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Abstract 

This paper introduces NAUSM+M+AUFS (New Improved Advection Upstream Splitting Method Plus 

Artificially Upstream Flux Vector Splitting), a novel hybrid computational scheme for simulating 

compressible flows on triangular grids. The AUSM+M (Improved Advection Upstream Splitting Method) 

method is enhanced through two key modifications to boost numerical stability and robustness in high Mach 

number and hypersonic flows. The first modification redefines the interfacial numerical sound velocity, 

reducing shock anomalies and improving shock-capturing by integrating velocity and characteristic sound 

speed parameters. The second modification addresses the insufficiency of the pressure flux dissipation term 

at supersonic speeds by introducing a formulation that increases dissipation proportionally to the Mach 

number, thereby enhancing performance in high-speed flows. These enhancements constitute the 

NAUSM+M method. 

The NAUSM+M+AUFS scheme combines the strengths of NAUSM+M and AUFS (Artificially Upstream 

Flux Vector Splitting) methods, particularly in overcoming the limitations of NAUSM+M in handling shock 

instabilities and the carbuncle phenomenon on structure triangular grids. A dynamic switching function 

adjusts the weighting between NAUSM+M and AUFS, optimizing accuracy and stability based on local 

flow conditions. Numerical tests demonstrate that NAUSM+M+AUFS significantly outperforms 

AUSM+M, NAUSM+M, and AUFS, effectively eliminating the carbuncle phenomenon and providing 

smooth shock wave contours. In steady flow analysis, the new hybrid method achieves convergence speeds 

comparable to AUFS and shows 15% to 45% superior convergence accelerating than AUSM+M, depending 

on the convergence rate. In addition, in steady flow analysis the accuracy of NAUSM+M+AUFS is 46% 

better than that of AUFS. This approach represents a significant advancement, offering a robust, accurate, 

and efficient solution for high-speed aerodynamic simulations, with broad applicability across various 

compressible flow challenges. 
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Introduction  

Many applications in computational fluid dynamics that deal with compressible flows require 

highly accurate numerical methods. These methods are crucial for accurately predicting flow 

phenomenon like shock waves, which feature complex structures. The dominant forces in these 

inviscid, compressible flows are governed by the compressible Euler equations, which are 

hyperbolic in nature; these flows are typically addressed using various numerical approaches that 

originate from the one-dimensional approximate Riemann solver, following the Godunov scheme 

[1]. Several commonly used approximate Riemann solvers are designed to tackle the Riemann 

problem, involving a hyperbolic equation with initial conditions that consist of two constants and 

a discontinuity. Additionally, many numerical approaches have been proposed to solve the Euler 

equations. 

These numerical approaches are primarily categorized into Flux Difference Splitting (FDS) and 

Flux Vector Splitting (FVS). Within FDS, methods are distinguished based on their wave structure 

into complete and incomplete approximate Riemann solvers. Complete solvers such as the Roe 

(Roe approximate Riemann solver) [2, 3], HLLC (Harten Lax van Leer Contact)  [4], and Osher 

[5] schemes are known for their effective handling of contact discontinuities, boundary layers, and 

steady shocks. However, they are prone to issues like the carbuncle phenomenon or shock 

instability, particularly in hypersonic vehicles with blunt body designs. Various remedies, such as 

entropy correction in the Roe scheme [6], have been proposed to tackle these challenges, although 

they often require arbitrary parameters that can impact shock robustness and may compromise 

boundary-layer resolution [5]. 

Incomplete solvers, in contrast, utilize a simplified wave model that omits the linear wave, making 

them highly stable against carbuncle instability and efficient in capturing strong shocks. These 

include the two-wave HLL [7] and the one-wave Rusanov [8] solvers. FVS methods [9] are noted 

for their lower complexity and reduced computational demand as they do not rely on eigen 

structure data. Similar to incomplete FDS methods [10], FVS approaches provide good shock 

stability but do not adequately resolve contact discontinuities. To leverage the strengths of both 

FDS and FVS, Liou and Steffen [11] developed the Advection Upstream Splitting Method 

(AUSM), which divides inviscid flux into convective and pressure systems. This technique 
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preserves the shock wave robustness of FVS while ensuring the contact discontinuity accuracy of 

FDS. 

This method is well-regarded for its low dissipation and effective shock management, leading to 

the development of several new variants like AUSMDV [12], AUSM+[13], and AUSMPW+  [14]. 

However, challenges remain within the AUSM-family schemes. AUSM+ is particularly sensitive 

to issues such as pressure variations near walls and excessive numerical values following intense 

shocks [13, 15]. It also shows limited form of the carbuncle phenomenon [16, 17]. 

To address the shortcomings of AUSM+ [13], the AUSM+UP [15] has been developed. It achieves 

high accuracy across various speeds, yet it still encounters the global cut-off issue [18]. 

Meanwhile, the SLAU (Simple Low Dissipation Advection Upstream Splitting Method) scheme 

avoids this specific problem and maintains high accuracy at low speeds. However, SLAU also 

remains susceptible to shock anomalies [19, 20] and generates unphysical outcomes as the Mach 

number approaches zero [21]. 

Kitamura et al. [22] presented updated versions of the AUSM-family schemes, including SLAU2 

and AUSM+UP2, all of which feature a new pressure flux formulation. SLAU2, an advancement 

over its predecessor SLAU [23], enhances robustness and performs effectively across a diverse 

range of Mach numbers. These schemes are distinguished by their high-resolution capabilities. 

However, they do have some limitations. Notably, SLAU2 are prone to experiencing shock 

anomalies in scenarios involving strong shocks, particularly in cells characterized by a large aspect 

ratio [16, 24]. 

The AUSM+M (Improved Advection Upstream Splitting Method) [25, 26] scheme significantly 

improves upon its predecessors like AUSM+[27], AUSM+UP [15], SLAU [23], SLAU2, and 

AUSM+UP2 by addressing specific defects in high Mach number simulations. It introduces a 

refined velocity diffusion term that incorporates transverse information, crucial for mitigating the 

carbuncle phenomenon and enhancing shock stability. Moreover, AUSM+M's adjusted numerical 

sound speed improves the resolution of oblique shocks and effectively distinguishes between 

entropy-violating expansion shocks and compression shocks, where earlier versions struggled. 

These improvements make AUSM+M highly effective in handling the complex dynamics of high-

speed aerodynamic flows, providing enhanced robustness and accuracy over a range of challenging 
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conditions. However, it should be noted that the performance of this scheme on triangular meshes 

has not yet been evaluated. 

Kaewta et al. [28] have found that the topology of triangular grids impacts the accuracy and 

stability of numerical schemes. Triangular grids, while offering significant geometric flexibility in 

computational fluid dynamics (CFD), often introduce challenges in terms of accuracy and stability. 

The irregular shape of triangular elements can lead to increased numerical dissipation and 

dispersion, particularly in high-speed flows where capturing sharp gradients, such as those 

associated with shock waves is critical. These numerical inaccuracies can propagate through the 

simulation, leading to distortions in the flow field. Moreover, triangular grids tend to impose 

stricter stability constraints due to their impact on the eigenvalue distribution of the discretized 

system [29]. As a result, smaller time steps are often required to maintain stability in explicit time-

stepping methods, which can increase computational cost without necessarily enhancing accuracy. 

Despite these challenges, triangular grids remain indispensable in unstructured mesh generation, 

particularly when simulating complex geometries such as those found in aerodynamic 

applications, turbine blades, or high-speed vehicles. Their adaptability to intricate surfaces and 

boundaries makes them essential, even if some trade-offs in accuracy and stability must be 

managed.  

 Quirk [30] proposed a popular hybrid technique to enhance robustness against shock anomalies. 

This method utilizes a dissipative scheme near shock waves and a more accurate (less dissipative) 

scheme elsewhere. However, blending these schemes can cause numerical issues, such as smearing 

of the contact interface or violation of the scheme's positivity. Currently, there is no standard rule 

for determining the switching parameter between the two schemes that maintains both accuracy 

and robustness. Thus, researchers have the opportunity to develop an appropriate switching 

parameter for hybrid schemes that can be applied broadly [27]. 

