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Abstract: In this paper, we consider the estimation of the stress-strength reliability
of a coherent system. The distributions of stress and strength random variables are the
members of a general class of distributions. For a series-parallel system, the reliability
of the stress-strength model is estimated using the maximum likelihood estimation,
asymptotic confidence interval, uniformly minimum variance unbiased estimation, and
Bayes estimation. Also, simulation studies are performed, and two real data sets are
analyzed.
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1 Introduction
In reliability literature, the stress-strength model described as the reliability of a unit
or a system in terms of the stress random variable X and strength random variable
Y . The system fails if the stress is greater than the strength, and the probability
R = P (X < Y ) is the reliability of the system. This idea was first introduced by
Birnbaum (1956) and it was developed by Birnbaum and McCarty (1958). The term
stress-strength reliability was first used by Church and Harris (1970). For example, this
model is used in comparison of the performances of two drugs or two products. Many
authors have studied the estimation of R under different distributions and sampling
methods. For example see Shawky and Al-Gashgari (2013), Kizilaslan and Nadar
(2017), Khan and Khatoon (2020), Yadav et al. (2019), Rao et al. (2019), Abu-Moussa
et al. (2021), Alamri et al. (2021), Hemati et al. (2022), and Kohansal (2022).
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The reliability of a multicomponent stress-strength model was developed by Bhat-
tacharyya and Johnson (1974). In their model all n components of the system are
exposed to a common stress, and system is alive when at least k (1 ≤ k ≤ n) com-
ponents function. This model is called the k-out-of-n:G system and the reliability of
this system is denoted by Rk,n. For example, a four-engine airplane that can fly if at
least two of its engines are working is a 2-out-of-4:G system. Most researchers have
studied the k-out-of-n:G system. See for example Hassan and Basheikh (2012), Rao et
al. (2017), salman and Sail (2018), Jamala et al. (2019), Kohansal (2019), Pandit and
Joshi (2019), Hassan et al. (2020), Mezaal et al. (2020), Sauer et al. (2020), Ahmad et
al. (2022), Jana and Bera (2022), and Kohansal et al. (2023).

Some authors considered the reliability of coherent systems. Dewanji and Rao
(2001) considered the stress-strength reliability for a general coherent system and stud-
ied two cases. In the first case, the stress is at the system level, that is the system
components are subjected to a common stress and in the other case the stress is at
the component level where each component is subjected to a particular stress. Bhat-
tacharya and Roychowdhury (2013) expressed the stress-strength reliability of a system
as a function of the stress-strength reliabilities of its individual components. In case
of system level stress, Eryilmaz (2010) obtained an expression for the reliability of a
general coherent system as a linear combination of the reliabilities of series systems.

The concept of system signature can be used to calculate the stress-strength relia-
bility. Consider a coherent system with n components and with structure function φ.
Let T1, T2, . . . , Tn be the component lifetimes and T = φ(T1, T2, . . . , Tn) be the system
lifetime. If Tis are continuous and have identically independent distributions (iid) and
Ti:n be the ith ordered lifetime, the following well known result is shown by Samaniego
(1985)

P (T > t) =

n∑
i=1

si P (Ti:n > t),

where si = P (T = Ti:n), i = 1, 2, . . . , n. The probability vector s = (s1, s2, . . . , sn) is
called the signature of the system. For applications of system signatures, see Samaniego
(2007). In a coherent system with structure function φ and by using the system
signature, Eryilmaz (2008) obtained the reliability of the stress-strength model. He
considered a system with n components (or subsystems) when each component consists
of m elements. In his paper, Xi = (X1

i , X
2
i , . . . , X

m
i ) is the random strength vector of

ith component, and the elements of the components are subjected to a common random
stress. Khanjari (2022) showed that his result given in Theorem 3 is a mistake.

In this paper, we consider a coherent system and study the stress-strength reliability
at the system level. For more details about coherent systems see Barlow and Proschan
(1971). We assume that the stress and strength are independent random variables.
Al-Hussaini (1999) introduced a general class of distributions that can be viewed as
the exponential form of distributions. If the distribution of the random variable X be a
member of this class, the probability density function (pdf), the cumulative distribution
function (cdf) and the failure rate function of X are given respectively as

fX(x) = αk
′

θ(x)e
−αkθ(x), FX(x) = 1− e−αkθ(x),

rX(x) =
fX(x)

1− FX(x)
= αk

′

θ(x), x > 0, α > 0,
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where θ is a parameter vector, kθ(x) is a strictly increasing function of x with kθ(0) = 0
and kθ(∞) = ∞, and k′

