equation, without any contribution
from total derivatives, corrections to the Buscher

transformations, or the Bianchi identities. As a result, they
are constrained to be zero. The other coefficients appear in
the algebraic equation in combination with the other
parameters of the total derivative terms, corrections to
the Buscher transformations, and the Bianchi identities.
However, the algebraic equation fixes them to zero as well.
Therefore, the effective action at the five-derivative order in
the particular gauges, where the YM potential is zero but its
field strength is not zero, vanishes identically. The YM
gauge symmetry then dictates that the effective action is
zero in any other gauges as well.
Given that SLð1=2Þ, SLð3=2Þ, ΔψLð1

2
Þ and ΔψLð3

2
Þ are zero,

the constraint in (14) at the order α02
ffiffiffiffi
α0

p
takes the form,

− SLð0;5=2ÞðψL
0 Þ −

Z
d9x∂a½e−2ϕ̄Jað5=2ÞðψÞ�

¼ SLð5=2ÞðψL
0 Þ − SLð5=2ÞðψÞ: ð34Þ

By employing the circular reductions in (17), one can
compute the truncated reduction of the couplings in (7) to
generate SLð5=2ÞðψÞ. Subsequently, by utilizing the trun-
cated Buscher transformations in (22), one can calculate the
corresponding SLð5=2ÞðψL

0 Þ.
To determine the first term on the left-hand side of the

Eq. (34), we consider the five-derivative corrections to the
truncated Buscher rules (22), given by

φL ¼ −φþ α02
ffiffiffiffi
α0

p
Δφð5=2ÞðψÞ þ � � � ; gLa ¼ ba þ α02

ffiffiffiffi
α0

p
eφ=2Δgð5=2Þa ðψÞ þ � � � ;

bLa ¼ ga þ α02
ffiffiffiffi
α0

p
e−φ=2Δbð5=2Þa ðψÞ þ � � � ; ḡLab ¼ ηab þ α02

ffiffiffiffi
α0

p
Δḡð5=2Þab ðψÞ þ � � � ;

H̄L
abc ¼ H̄abc þ α02

ffiffiffiffi
α0

p
ΔH̄ð5=2Þ

abc ðψÞ þ � � � ; ϕ̄L ¼ ϕ̄þ α02
ffiffiffiffi
α0

p
Δϕ̄ð5=2ÞðψÞ þ � � � ;

ðĀL
a Þij ¼ Āa

ij þ α02
ffiffiffiffi
α0

p
ΔĀð5=2Þ

a
ijðψÞ þ � � � ; ðαLÞij ¼ −αij þ α02

ffiffiffiffi
α0

p
Δαð5=2ÞijðψÞ þ � � � : ð35Þ

It is worth noting that these corrections also contain terms at
the two-derivative and four-derivative orders, i.e.,ΔψLð1Þ and
ΔψLð2Þ. However, since ΔψLð1

2
Þ ¼ 0 ¼ ΔψLð3

2
Þ ¼ 0, these

corrections do not play a role in studying the T-duality of
the seven-derivative couplings. Thus, the first termon the left-
hand side of the constraint (34) can be obtained by replacing
the three-derivative correction of the Buscher rules in (31)
with the five-derivative corrections. The subsequent steps
follow a similar procedure. The result we obtain is as follows:

ΔψLð5
2
Þ ¼ 0; c1 ¼ c2 ¼ � � � ¼ c1288 ¼ 0: ð36Þ

Hence, the effective action at the seven-derivative order is
zero.
Given that SLð1=2Þ, SLð3=2Þ, SLð5=2Þ, ΔψLð1

2
Þ, ΔψLð3

2
Þ, and

ΔψLð5
2
Þ are zero, the constraint in (14) at the order α03

ffiffiffiffi
α0

p
can be expressed as follows:

− SLð0;7=2ÞðψL
0 Þ −

Z
d9x∂a½e−2ϕ̄Jað7=2ÞðψÞ�

¼ SLð7=2ÞðψL
0 Þ − SLð7=2ÞðψÞ: ð37Þ

However, performing explicit calculations at this order and
beyond is extremely challenging for computers due to the
extensive length of the calculations involved. While there are
no fundamental obstacles in performing these calculations,
the main difficulty lies in the extensive computational effort
required. We expect that the same results we have obtained
for the three-, five-, and seven-derivative cases hold true for
all higher odd-derivative couplings, namely,