AUSM-M+ [31], offers a parameter-free method specifically designed to address the carbuncle 

phenomenon, a common problem in traditional solvers. While it eliminates the need for empirical 

adjustments, it has limitations. The third term of the pressure flux function (velocity diffusion term) 

introduces significant numerical dissipation, which can broaden the shock wave profile. Moreover, 

the mass flux does not include a pressure difference term. According to Liou [32], mass fluxes 

containing pressure difference terms tend to exhibit the carbuncle phenomenon. Therefore, it was 
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expected that removing the pressure difference term would resolve this issue. However, this 

modification proved ineffective, as the adjusted flux still showed an overshoot at the shock front, 

underscoring a significant limitation of this approach [23]. 

Following AUSM-M+, the hybrid SLAU scheme to enhance shock stability and accuracy on 

unstructured grids [33], but it has several defects. It shows sensitivity to grid type, causing density 

asymmetries, and abrupt flux function transitions negatively impact convergence. The scheme's 

performance in diverse flow regimes, particularly those involving complex interactions, requires 

further validation. Additionally, SLAU's pressure flux calculation deficiencies lead to numerical 

anomalies and oscillations near shocks, and the imbalance term, can cause further oscillations. The 

examination of the history of convergence to determine computational costs is also not addressed 

in the new hybrid SLAU scheme. 

The AUSMDV+ scheme [34], which combines elements of AUSMV+ and AUSMD+, was 

developed to enhance shock stability while attempting to minimize dissipation. However, due to 

its inherent bias towards the more dissipative AUSMV+ scheme, AUSMDV+ can introduce 

excessive diffusion, particularly around strong shocks. This additional diffusion can lead to a 

broadening of shock wave profiles, potentially compromising the accuracy and resolution of 

complex flow dynamics. Additionally, the scheme's dependency on finely tuned empirical 

parameters adds complexity, posing challenges for widespread implementation in diverse 

computational settings.  

Roe+ scheme [35], which blends AUSMV+ with the Roe scheme, is a hybrid computational 

approach that integrates the Roe scheme, known for its accuracy but prone to instabilities like the 

carbuncle phenomenon, with the robust yet highly dissipative AUSMV+ scheme. This 

combination is regulated by a novel pressure/density-based weighting switch function, designed 

to optimally balance dissipation and accuracy. While the scheme enhances stability and maintains 

accuracy across various tests on triangular grids, it does introduce complexities. These include 

increased computational demands due to the matrix-based dissipation methods of the Roe 

component. Additionally, the high level of dissipation through the AUSMV+ can diminish the 

scheme’s ability to capture sharp features accurately. The ROE+ scheme's performance is also 

highly sensitive to the accurate calibration of the weighting function parameter, necessitating 
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careful tuning to adapt to different flow conditions, which may limit its practical applicability 

without extensive validation. 

HLLC+ [36], combines the detailed shock resolution capabilities of HLLC with AUSMV2+ on 

triangular grids. The HLLC scheme, though accurate, struggles with the carbuncle phenomenon 

and shock instabilities. The proposed HLLC+ scheme uses a pressure-based detection mechanism 

to activate the less diffusive AUSMV2+ scheme in regions with significant pressure oscillations, 

controlled by a new weighting function based on local sound speed ratios. Numerical tests 

demonstrate that HLLC+ achieves accurate and stable solutions similar to the original HLLC 

scheme. However, HLLC+ has several shortcomings. The matrix-base dissipation of HLLC 

scheme can add computational complexity and potential overhead. Additionally, tuning the 

parameters for the weighting function and detection mechanism can be challenging and may 

require specific adjustments, limiting the scheme's general applicability and robustness. 

To address these challenges comprehensively, the integration of NAUSM+M (New Improved 

Advection Upstream Splitting Method Plus Artificially Upstream Flux Vector Splitting), with 

AUFS (Artificially Upstream Flux Vector Splitting) represents a significant breakthrough. New 

NAUSM+M enhances earlier AUSM-family including AUSM+M [26, 37] variants through two 

main modifications: the correction of pressure flux and the refinement of sound speed definition. 

These changes significantly improve the accuracy and convergence of the AUSM+M method. 

When combined with AUFS[38], which optimizes the calculation of convective and pressure flux 

components, this new hybrid scheme offers several key improvements: reduced computational 

overhead by minimizing matrix complexities, making it suitable for complex simulations; 

enhanced robustness and accuracy by reducing reliance on empirical parameters, thus improving 

predictiveness and applicability across varied conditions; and improved flexibility and efficiency 

by addressing the shortcomings of both FDS and FVS methods, providing a more adaptable tool 

for managing the complex dynamics typical of high-speed aerodynamic flows. This innovative 

approach not only overcomes the limitations of previous hybrid and matrix-based schemes but also 

sets a new benchmark in the numerical simulation of compressible flows. By offering a robust, 

accurate, and efficient solution, the combination of NAUSM+M and AUFS signifies a substantial 

advancement in computational fluid dynamics, paving the way for more reliable and adaptable 

methods in analyzing compressible flows. This paper details the development, implementation, 
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and validation of this hybrid scheme, demonstrating its superiority in various test cases and 

highlighting its potential for broader application in the field. 

2. Governing Equations and inviscid flux computational methods 

2.1 Governing Equations 

 

The 2D inviscid equations can be represented in a conservative form as follows: 

 

𝜕𝑾

𝜕𝑡
+
𝜕𝑭𝐼

𝜕𝑥
+
𝜕𝑮𝐼

𝜕𝑦
= 0 (1) 

 

Where 𝑊 is the conservative vector and 𝑭𝐼 and 𝑮𝐼 are the inviscid flux vectors: 

𝑾 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

] , 𝑭𝐼 = [

𝜌𝑢
𝜌𝑢𝑢 + 𝑝
𝜌𝑣𝑢
𝜌𝐸𝑢 + 𝑝𝑢

] , 𝑮𝐼 = [

𝜌𝑣
𝜌𝑢𝑣
𝜌𝑣𝑣 + 𝑝
𝜌𝐸𝑣 + 𝑝𝑣

] (2) 

In the above equation, 𝜌 , 𝑝 , (𝑢, 𝑣), 𝐸 are density, static pressure, cartesian velocities, and total 

energy per unit volume, respectively. The perfect gas equation is defined as follows: 

𝑝 = 𝜌(𝛾 − 1) (𝐸 −
1

2
(𝑢2 + 𝑣2)) (3) 

 

2.2. Methods of computing inviscid fluxes  

By using the finite-volume methodology, Eq.(1) would be as follows: 

𝑑

𝑑𝑡
(�⃗⃗⃗⃗� 𝑗𝛺𝑗) +∑ �⃗⃗⃗� 𝒌. 𝑑ℓ𝑘

3

𝑘=1

= 0 (4) 

 

Where �⃗⃗⃗� (�⃗⃗⃗⃗� ) = 𝑭𝐼⃗⃗⃗⃗ (�⃗⃗⃗� )𝑖 + 𝑮𝐼⃗⃗⃗⃗ (�⃗⃗⃗� )𝑗 is the inviscid flux. Moreover, �⃗⃗⃗� 𝒌 is computed based on the 

methods of computing inviscid fluxes. 
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2.2.1 Inviscid flux computing by AUSM+M scheme   

�⃗⃗� 𝑘 = (
ṁ + |ṁ|

2
)𝝓𝑳 + (

ṁ − |ṁ|

2
)𝝓𝑹 + 𝑝1/2𝑵 (5) 

𝝓 = [

1
𝑢
𝑣
ℎ

] 

 

(6) 

𝑵 = [

0
𝑛𝑥
𝑛𝑦
0

] 

 

(7) 

Here, 𝑝1/2, ṁ , h are pressure flux, mass flux, and total enthalpy, respectively. 