θ(x) is derivative of kθ(x) with respect to x. This class includes
exponential, Weibull, Rayleigh, Frechet, Gompertz, Half-logistic, Burr type X, Burr
type XII and many other distributions. Khorashadizadeh (2017) studied some relia-
bility properties of the above class.
We first consider the stress and strength distributions as the members of this class and
obtain the stress-strength reliability. We then assume that the exponential distribu-
tion, as the distribution of stress and strength random variables with different scale
parameters, and for the radar system we estimate the stress-strength reliability by
using maximum likelihood estimation (MLE), uniformly minimum variance unbiased
estimation (UMVUE) and Bayes estimation methods. We also consider the Pareto
distribution, which is not a member of the above class, and again estimate the stress-
strength reliability by using the same procedures.
In Section 2, we consider a coherent system and study the stress-strength reliability at
the system level. Different examples are provided. In Section 3, we consider a radar
system and obtain the stress-strength reliability at the system level, when the stress
and strength distributions are the members of exponential form of distributions or
when they are Pareto distributions. Also, we estimate the system reliability by MLE,
UMVUE and Bayes method, and derive asymptotic confidence interval (ACI) when
the distributions of the stress and strength are exponential or Pareto. In Section 4, we
perform a simulation study and analyze two real data sets.

2 Stress-strength reliability of a coherent system
Consider a coherent system with n components and structure function φ. System com-
ponents have strengths Y1, Y2, . . . , Yn, which are iid, and each component is subjected
to a common stress X which is an independent random variable of the strengths. For
ith component, we define the random status as follows

Zi =
{

1 X < Yi,
0 X ≥ Yi,

that is, ith component is active when the imposed stress is less than its strength. Note
that Zis are not independent. P (Zi = 1) and Rφ = P (φ(Z1, Z2, . . . , Zn) = 1) are
the reliabilities of the ith component and the system, respectively. Eryilmaz (2010)
obtained Rφ as a linear combination of the reliability of series systems as follows

Rφ =

n∑
i=1

aiP (X < Y1:i),

where Y1:i is the first ordered strength variable in Y1, Y2, . . . , Yi. He derived the coeffi-
cients ai for k-out-of-n:F, k-out-of-n:G and linear consecutive k-out-of-n:F systems.

Consider a coherent system with minimal path sets P1, P2, . . . , Pr. Define
Y1:|Pj | = min

i∈Pj

Yi, j = 1, 2, . . . , r,

where |Pj | is the number of elements of Pj . By using inclusion-exclusion principle, we
have
Rφ = P (∪r

j=1Y1:|Pj | > X)
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=

r∑
k=1

(−1)k−1
∑

1≤j1<j2<...<jk≤r

P (Y1:|Pj1 | > X,Y1:|Pj2 | > X, . . . , Y1:|Pjk
| > X)

=

r∑
k=1

(−1)k−1
∑

1≤j1<j2<...<jk≤r

P (Y1:|∪k
l=1Pjl

| > X)

=

r∑
k=1

(−1)k−1
∑

1≤j1<j2<...<jk≤r

P ( min
i∈∪k

l=1Pjl

Zi = 1). (1)

We note that the components of each minimal path set are in series. In a series system
with N components, it is well known that

P (X < Y1:N ) =

∫
(1− FY (x))

NdFX(x), (2)

and in view of (1), we can obtain Rφ. Now, we give some examples.

Example 2.1. (a) In a 3-components system with minimal path sets P1 = {1, 2}, P2 =
{1, 3} and structure function φ(x1, x2, x3) = min(x1,max(x2, x3)) = x1x2 + x1x3 −
x1x2x3, which is called a radar system, we have

Rφ = P (min
i∈P1

Zi = 1) + P (min
i∈P2

Zi = 1)− P ( min
i∈P1∪P2

Zi = 1)

= P (min
i=1,2

Zi = 1) + P (min
i=1,3

Zi = 1)− P ( min
i=1,2,3

Zi = 1)

= P (X < Y1:2) + P (X < Y1:2)− P (X < Y1:3)

= 2P (X < Y1:2)− P (X < Y1:3). (3)

This system is displayed in Figure 1.

1

2

3

Figure 1: The radar system.

(b) In a 3-components system with minimal path sets {1}, {2, 3} and structure
function φ(x1, x2, x3) = max(x1,min(x2, x3)) = x1 + x2x3 − x1x2x3

Rφ = P (X < Y1:1) + P (X < Y1:2)− P (X < Y1:3).

This system is displayed in Figure 2.
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1

2 3

Figure 2: The series-parallel system.

Example 2.2. (a) In a 4-components system with minimal path sets {1, 2, 4}, {1, 3, 4},
{2, 3, 4} and structure function φ(x1, x2, x3, x4) = x1x2x4+x1x3x4+x2x3x4−2x1x2x3x4

Rφ = 3P (X < Y1:3)− 2P (X < Y1:4).