ΔψLðnþ1
2
Þ ¼ 0; SLðnþ1

2
Þ ¼ 0; n ¼ 0; 1; 2;…: ð38Þ

Hence, the truncated T-duality transformation (11) can only
have even-derivative contributions, i.e.,
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ψL ¼ ψL
0 þ

X∞
n¼1

α0n

n!
ΔψLðnÞ: ð39Þ

Furthermore, the effective action also consists solely of even-
derivative gauge invariant couplings, i.e.,

Seff ¼
X∞
n¼0

α0nSðnÞ: ð40Þ

However, it is important to note that this result does not imply
the absence of contact terms in the sphere-level
S-matrix element of the heterotic theory that involve an
odd number of momenta. In fact, these contact terms should
be accounted for by the nonzero commutator terms present in
the even-derivative couplings of field strengths. For example,
consider the three-point function of three YM vertex oper-
ators, which includes one momentum [15]. This particular
configuration is indeed reproduced by the commutator term
present in the leading-order action (16). Thus, while the odd-
derivative couplings vanish, the contact terms involving odd
numbers of momenta are still captured by the commutator
terms within the even-derivative couplings.

IV. DISCUSSION

The classical effective action of string theory, when
subjected to circular reduction, exhibits the Oð1; 1;RÞ
symmetry, as discussed in [1–3]. The determination of
coupling constants within the effective action can be
achieved by applying the nongeometric subgroup
Oð1; 1;ZÞ or the associated generalized Buscher trans-
formations to the gauge invariant independent couplings
at any order of derivatives. In the context of heterotic string
theory, the circular reduction of the effective action and the
generalized Buscher transformations demonstrate nonli-
nearity with respect to the scalar component of the YM
gauge field. A recent paper [7] has introduced a truncated
approach,where the reduced action and generalizedBuscher
transformations treat the scalar field as a constant and retain
only the zeroth and first orders of the scalar field. By
employing this truncated version of the generalized Buscher
transformations, the coupling constants within the effective

action can still be determined. In this study, we have applied
this constraint to the gauge invariant independent couplings
with an odd number of derivatives. Specifically, we have
provided explicit demonstrations that for three-, five-, and
seven-derivative couplings, the odd-derivative terms vanish
under this imposed constraint. We further speculate that this
result holds true for all higher odd-derivative couplings as
well. This is in contrast to the couplings in type I superstring
theory, where nonzero couplings of, for example, five YM
field strength are present [20].
We have applied T-duality to the minimal bases (6)

and (7) in order to determine their coupling constants. This
is based on the assumption that the combinations of
couplings, which can be eliminated through field redefi-
nition, integration by parts, and Bianchi identities, may also
be invariant under T-duality. This assumption is valid for
the NS-NS couplings [4–6], which may be a consequence
of the fact that the Buscher transformations for the NS-NS
fields in the reduction scheme [9] are linear. However, this
assumption may not be valid when considering YM fields
because the corresponding Buscher transformations in the
presence of YM field are nonlinear [10]. This assumption is
not valid even for truncated Buscher transformations. To
see this, consider, for instance, the following examples of
such couplings with an overall factor a:

a

�
1

2
Fα

γ
i
kFαβijFϵε

jkHβγ
μHϵεμ − 2Fα

βijFγ
ε
jkF

γϵ
i
kHβϵε∇αΦ

þ Fα
γ
i
kFαβijHβγε∇ϵFϵε

jk

�
: ð41Þ

These couplings can be removed by a field redefinition of
the form Aαij ¼ Aαij − Fβ