(8) 𝑝1/2 = �̅� − 𝑑𝑝 

�̅�  element is defined as the average pressure of two sides of each face. Moreover 𝑑𝑝as the 

dissipation part of pressure flux would be [39]: 

𝑑𝑝 =
1

2
(𝑝𝐿
+ − 𝑝𝑅

−)∆𝑝 + f1/2{(1 − 𝑝𝐿
+ − 𝑝𝑅

−)�̅�} 
(9) 

∆𝑝 = 𝑝𝑅-𝑝𝐿 (10) 

f1/2 = min (1.0,max (f,M
2
∞)) (11) 

f = 0.5( 1 − cos(πM) ) (12) 

M=min(1.0,max(|ML|, |MR|)) (13) 

The pressure flux is computed through the below equation [25]: 

(14) 𝑝1/2 =

[
 
 
 

0
(�̅� − 𝑑𝑝)𝑛𝑥 + 𝑝ux

(�̅� − 𝑑𝑝)𝑛𝑦 + 𝑝uy
0 ]

 
 
 

 

(15) 𝑝ux= 
g × γ × �̅�

C1/2
𝑝𝐿
+𝑝𝑅

−(𝑢R − 𝑢L) 
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(16) 
𝑝uy= 

g × γ × �̅�

C1/2
𝑝𝐿
+𝑝𝑅

−(𝑣𝑅 − 𝑣𝐿) 

(17) g = 0.5( 1 + cos(πh𝑛) ) 

(18) 

  

h𝑛 = min(hk) 

(19) hk = min(
𝑝𝐿𝑘
𝑝𝑅𝑘

,
𝑝𝑅𝑘
𝑝𝐿𝑘
) 

 

The subscript k indexes all adjacent interfaces between cells i and j for evaluating numerical flux, 

as illustrated in Figure 1. The function h𝑛 selects the minimum value of hk and efficiently checks 

all adjacent interfaces. The normal vectors of each face are 𝑛𝑥 and 𝑛𝑦. 

 

Figure 1. Interface of the cell for evaluating numerical flux 

 

(20) 𝑝±
(𝐿/𝑅)

=

{
 
 

 
 
±
(M(𝐿/𝑅) ± 1)

2

4
(2 ∓ M(𝐿/𝑅)) ± 𝛼M(𝐿/𝑅) ((M(𝐿/𝑅))

2
∓ 1)

2

      |M| < 1

M(𝐿/𝑅) ± |M(𝐿/𝑅)|

2
                                                                                |M| ≥ 1

 

Where: 

(21) M(𝐿/𝑅)= (𝑉(𝐿/𝑅))/C1/2 

(22) 𝑉(𝐿/𝑅) = 𝑢(𝐿/𝑅). 𝑛𝑥 + 𝑣(𝐿/𝑅). 𝑛𝑦 
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(23) C1/2 =

{
 
 

 
 c∗2

max(|𝑉𝐿|, c
∗)
                                                                                      

V𝐿 + V𝑅
2

≥ 0

c∗2

max(|𝑉𝑅|, c
∗)
                                                                                          

V𝐿 + V𝑅
2

< 0

 

(24) 
c∗2 =

2(γ − 1)H̅

(γ + 1)
 

(25) 
H̅ =

γRT

(γ − 1)
+
𝑢2 + 𝑣2

2
 

(26) 𝛼 = (
3

16
)  

With “+” and “-” or “L” and “R” symbols, determine the left and right of each face, respectively.  

ṁ = C1/2 M1

2

{
ρL
ρR
           

   M1/2 > 0

   M1/2 < 0
  

 

(27) 

M1/2 = ML
+ +MR

−+(ṁ)𝑝 
 

(28) 

M(L/R)
± =

{
 
 

 
 
±
(M(𝐿/𝑅) ± 1)

2

4
±
((M(𝐿/𝑅))

2
− 1)

2

8
                                       |M(𝐿/𝑅)| < 1

M(𝐿/𝑅) ± |M(𝐿/𝑅)|

2
                                                                         |M(𝐿/𝑅)| ≥ 1

 

(29) 

 

(ṁ)𝑝 =
−0.5(𝑝𝑅 − 𝑝𝐿) (1 − g)(1 − f )

ρ̅(C1/2)
2  

(30) 

 Where, f, ML/R, g and C1/2 are defined through Eqns.(12),(21),(17), and (23) respectively.  

2.2.2. Inviscid flux computing by AUFS scheme   

The AUFS approach can be determined as follow [38] : 

 

�⃗⃗� 𝑘 = (1 −𝑀)[
1

2
(𝑃𝐿 + 𝑃𝑅) + 𝐷𝐴𝑈𝐹𝑆]+ M[𝑊𝛽_𝐴𝑈𝐹𝑆(𝑞𝛽_𝐴𝑈𝐹𝑆 − 𝑠2)𝑊 + 𝑃𝛽_𝐴𝑈𝐹𝑆] (31) 

 

Where W is the conservative vector defined through Eq.(2)  and 𝑃 vector is defined as follows: 
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P=(
0
𝑝𝑛𝑥
𝑝𝑛𝑦
𝑝𝑞

) 

 

(32) 

 

Where q is the normal velocity of an arbitrary interface and is defined as follows: 

q= 𝑢𝑛𝑥 + 𝑣𝑛𝑦 (33) 

Note that 𝑠1 and 𝑠2 are two constant scalars. Moreover, M = 𝑠1/ (𝑠1 − 𝑠2), and 𝑠1 , 𝑠2 are the two 

artificial scalars determining wave speeds. The superscript 𝛽 classified the left and right direction 

of waves propagating based on 𝑠1 sign as follow: 

𝛽_𝐴𝑈𝐹𝑆 = { 
𝐿            𝑓𝑜𝑟     𝑠1 > 0 
𝑅           𝑓𝑜𝑟      𝑠1 ≤ 0 

 (34) 

 

The vector 𝐷𝐴𝑈𝐹𝑆 is the dissipation of the AUFS scheme and is defined as follows: 

𝐷𝐴𝑈𝐹𝑆 =
1

2C1/2

(

 
 
 
 
 𝑝𝐿 − 𝑝𝑅

(𝑃𝑢)𝐿 − (𝑃𝑢)𝑅
(𝑃𝑣)𝐿 − (𝑃𝑣)𝑅

(C1/2)
2

𝛾 − 1
(𝑝𝐿 − 𝑝𝑅) +

1
2
((𝑝𝑞2)𝐿 − (𝑝𝑞

2)𝑅))

 
 
 
 
 

 (35) 

Where: 

𝑞2 = 𝑢2 + 𝑣2 (36) 

  

The expressions for computing 𝑠1 and 𝑠2 are determined by Sun and Takayama [38] and defined as 

follows: 

𝑠1 =
1

2
(q𝐿 + q𝑅) 

 
(37) 

 

𝑠2 = {
min (0, 𝑞𝐿 − 𝐶𝐿 , 𝑞

∗ − 𝑐∗)

max (0, 𝑞𝑅 + 𝐶𝑅 , 𝑞
∗ + 𝑐∗)

 

 

(38) 
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Where: 

𝑞∗ =
1

2
(𝑞𝐿 + 𝑞𝑅) +

𝐶𝐿 − 𝐶𝑅
𝛾 − 1

 

 

(39) 

𝑐∗ =
1

2
(𝑐𝐿 + 𝑐𝑅) +

(𝑞𝐿 − 𝑞𝑅)(𝛾 − 1)

4
 

 

(40) 

 

3. Improvement of AUSM+M scheme 

The following subsections focus on improving the accuracy and robustness of the AUSM+M 

method by introducing a new formulation of interfacial numerical sound velocity and enhancing 

pressure flux dissipation. A revised definition of sound speed is provided using the AUSMPW+ 

approach to address deficiencies in hypersonic cases. The new formulation aims to enhance 

numerical stability and shock capturing by adjusting the interfacial speed of sound, thereby 

reducing anomalies such as carbuncle. Moreover, improvements to the pressure flux dissipation 

terms are provided, particularly at supersonic speeds where the original form's dissipation was 

inadequate. By modifying the dissipation term to increase with the Mach number, the revised 

approach ensures better numerical accuracy and robustness for high-speed flows. 