This system is displayed in Figure 3.

1 2

1 3

2 3

4

Figure 3: The series-parallel system (2.2.a).

(b) In a 4-components system with minimal path sets {1, 3}, {1, 2, 4} and struc-
ture function φ(x1, x2, x3, x4) = min(x1,max(x2, x3),max(x3, x4)) = x1x3 + x1x2x4 −
x1x2x3x4

Rφ = P (X < Y1:2) + P (X < Y1:3)− P (X < Y1:4).

This system is displayed in Figure 4.

1

2

3

3

4

Figure 4: The series-parallel system (2.2.b).

(c) In a 4-components system with minimal path sets {1, 2}, {1, 3}, {1, 4}, {2, 3} and
structure function φ(x1, x2, x3, x4) = min(max(x1, x2),max(x2, x3),max(x2, x4)) =
x1x2 + x1x3 + x1x4 + x2x3 − 2x1x2x3 − x1x2x4 − x1x3x4 + x1x2x3x4

Rφ = 4P (X < Y1:2)− 4P (X < Y1:3) + P (X < Y1:4).

This system is displayed in Figure 5.
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Figure 5: The series-parallel system (2.2.c).

Example 2.3. (a) In the bridge system, containing five components and with minimal
path sets {1, 4}, {2, 5}, {1, 3, 5}, {2, 3, 4} and structure function φ(x1, x2, x3, x4, x5) =
x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x2x3x4 − x1x2x3x5 − x1x2x4x5 − x1x3x4x5 −
x2x3x4x5 + 2x1x2x3x4x5

Rφ = 2P (X < Y1:2) + 2 P (X < Y1:3)− 5 P (X < Y1:4) + 2 P (X < Y1:5).

This system is displayed in Figure 6.

1

2

3

4

5

Figure 6: The bridge system.

(b) In the stereo system, containing five components and with minimal path sets
{1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5} and structure function φ(x1, x2, x3, x4, x5) = x1x3x4+
x1x3x5+x2x3x4+x2x3x5−x1x2x3x4−x1x2x3x5−x1x3x4x5−x2x3x4x5+x1x2x3x4x5

Rφ = 4P (X < Y1:3)− 4P (X < Y1:4) + P (X < Y1:5).

This system is displayed in Figure 7.

1

2

3

4

5

Figure 7: The stereo system.
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3 Stress-strength reliability of the radar system
Consider a series system with N component. Let the stress and strength random
variables X and Y are independent and their distributions are the members of the
class of exponential form of distributions with parameters α and β, respectively. By
using (2) and the properties of the function kθ(x), we have

P (X < Y1:N ) =

∫ +∞

0

(e−βkθ(x))Nαk
′

θ(x)e
−αkθ(x)dx

= α

∫ +∞

0

k
′

θ(x)e
−(α+Nβ)kθ(x)dx =

α

α+Nβ
= ψN (α, β).

Now by using (1), we can obtain Rφ.
From (3) for the radar system we have

Rφ = 2ψ2(α, β)− ψ3(α, β), (4)

note that
0 < Rφ =

α2 + 4αβ

α2 + 5αβ + 6β2
< 1.

Also note in general, that Rφ is independent of the functional form of kθ(x).

3.1 Estimation of Rφ based on exponential distribution
The exponential distribution is used for data that does not age over time, such as
the lifetimes of electronic pieces. This distribution with the scale parameter α will
be denoted by E(α). The pdf, cdf and failure rate functions of X ∼ E(α) are given
respectively as

fX(x) = αe−αx, FX(x) = 1− e−αx, rX(x) = α, x > 0, α > 0.

E(α) is a member of exponential form of distributions. Let the stress X and the
strength Y are independent random variables and their distributions are E(α) and
E(β), respectively.

3.1.1 MLE for Rφ

Suppose that X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

are two independent random samples
from E(α) and E(β), respectively. The likelihood function is as follow

L(α, β) = αn1e−α
∑n1

i=1 xiβn2e−β
∑n2

i=1 yi , (5)

by deriving from l(α, β) = logL(α, β), MLEs of the scale parameters of α and β are as

α̂ =
1

X
, β̂ =

1

Y
.