μ
jkF

βν
i
kHανμ, along with certain

total derivative terms. However, the reduction of these
couplings minus their transformation under the Buscher
rules (22) is a complicated expression that cannot be
removed through any corrections to the Buscher rules.
This can be seen by considering the reduction minus
T-duality for the case where ∇F̄ ¼ ∇V ¼ ∇W ¼ ∇H̄ ¼
W ¼ ∇ϕ̄ ¼ ∇∇ϕ̄ ¼ 0, which is

a

�
−
1

2
eφF̄ab

ijF̄c
e
i
kF̄dejkVabVcd þ eφ=2F̄c

e
jkF̄cd

i
k∇aφH̄bdeVa

bαij

−
1

2
eφ=2F̄a

cklF̄bck
mF̄delmF̄de

ijVabαij þ 1

2
eφ=2F̄c

e
jkF̄cd

i
kH̄ab

fH̄defVabαij

þ eφ=2F̄a
c
i
kF̄de

jkH̄bc
fH̄defVabαij −

1

4
eφ=2F̄b

d
i
kF̄cdjk∇aφ∇aφVbcαij

−
1

2
eφ=2F̄b

d
i
kF̄cdjk∇a∇aφVbcαij −

1

2
eφ=2F̄abi

kF̄de
jk∇aφH̄cdeVbcαij

�
: ð42Þ
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One can verify that these terms cannot be removed by any
corrections to the Buscher rules. If the T-duality on the
effective action fixes the coefficient a to be nonzero, then
one is not allowed to remove the couplings (41) from the
list of couplings in the basis.
The observed phenomenon suggests that in the presence

of YM fields, applying T-duality to the minimal basis,
where field redefinitions are imposed, may not correctly
determine the coupling constants. The correct approach to
enforce T-duality and fix the coupling constants is by
imposing it on the maximal basis, where field redefinitions
are not imposed. However, in this case, T-duality is unable
to fix all coupling constants, as there are several parameters
present in the resulting T-duality invariant action that can
subsequently be eliminated through field redefinition. If the
number of constraints that T-duality produces in the
minimal basis is the same as the number of constraints it
produces in the maximal basis, then there are no sets of
couplings with the above property. At the four-derivative
order, there are no such couplings because the number of
constraints between the coupling constants for the maximal
basis is 24, which is equal to the number of constraints
between the coupling constants in the minimal basis [7]. At
the five-derivative order, we have discovered that applying
T-duality to the minimal basis produces 23 relations, which
matches the number of minimal couplings. However, when
applying T-duality to the maximal basis, it yields 25
relations, while there are a total of 31 couplings. This
implies the existence of two sets of couplings that satisfy
the aforementioned property. By incorporating the 25
relations from the maximal basis T-duality constraint, we
verified that the remaining parameters in the action can be
eliminated through field redefinition.1 Consequently, there
are no physical couplings in the maximal basis at the five-
derivative order. It should be noted that the above property
exists even for the Abelian case, where the YM gauge field
has no internal indices. In fact, we have performed the
calculation for the abelian case at the five-derivative order
and found 18 couplings in the minimal basis and 54
couplings in the maximal basis. The T-duality produces
18 relations in the minimal basis, whereas it produces 42
relations in the maximal basis. Again, when one inserts
these 42 relations into the maximal basis, the remaining
terms can be removed by field redefinitions.2

Furthermore, we imposed T-duality on the maximal basis
at the seven-derivative order and found that it produces
1379 relations among the 1941 couplings. In contrast,
T-duality on the minimal basis, which has 1288 couplings,
generates 1288 relations. Hence, there are 91 sets of
couplings that exhibit the mentioned property. After incor-
porating these 1379 relations into the action within the
maximal scheme, we observed that all the remaining
parameters in the resulting action can be removed through
field redefinition. Therefore, there are no physical cou-
plings at the seven-derivative order either.
The T-duality constraints (27), (34), (37) have similar