3.1 New formulation of interfacial numerical Sound velocity  

In the AUSM+M method, the sound speed is derived using the AUSMPW+ approach [14]. This 

offers several advantages: enhanced numerical stability, improved shock robustness, and increased 

physical accuracy. The AUSMPW+ sound speed effectively resolves normal shocks, captures 

contact discontinuities, and maintains total enthalpy conservation. However, this sound speed 

definition lacks robustness in some hypersonic cases [40, 41]. The interfacial speed of sound is 

crucial for the accuracy and robustness of inviscid flux strategies, especially at high Mach 

numbers. Properly defining of this term enhances stability and shock capturing by reducing 

anomalies like carbuncle. Slight modifications in interfacial speed of sound can significantly 

improve the robustness of the flux schemes. Thus, in the revised version of AUSM+M method 

(NAUSM+M), the sound speed is defined as follows [40, 41]: 
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(41) C1/2 =

{
 
 

 
 c∗2

max(𝑉𝐿 , c
∗)
                                                                                      

V𝐿 + V𝑅
2

≥ 0

c∗2

max(𝑉𝑅 , c
∗)
                                                                                          

V𝐿 + V𝑅
2

< 0

 

 

By applying a mathematical transformation, Eq.(9) can be reformulated as shown below: 

𝑑𝑝 =
1

2
(𝑝𝐿
+ − 𝑝𝑅

−)∆𝑝 +
3

4𝛾
(
𝜌𝐿+𝜌𝑅
2

) C1/2 (U𝐿 − U𝑅) 
(42) 

As demonstrated in Eq.(42), the dissipation of the scheme is proportional to the speed of sound. 

This modification increases the sound speed when ( 𝑉𝐿) and ( V𝑅) are negative and greater than 

(𝑐∗). For instance, if ( V𝐿 = V𝑅= -4) and (𝑐∗= 2), using Eq. (23) results in (C1/2 = 4), while using 

Eq. (42) yields ( C1/2 = 8). Therefore, this adjustment enhances the robustness of the scheme. 

3.2 Improvement of Pressure flux  

To enhance clarity, the pressure flux dissipation terms of AUSM+M scheme (Eq.(9)) is represented 

below: 

𝑑𝑝 =
1

2
(𝑝𝐿
+ − 𝑝𝑅

−)∆𝑝 + f1/2{(1 − 𝑝𝐿
+ − 𝑝𝑅

−)�̅�}⏟              
𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑃𝑎𝑟𝑡

 
(43) 

According to this equation, at supersonic speeds (M > 1), the second element of the dissipation 

term in Eq. (43) becomes constant. Therefore, the numerical dissipation from this term does not 

change with the Mach number when the speed is supersonic. Numerical analysis shows that this 

dissipation was insufficient in its original form, and this insufficiency worsens with higher Mach 

numbers. Therefore, the modified version of dissipation part is provided so that the dissipation 

increases with the Mach number as follows [22]: 

𝑑𝑝 =
1

2
(𝑝𝐿
+ − 𝑝𝑅

−)∆𝑝 + √
(𝑢𝑙)

2 + (𝑢𝑅)
2 + (𝑣𝑙)

2 + (𝑣𝑅)
2

2
{(1 − 𝑝𝐿

+ − 𝑝𝑅
−)�̅�}C1/2 (44) 
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3.3. Establishing a new hybrid scheme: Adjust to structure triangular grids  

The following subsections devoted to the development of a new hybrid numerical scheme tailored 

to enhance the performance of simulations on triangular grids. The scheme aims to address the 

limitations of previous methods and improve the accuracy, stability, and efficiency of 

computational fluid dynamics (CFD) simulations, particularly for triangular structure grids. The 

NAUSM+M scheme is a newly developed AUSM-family numerical method that aims to improve 

the reliability and accuracy of compressible flow simulations across a wide range of Mach 

numbers. The NAUSM+M scheme exhibits favorable features like exact resolution of contact 

discontinuities, preservation of positivity, and damping of numerical overshoots, while avoiding 

the need for global cut-off strategies required by some earlier AUSM-based methods. The 

NAUSM+M scheme is known to be accurate on square grid structures; however, inaccurate on 

triangular grid structures, and its convergence acceleration is also decreased in such grids. To 

address these limitations, a hybrid technique combining the NAUSM+M scheme with the 

artificially upstream flux vector splitting (AUFS) scheme is proposed. The AUFS scheme is a new 

method for solving the Euler equations that splits the flux vector into two parts using two artificial 

wave speeds, allowing it to capture stationary contact discontinuities and avoid issues like 

expansion shocks and carbuncle instability that affect many other schemes. A hybrid method is a 

widely adopted approach that is utilized to enhance the stability of numerical schemes [42, 43]. In 

general, a hybrid scheme can be represented as follows: 

(�⃗⃗� 𝑘)𝐻 =
(1 − 𝛽)(�⃗⃗� 𝑘)𝐷 +

(𝛽)(�⃗⃗� 𝑘)𝐴 (45) 

In the above equation, 𝛽 represents a weighting function that takes values between 0 and 1, 

inclusive. The terms (�⃗⃗� 𝑘)𝐴 and (�⃗⃗� 𝑘)𝐷 illustrate two different types of fluxes: the accurate flux 

(NAUSM+M) and the dissipative flux (AUFS), respectively. The weighting function 𝛽 is used to 

balance the contributions of these two fluxes in the overall equation. 

The primary matter in the development of a hybrid scheme lies in the simultaneous achievement 

of robustness and accuracy through simple and cost-effective means. A common approach is to 

design the scheme such that the diffusive component is activated in regions of pressure oscillation, 

such as shock waves, while the accurate component is employed in the remaining regions. 
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Consequently, the successful realization of this goal necessitates the design and implementation of 

a robust pressure oscillation detection method and a reliable weighting function within the scheme. 

The NAUSM+M+AUFS scheme, built upon the foundation of the accurate a modified AUSM+M 

scheme (NAUSM+M scheme) and a robust AUFS scheme. A new switching function is utilized 

[44] to accurately resolve weak nonlinear phenomena and compute strong shock waves. For weak 

nonlinear phenomena, such as weak shock waves, density discontinuities, and entropy waves a 

low dissipation scheme (NAUSM+M) is used to reduce numerical dissipation. For strong shock 

waves, only AUFS is applied. To achieve these goals, a new parameter is introduced to restrict the 

use of the NAUSM+M scheme near strongly nonlinear regions. This parameter, which is close to 

1 in regions of weak nonlinearity and approaches 0 in regions of strong nonlinearity, adjusts the 

weighting between NAUSM+M and AUFS accordingly. 

(𝛽)1/2 = {
1                                                              (

𝑑𝜌
𝑑𝑥
⁄ ) (

𝑑𝑝
𝑑𝑥
⁄ ) < 0

exp{−(𝑚𝑎𝑥(1, (𝜃)1/2) − 1)}         (
𝑑𝜌

𝑑𝑥
⁄ ) (

𝑑𝑝
𝑑𝑥
⁄ ) ≥ 0

 (46) 

(𝜃)1/2 =
(𝜃𝑝)1/2
(𝜃𝜌)1/2

 (47) 

(𝜃𝑝)1/2 =
max (𝑝𝑖 , 𝑝𝑖+1)

min (𝑝𝑖 , 𝑝𝑖+1)
 (48) 

(𝜃𝜌)1/2 =
max (𝜌𝑖 , 𝜌𝑖+1)

min  (𝜌𝑖 , 𝜌𝑖+1)
 (49) 

𝑑𝑝
𝑑𝑥
⁄ =

𝑝𝑖+1 − 𝑝𝑖
∆𝑥

 (50) 

𝑑𝜌
𝑑𝑥
⁄ =

𝜌𝑖+1 − 𝜌𝑖
∆𝑥

 (51) 

According to the Rankine–Hugoniot relations, a stronger shock wave results in a higher (𝜃)1/2. 

Therefore, if the stencil has a high value of  (𝜃)1/2, the (𝛽)1/2 parameter should be reduced to 

avoid using NAUSM+M. Conversely, if the density ratio (𝜃𝜌)1/2 exceeds the value predicted by 

isentropic flow or shock waves, (𝜃)1/2 approaches below 1. In such cases, the cell boundary is 

likely influenced by weak nonlinear phenomena like weak shock waves, density discontinuities, 

or entropy wave components. For these stencils, employing NAUSM+M is necessary to achieve a 

less dissipative solution. Consequently, the (𝛽)1/2 parameter should be close to one. 
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4. Numerical Results 

 

 

This section provides a comprehensive evaluation of several advanced numerical schemes, 

including AUSM+M, AUFS, NAUSM+M, and NAUSM+M+AUFS, applied to both classical and 

complex fluid dynamics problems. The goal is to assess the accuracy, robustness, and efficiency 

of each scheme in capturing intricate flow phenomena across diverse scenarios. The analysis 

begins with the 1D shock tube problem, where the shock-capturing capabilities and numerical 

dissipation of the methods are assessed. This is followed by an investigation of hypersonic flow 

over a stationary circular cylinder, focusing on resolving the carbuncle phenomenon. Next, the 

Noh problem tests the schemes' performance in handling strong radially symmetric shocks with 

minimal numerical artifacts. The study then moves to the 2D Riemann problem, which evaluates 

each scheme’s ability to resolve complex shock interactions while maintaining solution symmetry. 