According to the invariance property of MLE and from (4), we get the MLE of Rφ as

R̂M
φ =

4X Y + Y
2

6X
2
+ 5X Y + Y

2 . (6)
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3.1.2 ACI for Rφ

To obtain the ACI of Rφ, first the asymptotic distribution of (α̂, β̂) is derived and then
the asymptotic distribution of R̂M

φ is obtained. Finally, ACI for Rφ is constructed.
Theorem 3.1. As n1 → ∞ and n2 → ∞, we have[√

n1(α̂− α)√
n2(β̂ − β)

]
d−→ N2(

[
0
0

]
,

[
α2 0
0 β2

]
). (7)

where d−→ shows the convergence in distribution.
Proof. We have

∂2l(α, β)

∂α2
=

−n1
α2

,
∂2l(α, β)

∂α∂β
= 0,

∂2l(α, β)

∂β2
=

−n2
β2

, (8)

and the Fisher information matrix is given by

I = −

[
E(∂

2 l(α,β)
∂α2 ) E(∂

2 l(α,β)
∂α∂β )

E(∂
2 l(α,β)
∂α∂β ) E(∂

2 l(α,β)
∂β2 )

]
=

[n1

α2 0
0 n2

β2

]
.

Therefore the asymptotic covariance matrix, Σ is as follow

Σ = I−1 =

[
α2

n1
0

0 β2

n2

]
, (9)

and the proof is completed.

Based on Theorem 3.1, ACIs for α and β are as follows

α̂± zα
2

α̂
√
n1
, and β̂ ± zα

2

β̂
√
n2
. (10)

Theorem 3.2. If n1 → ∞ and n2 → ∞, then

R̂M
φ −Rφ

d−→ N(0,Var(R̂M
φ )), (11)

where
Var(R̂M

φ ) =
α2β2(α2 + 12αβ + 24β2)2

(α2 + 5αβ + 6β2)4
(
1

n1
+

1

n2
).

Proof. Rφ is a function of α and β, therefore by using Delta method (Lehmann and
Casella, 1998), we have

Var(R̂M
φ ) =

[
∂Rφ

∂α
∂Rφ

∂β

]
Σ

[
∂Rφ

∂α
∂Rφ

∂β

]
= (

∂Rφ

∂α
)2
α2

n1
+ (

∂Rφ

∂β
)2
β2

n2
. (12)

From (4), the partial derivations of Rφ are as follows

∂Rφ

∂α
=
β(α2 + 12αβ + 24β2)

(α2 + 5αβ + 6β2)2
,

∂Rφ

∂β
=

−α(α2 + 12αβ + 24β2)

(α2 + 5αβ + 6β2)2
. (13)

By substituting (13) into (12), the theorem is proved.
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Now, based on Theorem 3.2, the ACI for Rφ is

R̂M
φ ± zα

2

√
ˆVar(R̂M

φ ), (14)

where
ˆVar(R̂M

φ ) =
(24X2 + 12X Y + Y 2)2

(6X2 + 5X Y + Y 2)4
(
1

n1
+

1

n2
).

3.1.3 UMVUE of Rφ

According to (4), Rφ is a linear combination of ψN (α, β) = α
α+Nβ , N = 2, 3. As

the UMVUE is invariant under the linear combinations, it is sufficient to obtain the
UMVUE of ψN (α, β). Let X1 and Y1 be independent random variables such that
X1 ∼ E(α) and Y1 ∼ E(β). We define h(X1, Y1) as follow

h(X1, Y1) = I(NX1 < Y1),

where I(C) is the indicator function of the event C. h(X1, Y1) is an unbiased estimator
of ψN (α, β), as

E(h(X1, Y1)) =

∫ +∞

0

(

∫ +∞

Nx1

βe−βy1dy1)αe
−αx1dx1

= α

∫ +∞

0

e−(α+Nβ)x1dx1 = ψN (α, β).

Now consider the complete suffcient statistic T = (T1, T2) = (
∑n1

i=1Xi,
∑n2

i=1 Yi).
UMVUE of ψN (α, β) is then obtained by E(h(X1, Y1)|T ) as

ψ̂U
N (α, β) = P (N

X1

T1

T1
T2

<
Y1
T2

|T ).

Suppose S1 = X1

T1
, S2 = Y1

T2
and V = T1

T2
, we have

ψ̂U
N (α, β) = P (NV S1 < S2|T ).

It is known that S1 has Beta distribution with parameters (1, n1 − 1). The pdf of S1

is as follow
fS1(s1) = (n1 − 1)(1− s1)

n1−2, 0 < s1 < 1.

Similarly S2 has a Beta distribution with parameters (1, n2 − 1). Note that S1 and S2

are ancillary statistics. By using Basu theorem (Basu, 1955), (S1, S2) is independent
of T and we have

fS1,S2|T (s1, s2|T ) = (n1 − 1)(n2 − 1)(1− s1)
n1−2(1− s2)

n2−2,

0 < s1 < 1, 0 < s2 < 1. (15)

Now to obtain ψ̂U
N (α, β) we consider two cases. If NV ≤ 1, we have S1 ≤ 1 and

ψ̂U
N (α, β) =

∫ 1

0

(

∫ 1

NV s1

(n2 − 1)(1− s2)
n2−2ds2)(n1 − 1)(1− s1)

n1−2ds1
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=

∫ 1

0

(1−NV s1)
n2−1(n1 − 1)(1− s1)

n1−2ds1.