patterns and similar solutions, where the corresponding
effective actions are zero. One may try to prove by
induction that such a pattern dictates the vanishing of
the coupling constant. However, there are similar patterns
for the couplings at the four-derivative order, which
produce nonzero coupling constants [7]. At the six-deriva-
tive order, the T-duality constraint has a different pattern
that includes the Taylor expansion of the four-derivative
couplings as well. This causes the coupling constant to be
nonvanishing. If one removes this extra term, then the
T-duality would find a similar pattern as in (27), which
produces the wrong result of vanishing coupling constants.
At the eight-derivative order, the T-duality also produces
extra terms from the Taylor expansion of the four- and six-
derivative orders. If one removes such terms, then the
T-duality would find a similar pattern as in (27). However,
using the fact that at the eight-derivative order, there are
couplings with the coefficient ζð3Þ which are not present in
the four- and six-derivative orders, the simplified pattern
should produce non-vanishing coupling constants. Hence,
it seems it is nontrivial to prove from the pattern (27), (34),
(37) that the odd-derivative couplings are zero, without
using explicit calculations.
We have found that the T-duality of the circular

reduction of the effective action constrains all odd-
derivative gauge-invariant couplings to be zero. This
result is consistent with the Oðd; dþ 16Þ symmetry of
the cosmological reduction of the effective action [3]. For
zero YM field, it has been observed in [21,22] that the
cosmological reduction of the effective action can be
written in a specific scheme in terms of the trace of various
orders of the first time derivative of the Oðd; dÞ matrix S.
On the other hand, the trace of an odd number of Ṡ is zero
[21,22]. In the presence of a YM field, the Oðd; dÞ
matrix S is extended to an Oðd; dþ 16Þ matrix [3,9].
In the specific gauge used in this paper that removes all the
commutator terms, the cosmological reduction of the
couplings should have Oðd; dþ 16Þ symmetry. They
should be written in terms of the trace of various orders
of Ṡ, where S now includes NS-NS and YM fields. Then,
the observation that the trace of an odd number of Ṡ is zero
dictates that there are no odd-derivative couplings in the
heterotic theory.

1This calculation can be done by using the Eq. (A10) in the
Appendix, in which Δ ¼ L, where L is the Lagrangian that has
six parameters. This Lagrangian is the result of inserting the 25
relations in the maximal basis. When one solves this equation,
one finds that the parameters in field redefinitions and total
derivative terms can be written in terms of the six parameters in L.
In other words, the Eq. (A10) does not produce any relation
between the six parameters. This means the six parameters can be
removed by field redefinitions and integration by parts.

2At the three-derivative order in the abelian case, there is only
one independent coupling: aFβγHαβγ∇αΦ. The T-duality fixes the
coefficient of this coupling to be zero.
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In a recent paper [23], it was observed that T-duality
fixes the coupling constants in the NS-NS bases that have
an odd number of B-fields to be zero, both in bosonic and
superstring theories. This finding, along with the results
presented in this paper, suggests that T-duality has the
ability to determine the couplings in a basis up to an overall
factor, as long as that factor is nonzero within the context of
string theory. In other words, if a coupling is zero in string
theory, T-duality will yield that result. However, if the
overall factor of the couplings in a basis is nonzero in any of
the string theories and their values depend on the specific
type of string theory, then T-duality cannot fix it, since
T-duality is a symmetry of all string theories.
It has been observed in [7] that T-duality imposes

constraints on the single-trace couplings of the YM field
strength at the n-derivative order, with the exception of
n ¼ 2, resulting in their vanishing. In the present paper, we
have made a similar finding: the couplings involving
single-trace terms with an odd number of YM field
strengths, multiplied by other NS-NS terms or TrðFFÞ,
are likewise forced to be zero. For instance, we have
determined that the coupling TrðFFÞTrðFFFÞ is zero. This
observation suggests that similar constraints may apply to
even-derivative gauge invariant couplings as well. If this
hypothesis holds true, one would expect the YM field
strength and its derivatives to appear in the even-derivative
couplings in the form of different orders of TrðFFÞ.
Performing calculations for the six-derivative and eight-
derivative orders would be of great interest in order to
verify this speculation.
We have observed how specifically fixing the YM gauge