Finally, the Rayleigh–Taylor instability is examined, providing further insight into the schemes' 

performance in resolving fluid instabilities and contact discontinuities. Together, these results 

highlight the strengths and weaknesses of each numerical method, offering valuable insights for 

advancing computational fluid dynamics (CFD). 

 

 

4.1. 1D shock tube problem 

 

A one dimensional shock tube is a tube containing two chambers of gas at different pressures, 

separated by a diaphragm. As a result of the diaphragm rupturing, a shock wave, a contact 

discontinuity, and a moving expansion wave are generated within the tube [45]. In the problem of 

the one dimensional shock-tube is investigated on two dimensional domain [0,1]× [0,0.5]. The 

wall boundary condition is  applied to all boundaries. In this problem, the diaphragm is located at 

position (x=0.5). To discretize the temporal domain of the equations, the dual time-stepping 

method with a Courant number of 0.9 has been applied.It should be noted that, the results are 

compared with the exact solution at the dimensionless time (t=0.2136). Also, the domain is 

discretized into a structured triangular grid by ∆x=1/120, ∆y= 1∕160. The initial conditions at the 

left side of the domain are (𝜌0= 1.0), (𝑢0= 0.0), and (𝑝0= 1.0). At the right side of the domain, the 

initial conditions are (𝜌0 = 0.125), (𝑢0 = 0.0), and (𝑝0= 0.1). 
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Insufficient numerical dissipation along entropy and shear waves can lead to anomlies at the shock 

interface [46]. It is important to note that shear waves are present only in multidimensional flows 

[16]. While the dissipation mechanisms of Godunov-based upwind methods effectively dampen 

disturbances in streamwise direction, they are less successful in managing anomalies that occur 

transverse to the flow. This deficiency in numerical viscosity can lead to shock instabilities, 

underscoring the need for improved viscosity strategies transverese the flow, especially in 

multidimensional contexts. In the case of the one-dimensional Sod-shocktube, the level of 

numerical viscosity provided is considered adequate for controlling the flow dynamics typical of 

such configurations. Consequently, based on the limited multidimensional effects and the 

importance of shear and entropy wave viscosity in multidimensional flows, the performance of 

methods such as NAUSM+M, AUSM+M, and NAUSM+M+AUFS is similar.  Another 

noteworthy point is that the AUFS method provides smoother and more smeared responses at the 

critical points of the flow Figure 2, namely the head (B) and tail (C) of an expansion wave, the 

contact discontinuity (D), and the shock wave (E). An additional crucial point of discussion 

pertains to the performance integrity of the NAUSM+M+AUFS method in comparison to the 

AUSM+M method. Despite the application of additional dissipation at the shock locations, the 

NAUSM+M+AUFS method demonstrates commendable stability and does not exhibit a reduction 

in accuracy relative to its counterpart . 

 

Figure 2. (A) Comparison of density distrubution between various methods along the shocktube 

(B),(C),(D),(E) Local Enlargement. 
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4.2. 2D blunt body (steady and super/hypersonic) 

 

The problem involves Mach 8.1 and 3.0, hypersonic flow around a stationary circular cylinder. 

Peery and Imlay identified an unexpected bump on the bow shock in front of the cylinder, known 

as the carbuncle phenomenon [47].  Research has shown that accurate shock capturing methods 

like Roe, HLLC, and AUSM+ often display this carbuncle issue, especially on structured 

rectangular and triangular grids [36]. Figure 3 shows the computational domain with an inflow 

boundary on the left and an outflow boundary on the right.  

The initial condition is set to  (𝜌, 𝑢, 𝑣, 𝑝) = (1.4,8.1,0,1). The computations use a first-order accurate 

method and a Courant number of  0.9. This problem was also examined using two grid sizes with 

varying aspect ratios. 

   

(A) (B)      (C) 

            

                           

Figure 3: (A) Computational domain (B) Utilized mesh of cylinder (C) Local enlargement mesh cylinder       

for the Mach number 15 hypersonic flow over a circular cylinder problem[48]. 
 

 

Grid A (Case 1): 

 

The first case was evaluated using a structured triangular grid, A, consisting of 8 intervals in the 

radial direction and 67 intervals in the circumferential direction. The density contours were 

calculated using lines ranging from 1.5 to 6, with a step size of 0.28125. The results of the 

numerical schemes are shown in Figure 4. Figure 4 presents a comparative evaluation of four 

𝑴∞ = 𝟖. 𝟏 
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numerical schemes—(A) AUSM+M, (B) NAUSM+M, (C) NAUSM+M+AUFS, and (D) AUFS—

for simulating a hypersonic flow around a circular cylinder. Each subfigure displays density 

contours, providing insight into how well each scheme captures shock structures and high-gradient 

regions in the flow field. In subfigure (A), the AUSM+M scheme reveals significant distortions 

and unphysical oscillations near the shock, indicative of the carbuncle phenomenon, which 

compromises the accuracy and stability of the solution in high-speed flows. Subfigure (B) shows 

an improvement with the NAUSM+M scheme, where the density contours are smoother, and the 

shock structures are better resolved. However, minor distortions persist near the stagnation zone, 

limiting the method's accuracy in capturing complex shock interactions. The hybrid 

NAUSM+M+AUFS scheme in subfigure (C) delivers the most accurate results, with well-resolved 

shock structures and minimal numerical dissipation. This scheme effectively eliminates the 

carbuncle phenomenon, providing smooth contours and high fidelity in shock capturing. Finally, 

subfigure (D) with the AUFS scheme also performs well, though it introduces slightly more 

dissipation than the hybrid approach, which may slightly impact accuracy in regions with strong 

shocks. 

 
 

  

 

 

 
Figure 4: Density for the Mach number 8.1 hypersonic flow over a circular cylinder problem on the structure 

triangle Coarse grid ( (A) AUSM+M, (B) NAUM+M, (C) NAUM+M+AUFS, (D) AUFS). 
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Figure 5 illustrates the convergence behavior of four numerical schemes—AUSM+M, 

NAUSM+M, AUFS, and NAUSM+M+AUFS—by comparing the relative convergence speeds in 

terms of mass residual. 

AUSM+M serves as the baseline for convergence, and the NAUSM+M scheme shows a significant 

improvement, reducing the number of iterations required to reach a residual of -3 by approximately 

55% compared to AUSM+M. This improvement indicates better initial convergence speed, though 

NAUSM+M still lags behind the more advanced schemes. AUFS offers even greater efficiency, 

achieving a 60% reduction in the number of iterations needed to reach the same residual compared 

to AUSM+M, marking it as a much faster method at this threshold. The NAUSM+M+AUFS 

hybrid scheme performs similarly well, showing a 58% improvement in convergence speed over 

AUSM+M. Although AUFS slightly outperforms NAUSM+M+AUFS in this case, both are 

considerably more efficient than the baseline. 

For deeper convergence at a residual of -6, the performance gaps widen. AUSM+M fails to reach 

this threshold, highlighting its limitations in achieving high levels of accuracy.  NAUSM+M, while 

capable of reaching a residual of -6, shows a slower convergence compared to the more efficient 

methods. AUFS, in comparison, improves convergence speed by 21% relative to NAUSM+M, 

making it significantly more efficient. However, the NAUSM+M+AUFS hybrid scheme 

demonstrates its superiority once again, converging 15% faster than NAUSM+M and far 

outperforming AUSM+M, which does not reach this residual level at all. 

 
Figure 5: Compare error histroies of hypersonic flow over half-cylinder Coarse grid. 
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Grid B (Case 2): 

The issue was re-evaluated using a structured triangular grid, B, consisting of 12 intervals in the 

radial direction and 94 intervals in the circumferential direction. Figure 6 is divided into global 

density contours (subfigures A-D) and local enlargements of the stagnation zone (subfigures E-

H), providing a thorough evaluation of each method's ability to resolve complex shock dynamics. 