If NV > 1, S1 should be less than 1
NV and hence

ψ̂U
N (α, β) =

∫ 1
NV

0

(

∫ 1

NV s1

(n2 − 1)(1− s2)
n2−2ds2)(n1 − 1)(1− s1)

n1−2ds1

=

∫ 1
NV

0

(1−NV s1)
n2−1(n1 − 1)(1− s1)

n1−2ds1.

Therefore,
ψ̂U
N (α, β) =

{
Q(V, 1), NV ≤ 1,
Q(V, 1

NV ), NV > 1,
(16)

where
Q(V, a) =

∫ a

0

(1−NV s1)
n2−1(n1 − 1)(1− s1)

n1−2ds1.

From (4), we have
R̂U

φ = 2ψ̂U
2 (α, β)− ψ̂U

3 (α, β). (17)

3.1.4 Bayes estimation of Rφ

We obtain Bayes estimation of Rφ under the square error loss function. Suppose that
the scale parameters α and β are independent random variables and have Gamma prior
distributions Γ(µ, γ) and Γ(ν, λ), respectively. Then the joint prior pdf of (α, β) is as
follow

π(α, β) =
γµ

Γ(µ)

λν

Γ(ν)
αµ−1e−γαβν−1e−λβ . (18)

From (5) and (18) the posterior pdf of (α, β) is as follow

π(α, β|x
∼
, y
∼
) =

An1+µBn2+ν

Γ(n1 + µ)Γ(n2 + ν)
αn1+µ−1βn2+ν−1e−(Aα+βB),

where A = n1x+ γ and B = n2y+ λ. The Bayes estimator of Rφ is as follow. We first
obtain the Bayes estimator of ψN (α, β) and then based on (4) find the Bayes estimator
of Rφ. The Bayes estimator of ψN (α, β) is the mean of the posterior distribution as
follow

E(ψN (α, β)|x
∼
, y
∼
) = E(

α

α+Nβ
|x
∼
, y
∼
) =

An1+µBn2+ν

Γ(n1 + µ)Γ(n2 + ν)

×
∫ +∞

0

∫ +∞

0

α

α+Nβ
αn1+µ−1βn2+ν−1e−(Aα+βB)dαdβ

=
An1+µBn2+ν

Γ(n1 + µ)Γ(n2 + ν)
× I. (19)

By using the following transformations w = α+Nβ
u = α

α+Nβ
,

 α = wu

β = w(1−u)
N

, |jacobi| = w

N
,
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double integral in (19) is equal to

I =

∫ 1

0

∫ +∞

0

u[wu]n1+µ−1[
w(1− u)

N
]n2+ν−1e−[wuA+

w(1−u)
N B] w

N
dwdu

=
1

Nn2+ν

∫ 1

0

un1+µ(1− u)n2+ν−1

∫ +∞

0

wn1+µ+n2+ν−1e−w[BN −u(B
N −A)]dwdu

=
Γ(n1 + µ+ n2 + ν)

Nn2+ν

∫ 1

0

un1+µ(1− u)n2+ν−1[
B

N
− u(

B

N
−A)]−(n1+µ+n2+ν)du

= Γ(n1 + µ+ n2 + ν)
Nn1+µ

Bn1+µ+n2+ν

×
∫ 1

0

un1+µ(1− u)n2+ν−1[1− u(1− NA

B
)]−(n1+µ+n2+ν)du.

Suppose GN = NA
B and DN = 1 − GN . Because of GN > 0, we have DN < 1 and

therefore |DN | < 1 or DN ≤ −1. In case of DN ≤ −1, we have |DN | < |DN − 1| and
hence | DN

1−DN
| < 1. In case of |DN | < 1, Equation (19) is as follow

E(ψN (α, β)|x
∼
, y
∼
) =

An1+µBn2+ν

Γ(n1 + µ)Γ(n2 + ν)
Γ(n1 + µ+ n2 + ν)

Nn1+µ

Bn1+µ+n2+ν

×
∫ 1

0

un1+µ(1− u)n2+ν−1(1− uDN )−(n1+µ+n2+ν)du

= Gn1+µ
N

Γ(n1 + µ+ n2 + ν)

Γ(n1 + µ)Γ(n2 + ν)

×
∫ 1

0

u(n1+µ+1)−1(1− u)(n1+µ+n2+ν+1)−(n1+µ+1)−1

×(1− uDN )−(n1+µ+n2+ν)du.