symmetry facilitates the identification of independent
covariant couplings at various orders of derivatives. In
both bosonic and superstring theory, the non-Abelian YM
field arises on stacks of Dp-branes. One might attempt to
employ a similar method to identify the independent
covariant YM couplings for Dp-branes. However, in this
case, it is not clear how to impose world-volume diffeo-
morphism symmetry for the non-Abelian case. For the
Abelian case, the independent world-volume covariant
couplings can be constructed using the pull-back metric.
Subsequently, the coupling constants can be determined by
imposing T-duality [24,25]. In the non-Abelian case, it is
known that the four YM field strength couplings coincide
with the corresponding couplings in the non-Abelian DBI
action when a symmetric trace is imposed [26]. However, it
is also known that the couplings involving higher YM field
strengths are not provided by the non-Abelian symmetrized
trace DBI action [27]. Investigating the world-volume
diffeomorphism symmetry for the non-Abelian case would
be intriguing, as it could help identify independent covar-
iant and YM gauge invariant world-volume couplings.
Subsequently, by imposing T-duality on these couplings,

the coupling constants can be determined following a
similar approach to what has been done in the context
of the Abelian case [24,25].

APPENDIX: 5-DERIVATIVE BASIS

In this Appendix, we provide a step-by-step explanation
of how, using the xAct package, we find the basis at the
five-derivative order in (6).
We first consider all terms constructed from ∇Φ, H, F ,

R, and their derivatives, to construct the five-derivative
structures that have an odd number of F and its derivatives.
Here, Φ is the dilaton, H has three totally anti-
symmetric indices, R is the Riemann curvature, and F
has four indices—it is antisymmetric in the first two indices
and also antisymmetric in the last two indices. All indices
belong to a single manifold. We find that there are 62 such
structures,

L0 ¼ FH4 þ F 3H2 þ F 5 þ FH2Rþ � � � : ðA1Þ

We then add indices to these structures using the following
commands:

L1 ¼ IndexFree½L0�;
L2 ¼ FromIndexFree½L1�: ðA2Þ

Next, we consider all possible contractions of indices using
the command,

L3 ¼ AllContractions½L2�: ðA3Þ

This produces many contractions in which the last two
indices of F contract with indices of H, ∇Φ, R, and their
derivatives. These terms should be eliminated.
To do this, we introduce the YM tensor Fαβ

ij, which has
two antisymmetric spacetime indices and two antisymmet-
ric internal indices of the SOð32Þ or E8 × E8 spaces. We
also introduce the tensor Eα

i, which maps the spacetime
indices to the internal space indices, with the property
Eα

iEαj ¼ κij, where κij is the metric of the internal spaces.
By replacing F αβμν in L3 with Eμ

iEν
jFαβij, using the

identity Eα
iEαj ¼ κij, and removing all terms where the Eα

i

remains, we find all contractions in L3 where the last two
indices of the F’s are contracted with each other. This
results in 51 couplings, which we call L4. Finally, we use
the command,

L0 ¼ MakeAnsatz½L4; ConstantPrefix; b0�: ðA4Þ

This adds coefficients b01; b
0
2; � � � to the couplings, i.e.,

L0 ¼ b01Fα
ϵimFαβjkFβ

γ
i
lFγδkmFϵ

δ
jl þ � � � : ðA5Þ

MOHAMMAD R. GAROUSI PHYS. REV. D 110, 066022 (2024)

066022-12



There is also an overall dilaton factor of e−2Φ. The above
represents all possible contractions between ∇Φ, H, F, R,
and their derivatives at the five-derivative order, which have
an odd number of YM field strengths. However, they are
not all independent. Some of them are interrelated through
total derivative terms, while others are connected through
field redefinitions or various Bianchi identities.
To eliminate the total derivative terms from the afore-

mentioned couplings, the following terms are introduced
into the Lagrangian L0:

e−2ΦJ ≡∇αðe−2ΦIαÞ: ðA6Þ

Here, the vector Iα represents a collection of all possible
covariant and gauge-invariant terms at the four-derivative
level, including arbitrary parameters. The construction of
such terms is similar to the construction of L0, except that
Iα has one spacetime index.
To eliminate the freedom of field redefinitions, it is

necessary to perturb the metric, dilaton, H-field, and YM

gauge fields in the two-derivative action which is given
in (16). By utilizing the Bianchi identity satisfied by the
H-field,