In terms of global density contours, AUSM+M (subfigure A) shows considerable oscillations and 

unphysical distortions near the shock regions, a clear indication of the carbuncle phenomenon 

affecting its accuracy and stability. NAUSM+M (subfigure B) reduces these oscillations through 

Eqs. (41),(44) and improves the overall smoothness of the contours, though some minor distortions 

persist, particularly in areas of high gradient. The hybrid NAUSM+M+AUFS scheme (subfigure 

C) significantly outperforms both AUSM+M and NAUSM+M, effectively eliminating the 

carbuncle phenomenon and producing smooth, well-resolved shock structures with minimal 

numerical dissipation. AUFS (subfigure D) also demonstrates good shock-capturing capabilities 

but introduces slightly more dissipation compared to NAUSM+M+AUFS, leading to a small 

decrease in overall accuracy. 

The local enlargements around the stagnation zone provide a more detailed view of how each 

method handles critical regions like stagnation zone. AUSM+M (subfigure E) reveals significant 

distortions near the stagnation point, underscoring the scheme’s limitations in managing complex 

shock interactions. NAUSM+M (subfigure F) improves accuracy in this region, though subtle 

artifacts remain. In contrast, NAUSM+M+AUFS (subfigure G) demonstrates superior 

performance, with minimal distortions and smooth transitions, capturing the shock interactions 

with high fidelity. AUFS (subfigure H) shows reliable shock capturing but introduces slightly more 

dissipation than the hybrid scheme, which could affect precision in highly dynamic regions. 
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a) Density contours ( (A) AUSM+M, (B) NAUM+M, (C) NAUM+M+AUFS, (D) AUFS) 

 

 
 

 
       b) Local Enlargement ( (E) AUSM+M, (F) NAUM+M, (G) NAUM+M+AUFS, (H) AUFS) 

 
Figure 6: Density for the Mach number 8.1 hypersonic flow over a circular cylinder problem on the structure 

triangle grid (a)Density contours (b) Local Enlargement of density contours around stagnation zone. 
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Figure 7 provides a comparative analysis of the aforementioned schemes. It is evident that 

NAUSM+M+AUFS and AUFS exhibit the fastest convergence rates compared to the other two 

methods. Notably, while the convergence processes of AUSM+M and NAUSM+M encounter stall 

after a definite number of iterations, NAUSM+M+AUFS and AUFS achieve complete 

convergence. In a detailed examination of mass residuals at 20,000 iterations, AUFS emerges as 

the most efficient, with the lowest residual of -5.0, reflecting its rapid convergence and reduced 

computational demands. NAUSM+M+AUFS closely follows with a residual of -4.8, indicating a 

slightly higher computational cost but similarly efficient convergence. In contrast, AUSM+M and 

NAUSM+M show slower convergence with residuals of -2.5 and -2.0 respectively. 

 
Figure 7: Compare error histroies of hypersonic flow over half-cylinder. 

 

According to the above comparative analysis, it has been determined that the AUFS and 

NAUSM+M+AUFS methods exhibit superior performance in terms of accuracy and convergence 

rate compared to other numerical schemes. Consequently, to furnish a more comprehensive 

comparison, Table 1 presents a detailed evaluation of these two numerical methods. According to 

this table, NAUSM+M+AUFS displays superior accuracy and closer alignment with analytical 

solutions compared to AUFS across different Mach settings. For Mach 3, while AUFS 

underestimates the pressure by -1.84%., NAUSM+M+AUFS nearly matches the analytical values 
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with a slight overestimation of +0.29%. At Mach 8.1, the situation demands a greater numerical 

dissipation to prevent numerical anomlies and non-physical responses like the carbuncle 

phenomenon due to stronger shock conditions. AUFS overestimates the pressure by 6.29%, 

whereas the new numerical scheme, NAUSM+M+AUFS, closely aligns with the analytical values, 

with an overestimation of only 4.3%. This indicates that the new hybrid numerical scheme is 46% 

more accurate than the AUFS scheme at Mach 8.1. NAUSM+M+AUFS offers a balanced level of 

numerical dissipation that effectively addresses the accuracy and convergence issues seen in 

AUSM+M and NAUSM+M, while also maintaining lower dissipation levels compared to AUFS, 

particularly at contact discontinuities where AUFS exhibits high dissipation rates. 

Based on the above hypersonic investigation, AUSM+M, while effective, demonstrates notable 

sensitivities to numerical instabilities and a propensity for unphysical results in shock regions. 

NAUSM+M improves on this by reducing such anomalies and enhancing shock capturing 

capabilities, though it still exhibits shock anomlies and stall in convergence  rate. 

NAUSM+M+AUFS stands out as the most balanced method, effectively eliminating the carbuncle 

phenomenon, demonstrating high accuracy close to analytical solutions, and showing rapid 

convergence with minimal computational demand. This method strikes an optimal balance 

between accuracy and dissipation, adeptly handling strong shock conditions with considerable 

finesse. In contrast, AUFS, although it provides good shock control and stability, tends to be overly 

dissipative, particularly in handling shear waves, which leads to underestimations that might 

compromise the accuracy. Overall, NAUSM+M+AUFS presents the best performance across the 

metrics of stability, accuracy, convergence rate, and numerical dissipation. 

Table 1: Pressure after shock; comparisons in Mach 3 and 8.1 blunt-body tests. 

𝑷𝟐/𝑷∞ 

 

NAUSM+M+AUFS AUFS Analytical 

  𝑴 = 𝟑. 𝟎                                10.36 10.14 10.33 

𝑴 = 𝟖. 𝟏 73.22 71.85 76.37 
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While numerical stability and accuracy are essential in the development of numerical schemes, 

computational efficiency must also be considered to ensure a fast solver capable of handling large-

scale industrial problems. The computational resources for this study were as follows: all 

simulations were conducted on a Lenovo computer equipped with an Intel Core i5-6200U 

processor, 8 GB of RAM, and running Windows 10 Professional.  

Table 2 presents the CPU time required by each of the four schemes to solve the problem. The 

AUFS scheme was identified as the fastest among the evaluated methods, serving as the baseline 

for computational efficiency. Its rapid computational speed makes it suitable for applications 

requiring quick results. However, this efficiency comes at the expense of accuracy; the AUFS 

scheme is 46% less accurate than the hybrid NAUSM+M+AUFS scheme. This trade-off suggests 

that while AUFS is effective for preliminary analyses or scenarios where speed is prioritized over 

precision, it may not be adequate for simulations demanding high-fidelity results. 

The NAUSM+M+AUFS hybrid scheme combines the strengths of both the NAUSM+M and 

AUFS schemes, achieving a substantial improvement in accuracy with only a moderate increase 

in computational time—approximately 24% more CPU time than the AUFS scheme at a mass 

residual of 10−6. Importantly, the hybrid scheme successfully reaches the tighter convergence 

criterion of a mass residual of 10−6, demonstrating its robustness and reliability. This balance of 

efficiency and accuracy makes it well-suited for industrial applications where accurate modeling 

of complex flow phenomena is critical, and computational resources are limited. 

Notably, the NAUSM+M and AUSM+M schemes did not achieve the tighter convergence criterion 

of a mass residual of 10−6, stalling around 10−2. This inability to reach higher convergence levels 

indicates potential issues with numerical stability or convergence behavior inherent in these 

schemes. At a mass residual of 10−2, the NAUSM+M scheme required 112 units of CPU time, 

which is 160% more than the AUFS scheme, rendering it impractical for large-scale or time-

sensitive simulations. The AUSM+M scheme, while more efficient than NAUSM+M, still required 

34% more CPU time than AUFS and similarly failed to reach the tighter convergence threshold. 

The stalling of NAUSM+M and AUSM+M around a mass residual of 10−2 underscores their 

limitations in achieving high levels of convergence and accuracy. This behavior suggests that these 

schemes may struggle with numerical challenges such as handling strong shocks or complex flow 

features typical in hypersonic flows through triangular grids.  
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The impact of convergence criteria on computational performance is significant. Tighter 

convergence thresholds inherently demand more computational effort due to the increased number 

of iterations required. The varying ability of each scheme to reach these thresholds highlights the 

importance of selecting appropriate numerical methods based on the specific accuracy 

requirements and computational constraints of a simulation. The NAUSM+M+AUFS scheme's 

success in achieving a mass residual of 10−6 demonstrates its superior convergence properties 

compared to the other schemes. 