Using the hypergeometric function of the form

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt, |z| < 1,

which is given in Abramowitz and Stegun (1972), we have

E(ψN (α, β)|x
∼
, y
∼
) = Gn1+µ

N

n1 + µ

n1 + µ+ n2 + ν
× 2F1(n1 + µ+ n2 + ν, n1 + µ+ 1, n1 + µ+ n2 + ν + 1;DN ),

|DN | < 1. (20)

The case of DN ≤ −1 is as follow. Using the form of

2F1(a, b, c; z) = (1− z)−a ×2 F1(a, c− b, c;
z

1− z
),

which is given in Abramowitz and Stegun (1972), we have

E(ψN (α, β)|x
∼
, y
∼
) = Gn1+µ

N

n1 + µ

n1 + µ+ n2 + ν
(1−DN )−(n1+µ+n2+ν)
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×2F1(n1 + µ+ n2 + ν, n2 + ν, n1 + µ+ n2 + ν + 1;
DN

1−DN
),

DN ≤ −1,

and

E(ψN (α, β)|x
∼
, y
∼
) = G

−(n2+ν)
N

n1 + µ

n1 + µ+ n2 + ν

×2F1(n1 + µ+ n2 + ν, n2 + ν, n1 + µ+ n2 + ν + 1;
DN

1−DN
),

DN ≤ −1. (21)

Using the Equations (20) and (21), and in view of (19), the Bayes estimator of ψN (α, β)
is as follow

ψ̂B
N (α, β)=E(ψN (α, β|x

∼
, y
∼
) =

n1 + µ

n1 + µ+ n2 + ν

×


Gn1+µ

N ×2 F1(n1 + µ+ n2 + ν, n1 + µ+ 1, n1 + µ+ n2 + ν + 1;DN ),
|DN | < 1,

G
−(n2+ν)
N ×2 F1(n1 + µ+ n2 + ν, n2 + ν, n1 + µ+ n2 + ν + 1; DN

1−DN
),

DN ≤ −1.

Therefore from (4), the Bayes estimator of Rφ is as follow

R̂B
φ = 2ψ̂B

2 (α, β)− ψ̂B
3 (α, β). (22)

3.2 Estimation of Rφ based on Pareto distribution
A Pareto distribution is used for data whose failure rate decreases over time. This
distribution provides a good model for biomedical issues, such as survival time after a
heart transplant. This distribution with the shape parameter α and location parameter
γ will be denoted by Pa(α, γ). The pdf, cdf and failure rate functions of X ∼ Pa(α, γ)
are given respectively as

fX(x) =
αγα

xα+1
, FX(x) = 1− (

γ

x
)α, rX(x) =

α

x
, x > γ, α > 0, γ > 0.

This distribution is a member of the class of exponential form of distributions. Let the
stress X and the strength Y be independent random variables and their distributions
are Pa(α, γ0) and Pa(β, γ0), respectively. The common scale parameter γ0 is known.
For a series system with N components and by using (2), we have

P (X < Y1:N ) =

∫ +∞

γ0

(
γ0
x
)Nβ αγ

α
0

xα+1
dx =

α

α+Nβ
= ψN (α, β),

and from (3) for the radar system we have

Rφ = 2ψ2(α, β)− ψ3(α, β). (23)
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Suppose that X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

are two independent random sam-
ples from Pa(α, γ0) and Pa(β, γ0), respectively. The likelihood function is as follow

L(α, β) =
αn1γn1α

0

(
∏n1

i=1 xi)
α+1

βn2γn2β
0

(
∏n2

i=1 yi)
β+1

. (24)

By taking differentiating from l(α, β) = logL(α, β), MLEs of the shape parameters α
and β are as follow

α̂ =
1

1
n1

∑n1

i=1 log xi − log γ0
, β̂ =

1
1
n2

∑n2

i=1 log yi − log γ0
. (25)

According to the invariance property of MLE and from (23), we get the MLE of Rφ as
follow

R̂M
φ = 2ψM

2 (α̂, β̂)− ψM
3 (α̂, β̂). (26)

Because the second order derivatives of l(α, β) are such as (8), the asymptotic covari-
ance matrix Σ, the limit distribution of (α̂, β̂), ACI for α and β, the limit distribution
of R̂M

φ , and ACI for Rφ, are the same as (9), (7), (10), (11) and (14), respectively.
Note that MLEs of α and β are given in (25) and MLE of Rφ is given in (26).