∇½αHβμν� þ
3

4
F½αβijFμν�ij ¼ 0; ðA7Þ

it is found that the perturbation of the H-field and the
perturbation of the YM field are related through the
equation dðδH þ 3FijδAijÞ ¼ 0, where form notation is
employed. Consequently, the perturbation of the H-field
can be expressed as a linear combination of the YM gauge
field perturbation and an arbitrary two-form δB,

δH ¼ 3dδB − 3FijδAij: ðA8Þ

Subsequently, the field redefinition introduces the follow-
ing terms into the Lagrangian L0:

K≡
�
1

2
∇γHαβγ −Hαβ

γ∇γΦ
�
δBαβ

−
�
∇βFαβ

ij − 2Fαβ
ij∇βΦ −

1

2
FβμijHαβμ

�
δAα

ij

−
�
Rαβ −

1

4
HαγδHβ

γδ þ 2∇β∇αΦ −
1

2
FαμijFβ

μij

�
δGαβ

− 2

�
R −

1

12
HαβγHαβγ þ 4∇α∇αΦ − 4∇αΦ∇αΦ −

1

4
FαβijFαβij

��
δΦ −

1

4
δGμ

μ

�
: ðA9Þ

In this expression, the perturbations δGμν, δBμν, δΦ, δAa
ij

are constructed from the NS-NS and YM fields at the three-
derivative order, with arbitrary coefficients. δGμν is sym-
metric, and δBμν is antisymmetric. The construction of
these perturbations is similar to the construction of L0. By
incorporating the total derivative terms and the contribution
from field redefinitions into the Lagrangian L0, the resulting
Lagrangian, denoted as L, exhibits different coupling
constants b1; b2; � � �. Consequently, the equation,

Δ − J −K ¼ 0; ðA10Þ

holds, where Δ ¼ L − L0 is equivalent to L0, but with
coefficients δb1; δb2;…, where δbi ¼ bi − b0i.
To solve the Eq. (A10), it is necessary to express it in

terms of independent couplings by imposing the following
Bianchi identities:

Rα½βγδ� ¼ 0; ∇½μRαβ�γδ ¼ 0; ½∇;∇�O − RO ¼ 0;

∇½αHβμν� þ
3

4
F½αβijFμν�ij ¼ 0; ∇½αFβγ�ij ¼ 0: ðA11Þ

The above Bianchi identities can be imposed on the
Eq. (A10) either in a gauge-invariant form or a non-
gauge-invariant form. We impose them in a non-gauge-
invariant form. Hence, we rewrite the terms in (A10) in a
local frame, where the covariant derivatives are expressed
in terms of partial derivatives and the first partial derivative
of the metric is zero. Additionally, the terms involving H
and F and their derivatives in (A10) can be rewritten in
terms of potentials using the relations (3). The terms that
have the YM gauge field without derivatives should be
zero. This way, all the Bianchi identities are automatically
satisfied.
The Eq. (A10) can then be solved to find relations

between the δb’s, the parameters in the total derivative
terms, and the parameters in the field redefinitions. We find
23 relations between only the δb’s that we are interested in,
as well as some other relations that express the parameters
in the total derivative terms and field redefinitions in terms
of the δb’s. The 23 relations indicate that there are only 23
independent terms in L0. This means there are 28 terms in
L0 that are removable by total derivative terms, field
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redefinitions, and Bianchi identities. If one removes such
terms, then the basis becomes the minimal basis. There are
different minimal schemes for choosing the 23 independent
terms. To find these terms, one can choose the coefficients
of 28 terms in L0 to be zero and then solve the Eq. (A10)
again. If one finds 23 relations δbi ¼ 0, then that choice is
allowed; otherwise, one should choose another set of 28
couplings to be zero. The couplings in (6) represent a

particular minimal basis. On the other hand, if one does not
use field redefinitions, which means removing K from the
Eq. (A10), then one finds 31 relations between only the
δb’s. This means the maximal basis has 31 independent
terms. There are also different schemes for choosing the
maximal basis.
Similar steps can be used to find the minimal and

maximal bases at seven-derivative orders.
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