The analysis highlights the inherent trade-offs in CFD simulations among computational 

efficiency, accuracy, and convergence behavior. The NAUSM+M+AUFS hybrid scheme 

effectively balances these factors, achieving high accuracy and convergence levels with a relatively 

modest increase in computational cost. Its performance demonstrates the potential of hybrid 

methods to enhance solution accuracy and robustness without excessively compromising 

efficiency. For practical applications—especially in industrial settings where accuracy and 

reliability are paramount—the hybrid scheme offers a viable and advantageous solution. 

 

Table 2: Comparison of CPU time for hypersonic flow over half-cylinder. 

 Mass Residual= (10−6) Mass Residual= (10−2) 

CPU Time(s) %Over AUFS CPU Time(s) %Over AUFS  
Scheme 

NAUSM+M+AUFS 235 24 53 23 
AUFS 190 ---- 43 ----- 

NAUSM+M --- ---- 112 160 
AUSM+M --- ---- 58 34 

 

 

4.3. Noh problem 

 

The problem is modeled on a domain ((x, y) ∈[0, 1] ×[0, 1]), with an initial density of 1 and 

pressure set to zero ( (1×10−6  to avoid numerical issues). The initial velocity is directed from the 

origin with a constant magnitude of 1. The solution features an infinitely strong, circularly 

symmetric shock originating from the origin. Within the shock (inside the circle), the density is 

16, the velocity is zero, and the pressure is (16/3). The shock speed is (1/3), and ahead of the shock, 

the density is (1 + 
𝑡

√𝑥2+𝑦2
), while the velocity and pressure remain as initially set [48]. The 
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simulation uses wall boundary conditions on the left and bottom boundaries, with the exact 

solution enforced on the top and right boundaries. The simulation runs until (t = 2) on the grid: 

(400 ×400). Many schemes fail with this problem, and those that succeed often show numerical 

artifacts [49]. The provided density contour figures (A-D) and their zoomed-in views (E-H) allow 

for a comprehensive comparison of the methods AUSM+M, NAUSM+M, AUFS, and 

NAUSM+M+AUFS to clarify the modifications and determine the optimal scheme for the Noh 

problem (Figure 8). AUSM+M (A) serves as the baseline method, presenting the fundamental 

structure of the shock wave. However, its zoomed-in view (E) reveals numerical artifacts and less 

smooth transitions, indicating limitations in accuracy and stability. NAUSM+M (B) demonstrates 

significant improvements over AUSM+M, with a more stable manner speceficly in origin zone . 

The zoomed-in view (F) highlights these enhancements, showcasing smoother transitions and 

fewer artifacts, thereby reflecting better numerical stability and handling of complexities in Noh 

test case.  AUFS (C) offers an alternative manner, while this method exhibits some improvements 

over AUSM+M in the overall density contour, the zoomed-in view (G) still displays a number of 

artifacts. The combined method, NAUSM+M+AUFS (D), integrates the strengths of both 

NAUSM+M and AUFS. This results in a superior representation of the shock wave, merging the 

stability and accuracy of NAUSM+M with the advanced stability techniques of AUFS. The 

zoomed-in view (H) reveals the least artifacts and the smoothest transitions among all methods, 

indicating that NAUSM+M+AUFS captures high gradient and critical zones with the highest 

accuracy and minimal numerical artifacts. 
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a) Density contours ( (A) AUSM+M, (B) NAUM+M, (C) AUFS, (D) NAUM+M+AUFS ) 

 

 
 

 
b) Local Enlargement around the shock wave ( (E) AUSM+M, (F) NAUM+M, (G) AUFS, (H) NAUM+M+AUFS ) 

 

Figure 8: (a) Density contours of Noh problem ( from 2.5 to 4.0 in step of 0.25, and 14.0 to 17.0 in step of 0.2 )  

(b) Local Enlargement of density contours around the shock wave. 

 

The computational performance of the numerical schemes for the Noh problem at (t = 2.0) seconds, 

as presented in  Table 3, offers critical insights into their efficiency and suitability for large-scale 

simulations. 

The NAUSM+M+AUFS hybrid scheme demonstrates a clear advantage by offering significant 

accuracy improvements with only a minimal increase in computational cost. The 3% increase in 

CPU time over AUFS is marginal, especially considering the enhanced ability to accurately 

capture high-gradient regions and critical flow features without numerical artifacts. 

In contrast, NAUSM+M and AUSM+M require substantially more CPU time—58% and 38% 

increases over AUFS, respectively—yet do not provide commensurate improvements in accuracy 

when compared to NAUSM+M+AUFS. While NAUSM+M shows better accuracy than 
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AUSM+M, its high computational cost remains a concern. AUSM+M, despite its significant CPU 

time, exhibits numerical artifacts similar to those in AUFS, indicating that the additional 

computational effort does not translate into better accuracy. 

The AUFS scheme, while being the most computationally efficient, shows limitations in accuracy 

as evidenced by the presence of numerical artifacts in critical regions. This suggests that AUFS 

may not be sufficient for simulations where precise modeling of shock waves and high-gradient 

areas is necessary. Integrating the analysis of computational costs with accuracy considerations, 

the NAUSM+M+AUFS scheme emerges as the optimal choice for simulating the Noh problem. It 

achieves high accuracy and numerical stability, effectively capturing complex flow features with 

minimal numerical artifacts, all while maintaining computational efficiency comparable to the 

AUFS scheme. 

Table 3: Comparison of CPU time at time=2.0s for Noh problem. 

Scheme CPU Time(s) %Over AUFS 

NAUSM+M+AUFS 2323 3 
AUFS 2251 ---- 

NAUSM+M 3115 58 
AUSM+M 3555 38 

 

 

4.4 Two-dimensional Riemann problem 
 

The two-dimensional Riemann problems documented in [50] have established themselves as 

fundamental benchmarks for assessing schemes designed to solve the compressible Euler 

equations.  

The two-dimensional Riemann problem test case can be conducted through different possible 

configurations of shock waves, rarefaction waves, and slip lines  in the solution of two-dimensional 

Riemann problems for gas dynamics. These configurations represent distinct patterns of how 

waves interact at the interfaces between different quadrants of initial data in the problem. Each 

configuration corresponds to a particular combination of physical wave types (shocks, rarefactions, 

or slip lines) and their interactions. In this investigation, one address the third configuration of the 

Riemann problem, which describes the interaction of four shock waves within the domain [0, 1] × 

[0, 1].  
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Outflow boundary conditions are imposed uniformly, and The initial conditions of the two-

dimensional Riemann problem are illustrated in (Figure 9), showing the configuration of the four 

distinct states within the computational domain. 

 
Figure 9: Initial condition of two-dimensional Riemann problem (configuration3). 

 

 

As mentioned in reference [50], it is crucial that the solution to this problem maintains symmetry 

along both the northeast and southwest diagonals consistently. The symmetry of the solution 

indicates that the numerical method has successfully captured the physical behaviors of the flow 

with higher accuracy and fewer non-physical artifacts. However, schemes with insufficient rate of 

dissipation often fail to preserve this symmetry. This issue arises from the accumulation of 

systematic rounding errors. To assess the performance of the selected schemes—AUSM+M, 

NAUSM+M, and NAUSM+M+AUFS—Figure 10 presents a comparative analysis of their density 

contours at t=0.3. Subfigures A, B, and C display the global density contours for each scheme: 

AUSM+M, NAUSM+M, and NAUSM+M+AUFS, respectively. Subfigures D, E, and F show 

enlarged views of critical regions, allowing for a detailed examination of the flow structures where 

shock interactions occur. These enlargements provide additional clarity on how each scheme 

handles the resolution of complex shock dynamics and the preservation of flow symmetry. 