For UMVUE of Rφ, assume that X1 ∼ Pa(α, γ0) and Y1 ∼ Pa(β, γ0) are indepen-
dent random variables and define g(X1, Y1) as follow

g(X1, Y1) = I(
1

γN−1
0

XN
1 < Y1).

g(X1, Y1) is an unbiased estimator of ψN (α, β) as

E(g(X1, Y1)) =

∫ +∞

γ0

(

∫ +∞

1

γ
N−1
0

xN
1

βγβ0

yβ+1
1

dy1)
αγα0
xα+1
1

dx1 =

∫ +∞

γ0

(
γ0
x1

)Nβ αγ
α
0

xα+1
1

dx1

= αγα+Nβ
0

∫ +∞

γ0

x
−(α+Nβ)−1
1 dx1 = ψN (α, β).

Let Mi = log Xi

α , for i = 1, 2, ..., n1 and Ni = log Yi

β , for i = 1, 2, ..., n2. Because
Mi ∼ E(α) and Ni ∼ E(β), the statistic T = (T1, T2) = (

∑n1

i=1Mi,
∑n2

i=1Ni) is the
complete sufficient statistic. UMVUE of ψN (α, β) is then as follow

ψ̂U
N (α, β) = E(g(X1, Y1)|T ) = P ((

X1

γ0
)N <

Y1
γ0

|T ) = P (N log
X1

γ0
< log

Y 1

γ0
|T )

= P (NM1 < N1|T ) = P (NV S1 < S2|T ), (27)

where S1 = M1

T1
, S2 = N1

T2
and V = T1

T2
. Because S1 and S2 have Beta distributions with

parameters (1, n1 − 1) and (1, n2 − 1), respectively, S1 and S2 are ancillary statistics.
By using Basu theorem (Basu, 1955), (S1, S2) is independent of T and conditional pdf
(S1, S2)|T is the same as (15). ψ̂U

N (α, β) in (27) is the same as (16), where

V =
T1
T2

=

∑n1

i=1Mi∑n2

i=1Ni
=

∑n1

i=1 log
Xi

γ0∑n2

i=1 log
Yi

γ0

.
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Therefore from (23) we have

R̂U
φ = 2ψ̂U

2 (α, β)− ψ̂U
3 (α, β).

Now to obtain the Bayes estimator of Rφ under the square error loss function, from
(24) we have

L(α, β) = αn1βn2e−((α+1)
∑n1

i=1 log xi+(β+1)
∑n2

i=1 log yi)e(n1α+n2β) log γ0 .

Assume that prior distribution of (α, β) be the same as (18). Then the posterior pdf
of (α, β) is as follows

π(α, β|x
∼
, y
∼
) =

An1+µBn2+ν

Γ(n1 + µ)Γ(n2 + ν)
αn1+µ−1βn2+ν−1e−(Aα+Bβ),

where A =
∑n1

i=1 log xi − n1 log γ0 + γ and B =
∑n2

i=1 log yi − n2 log γ0 + λ. Therefore
the Bayes estimator of Rφ is the same as (22). Note that in subsection 3.1, the scale
parameters α and β and in subsection 3.2 the shape parameters α and β are estimated.

4 Simulation and real data
In this section, we study the performance of different estimations of Rφ and consider
two real data sets.

4.1 Simulation
In this subsection we present some experimental results about the estimation methods.
We consider different values for sample sizes and the stress-strength parameters in
the exponential distribution. We assume that n1 = n2 = n = 5, 10, 20, 30, 50, 100,
stress-strength parameters as (α, β) = (4, 0.5), (3.5, 1), (3, 1.5), (2.5, 2), (2, 2.5), (1.5, 3)
and (µ, γ, ν, λ) = (2.75, 1, 1.75, 1).
Table 1 show that the values of Rφ and by using (6), (17) and (22), we derive the
MLE, UMVUE and bayes estimator and compute their mean square errors (MSE). We
observe that as n increases, the values of MSE for MLE, UMVUE and Bayes estimator
are decreasing. Also in the most cases, the MSE values of MLE and UMVUE are less
than those of Bayes estimator, so MLE and UMVUE have better results.
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Table 1: Rφ, MLE, UMVUE, and Bayes estimations of Rφ and their MSEs

(α, β) n Rφ R̂M
φ MSE(R̂M

φ ) R̂U
φ MSE(R̂U

φ ) R̂B
φ MSE(R̂B

φ )
5 0.87273 0.84942 0.00917 0.87043 0.00821 0.79130 0.01344
10 0.87273 0.86216 0.00370 0.87255 0.00339 0.82640 0.00553

(4,0.5) 20 0.87273 0.86717 0.00166 0.87232 0.00158 0.84804 0.00224
30 0.87273 0.86949 0.00108 0.87291 0.00104 0.85648 0.00134
50 0.87273 0.87064 0.00062 0.87268 0.00061 0.86271 0.00073
100 0.87273 0.87174 0.00030 0.87276 0.00030 0.86811 0.00034
5 0.73427 0.71113 0.01974 0.73066 0.02219 0.69003 0.02646
10 0.73427 0.72367 0.00944 0.73398 0.00995 0.70443 0.00835

(3.5,1) 20 0.73427 0.72830 0.00466 0.73354 0.00477 0.71174 0.00424
30 0.73427 0.73109 0.00312 0.73462 0.00317 0.71852 0.00297
50 0.73427 0.73207 0.00186 0.73420 0.00187 0.72398 0.00183
100 0.73427 0.73325 0.00091 0.73431 0.00092 0.72889 0.00093
5 0.60000 0.58775 0.02507 0.59610 0.03081 0.60908 0.07677
10 0.60000 0.59508 0.01281 0.59967 0.01425 0.64015 0.04094

(3,1.5) 20 0.60000 0.59678 0.00656 0.59911 0.00692 0.64995 0.01829
30 0.60000 0.59888 0.00446 0.60046 0.00463 0.63901 0.01098
50 0.60000 0.59897 0.00269 0.59993 0.00274 0.62277 0.00616
100 0.60000 0.59958 0.00134 0.60005 0.00135 0.60570 0.00249
5 0.47511 0.47582 0.02574 0.47159 0.03181 0.46418 0.13911
10 0.47511 0.47692 0.01328 0.47476 0.01480 0.50101 0.12087

(2.5,2) 20 0.47511 0.47534 0.00682 0.47419 0.00721 0.54507 0.11029
30 0.47511 0.47636 0.00465 0.47561 0.00482 0.58805 0.10147
50 0.47511 0.47551 0.00280 0.47504 0.00286 0.63633 0.09550
100 0.47511 0.47540 0.00140 0.47516 0.00141 0.70672 0.08893
5 0.36090 0.37238 0.02283 0.35807 0.02686 0.27416 0.14719
10 0.36090 0.36804 0.01146 0.36054 0.01236 0.23754 0.14055

(2,2.5) 20 0.36090 0.36390 0.00577 0.36004 0.00599 0.17732 0.13504
30 0.36090 0.36394 0.00392 0.36136 0.00401 0.14570 0.13289
50 0.36090 0.36240 0.00234 0.36084 0.00238 0.09554 0.13029
100 0.36090 0.36173 0.00116 0.36094 0.00117 0.03901 0.12940
5 0.25714 0.27504 0.01736 0.25508 0.01863 0.11433 0.09842
10 0.25714 0.26710 0.00821 0.25682 0.00838 0.04784 0.07835

(1.5,3) 20 0.25714 0.26162 0.00399 0.25643 0.00402 0.01218 0.06882
30 0.25714 0.26099 0.00268 0.25753 0.00269 0.00262 0.06669
50 0.25714 0.25918 0.00159 0.25710 0.00159 0.00014 0.06615
100 0.25714 0.25822 0.00078 0.25717 0.00078 0.00000 0.06612

4.2 Real data

We consider a pair of real data sets that were used by Mirjalili et al. (2016). The First
and the second data sets show the breaking strength of jute fiber of gauge lengths 20
and 10 mm, respectively.
First data set (X): {71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16,
662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96,
350.70, 547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55}.
Second data set (Y ): {693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48,
108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38,
700.74, 262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25}.
For each data set, we used the Kolmogorov-Smirnov (K-S) test to fit the exponential
distribution. For the first data set, the MLE, K-S distance between the empirical
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distribution function and the fitted distribution function and the corresponding p-value
are 0.0029, 0.1328 and 0.6183, respectively. For the second data set, the corresponding
values are 0.0027, 0.1750 and 0.2831, respectively. We see that for these data sets, the
exponential distribution has a good fitness. According to (6) and (17), the R̂M

φ and R̂U
φ

are 0.4350 and 0.4334, respectively. Also by using (22), if (µ, γ, ν, λ) = (2.75, 1, 1.75, 1),
we have R̂B

φ = 0.7169.

Discussion and conclusions
In this paper, for the general case of a coherent system, we considered the reliability
of the stress-strength model when the stress is at the system level and obtained it for
different systems. We derived this reliability for a wide class of distributions, called the
exponential form of distributions. If the distributions of the stresses and strengths are
exponential or Pareto, by using different methods we also estimated the stress-strength
reliability for the radar system. The results of simulation indicate that the MLE and
UMVUE are proper estimations. Further researches in this model can be done for
other systems and other members of exponential form of distributions.
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