In subfigure (A), the AUSM+M scheme shows clear signs of asymmetry, especially in regions of 

shock interactions. The density contours are distorted, suggesting that the scheme introduces 
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numerical dissipation that is insufficiently controlled. This lack of dissipation management leads 

to visible numerical artifacts, most notably in the triangular structures near the shocks, which are 

more apparent in the enlarged view shown in subfigure (D). These artifacts result from the 

accumulation of rounding errors, indicating that AUSM+M struggles to preserve the necessary 

symmetry along the diagonals. Although AUSM+M effectively captures shocks, its inability to 

maintain flow symmetry and control dissipation limits its accuracy in this context. 

In contrast, subfigure (B) shows the results from the NAUSM+M scheme, which improves upon 

AUSM+M by reducing numerical dissipation. The density contours in subfigure (B) are more 

symmetric compared to those in subfigure (A), with fewer distortions. However, as seen in the 

enlarged view (subfigure (E)), subtle asymmetries persist in regions of intense shock interaction. 

While NAUSM+M provides better control over dissipation, its performance is not yet optimal, as 

small artifacts remain. These artifacts, though reduced, still affect the accuracy of the flow solution, 

particularly in highly dynamic regions where shocks are interacting. 

The most significant improvement is observed in subfigure (C), where the NAUSM+M+AUFS 

scheme produces highly symmetric density contours, with minimal numerical artifacts. The 

enlarged view in subfigure (F) confirms that the scheme handles shock interactions with great 

precision, preserving the fine details of the flow. The enhanced dissipation control provided by the 

AUFS modification plays a crucial role in this result, as it effectively manages rounding errors and 

numerical dissipation. Consequently, NAUSM+M+AUFS not only maintains symmetry along the 

diagonals but also captures the complex shock dynamics with high fidelity. This performance 

makes it the most accurate and reliable scheme among the three. 

Moreover, the comparison of the global density contours (A-C) and their enlarged counterparts 

(D-F) highlights the strengths and weaknesses of each scheme. AUSM+M exhibits noticeable 

asymmetry due to insufficient dissipation control, leading to inaccuracy in the solution. 

NAUSM+M offers an improvement by reducing these artifacts, but it still falls short in highly 

dynamic regions. Finally, NAUSM+M+AUFS demonstrates superior performance, achieving both 

high symmetry and accurate shock capturing, making it the most suitable scheme for solving the 

two-dimensional Riemann problem 
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a) Density contours ( (A) AUSM+M, (B) NAUM+M, (C) NAUM+M+AUFS ). 

 

 

 

b) Local Enlargement of density contours ( (D) AUSM+M, (E) NAUM+M, (F) NAUM+M+AUFS ). 

 

                                         Figure 10: Two-dimensional Riemann problem density at t=0.3 

(a) Density contours (b) Local Enlargement of density ontours around interaction of shocks. 

 

 

4.5. Raleigh–Taylor instability 

 

The Rayleigh–Taylor instability (RTI) occurs at the interface between two fluids of different 

densities when an acceleration is directed from the denser fluid towards the lighter one. In nature, 

RTI can be observed in volcanic eruptions where lighter gases rise through denser ash layers, 
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forming mushroom clouds, and in supernova explosions, where expanding core gases interact with 

denser shells, leading to complex mixing patterns [51]. Industrially, RTI is critical in nuclear 

fusion, influencing fuel layer mixing during inertial confinement fusion (ICF), and in die casting, 

where it can cause defects by preventing proper filling if air is trapped above liquid metal [52, 53]. 

It also plays a role in oceanic mixing and cloud formation, impacting climate and weather patterns 

[51].  

The computational domain spans [0,1/4]×[0,1] and discretized by the grid size of 

∆𝑥 = ∆𝑦 = 1/480 . Initially, the interface is located at y = 1/2, with the denser fluid (density 𝜌 = 

2) positioned below the interface and the lighter fluid (density 𝜌 = 1) above, while gravitational 

acceleration acts in the positive y-direction. The pressure, p, is continuous across the interface. 

Specifically, for 0 ≤ y < 1/2, the conditions are 𝜌 = 2, u = 0, p = 2y + 1, and v = 0.025 cos(8πx); 

for 1/2 < y ≤ 1, the conditions are 𝜌 = 1, u = 0, p = y + 3/2, and v = 0.025c cos(8πx), where c is 

the sound speed, and the ratio of specific heats is 𝛾 = 5/3. Reflective boundary conditions are 

imposed on the left and right boundaries. At the top boundary, the conditions are 𝜌 = 1, p = 2.5, 

and 𝑢= 𝑣 = 0, while at the bottom boundary, the conditions are 𝜌 = 2, p = 1, and 𝑢= 𝑣 = 0. To 

simulate the effect of gravitational force a source term, 𝜌, is added to the right-hand side of the 

momentum  equation, and 𝜌v is added to the energy equation. The simulation is conducted over a 

time span of t = 1.95, and the results are obtained accordingly.  

Figure 11(A–D) presents a comparison of the density contours obtained through the second-order 

accuracy.The AUFS scheme demonstrates poor performance in resolving contact discontinuities 

due to its inherently high dissipation characteristics. This excessive dissipation leads to a 

smoothing of sharp transitions between fluid densities, resulting in a less accurate representation 

of the fine structures typically associated with RTI, such as the mushroom-shaped spikes. 

Consequently, the AUFS scheme's resolution is suboptimal for capturing intricate features of the 

fluid interface. In contrast, the AUSM+M and NAUSM+M schemes exhibit better contact 

resolution but fail to preserve the symmetry of the fluid profile. These schemes produce more 

pronounced mushroom-shaped spikes at the interface between the lighter and denser fluids; 

however, the lack of symmetry suggests inaccuracies in the modeling of the instability. The 

asymmetry and inaccurate spike formations indicate that these methods are not as effective in 

capturing the fine balance of forces and mixing patterns present in RTI simulations. 
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The NAUSM+M+AUFS scheme achieves a notably better resolution of the complex solution 

structures. It more accurately captures the expected physical behavior, including the symmetry and 

proper spike formation, which are critical for accurately simulating RTI. This scheme's results 

closely resemble the fifth-order WENO solution [54]. 

 

Figure 11: Density contours for Raleigh–Taylor instability problem: (A) AUFS, (B) AUM+M, (C) NAUM+M, 

(D) NAUM+M+AUFS (15 equally spaced contours from 0.952269 to 2.14589). 

 

5.Conclusion 

 

This research presents the NAUSM+M+AUFS scheme, a novel hybrid numerical method that 

addresses critical challenges in the simulation of compressible flows on triangular grids. By 

seamlessly integrating the strengths of NAUSM+M and AUFS, and introducing innovative 

formulations for interfacial numerical sound velocity and pressure flux dissipation, this scheme 

effectively enhances shock-capturing capabilities while mitigating common numerical anomalies. 

Results confirm that the NAUSM+M+AUFS scheme excels in preserving the integrity of shock 

waves and eliminating the carbuncle phenomenon, particularly in high Mach number and 

hypersonic flows. The dynamic switching mechanism between AUSM+M and AUFS based on 
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local flow conditions ensures an optimal balance between accuracy and stability, resulting in 

improved convergence rates and computational efficiency across various test cases. 

The implications of these results are significant for the field of computational fluid dynamics 

(CFD). The NAUSM+M+AUFS scheme offers a robust and versatile tool for simulating complex, 

high-speed aerodynamic flows with greater precision and reliability. This advancement has the 

potential to drive improvements in critical applications such as aerodynamics and propulsion 

systems, where accurate flow predictions are essential for optimizing performance and safety. 

However, it is important to acknowledge that the present study has focused solely on structured 

triangular grids, which limits the general applicability of the method to more complex grid 

topologies frequently encountered in real-world engineering problems. This constitutes a key 

limitation of the current work. As such, future research should focus on extending the 

NAUSM+M+AUFS scheme to hybrid grids that incorporate both triangular and quadrilateral 

elements. This extension would allow the method to be applied more flexibly to complex 

geometries and improve its versatility in broader CFD applications. 

Further research should focus on exploring the application of this scheme in viscous and turbulent 

flow scenarios, including both triangular and quadrilateral elements, which will be crucial for 

further validation. 

In summary, the NAUSM+M+AUFS scheme marks a significant leap forward in numerical 

methods for compressible flow simulation. Its innovative approach not only addresses existing 

limitations but also sets a new standard for accuracy, stability, and efficiency in CFD, paving the 

way for future advancements in the field. 
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