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Abstract
In the reliability theory, the performance of a system can be improved by different
methods, such as redundancy and reduction methods. The redundancy method may
not be optimal when some restrictions such as volume and weight are crucial. In the
reduction method, system reliability is increased by reducing the failure rate of some
of its components by a factor 0 < ρ < 1 which is called the reliability equivalence
factor (REF). This article considers a new light on reliability equivalence factors in a
coherent system with independent components. A closed form for ρ is obtained when
the reduction method is applied on a single component of the system. Based on this,
we also define a newmeasure of component importance. Various numerical illustrative
examples are given to support the new results.

Keyword Reduction method · Redundancy method · Reliability equivalence factors ·
Importance measure

1 Preliminaries and introduction

In a fixed point of time t , consider a coherent system with n independent components.
The following basic concepts and notations are required in the next sections. Suppose

Xi (t) =
{
1 i f Ti > t

0 otherwise,

where Ti is the lifetime of component i and let pi (t) = E (Xi (t)) = P(Ti > t) =
F̄i (t) be its reliability, i = 1, . . . , n. Also

ϕ (X(t)) = ϕ ((X1(t), X2(t), . . . , Xn(t))) =
{
1 i f T > t

0 otherwise,
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and h(p(t)) = h(p1(t), . . . , pn(t)) = Eϕ (X(t)) = P(T > t) are called the structure
and reliability functions of the system, respectively, and T is the system lifetime.

Birnbaum reliability importance of component i is defined as IB(i;p) = ∂h(p)

∂ pi
which is equal to P (ϕ(1i , x) − ϕ(0i , x) = 1) = h(1i ,p) − h(0i ,p) where (0i , x) =
(x1, . . . , xi−1, 0, xi+1, . . . , xn) and (0i ,p) = (p1, . . . , pi−1, 0, pi+1, . . . , pn).

As a special case of IB(i;p), the Birnbaum structural importance of component i
is given by

Iϕ(i) = IB(i;p)|p1=···=pn= 1
2

= 1

2n−1

∑
{(·i ,x)}

[ϕ(1i , x) − ϕ(0i , x)] ,

where (·i , x) represents x without the component i . In fact, Iϕ(i) is equal to the
probability that the system is in such a state that component i is critical for the system
when p1 = · · · = pn = 1

2 . In other words, the structural importance of component
i is the ratio between the number of component state vectors in which the state of
component i dictates the state of the system with that of the total number of other
component state vectors. The structural importance of a component actually measures
the importance of the position of the component. Note that IB(i;p) is independent
of pi , see Barlow and Proschan (1975a), Shaked and Shanthikumar (1990) and Kuo
and Zuo (2003) for more details. The Birnbaum measure of component importance
has been widely studied and referred, see Kuo and Zuo (2003), Barlow and Proschan
(1975b) and Shen and Xie (1989). Xie and Shen (1989) defined a general importance
measure of component as the increase of the system reliability due to an improvement
of the component i as

IRI P (i;p) = h(p′
i ,p) − h(p),

where h(p′
i ,p) is the system reliability after improving the reliability of component

i . This importance measure depends on what improvement action is taken on the
component level. They have also obtained an interesting relation for IRI P (i;p) as

IRI P (i;p) = (p′
i − pi )IB(i;p). (1)

In reliability analyses, any system is assumed to have a finite life that can be extended
by using components with high reliability or by adding redundant components to
the original components. These techniques are known as “ reduction" and “ redun-
dancy" methods, respectively. Reduction and redundancy are two main approaches
in improving system reliability. In redundancy method, some system components
are duplicated by redundant components. Whereas in reduction method, system reli-
ability is increased by reducing the failure rates of some of its components by a
factor 0 < ρ < 1. In redundancy allocation, it is generally accepted that redun-
dant components may be inserted into the system via two methods, known as active
and standby redundancies. In an active redundancy, the redundant components are
inserted in parallel to the original components of the system. In standby redundancy
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the redundant components start working immediately after component failures, see
Bayramoglu Kavlak (2017) and Billinton and Allan (1992).

A standby component has a failure rate while it is in standby. There are three types
of standby: hot standby, warm standby and cold standby. Hot standby components
are also called active redundant components. A hot standby component has the same
failure rate as the active component. A cold standby component has a zero failure
rate. In other words, it does not fail while in standby. Warm standby implies that
inactive components have a failure rate that is between 0 and the failure rate of active
components. Warm standby may include cold standby and hot standby as extreme
cases. A warm standby component is not an active component. However, it may fail
while in the standby condition.An example of a cold standby component is a spare light
bulb in an overhead projector. An example of warm standby is a power plant, which
often has at least one extra generating unit spinning so that it can be switched into full
operation quickly when needed, see Kuo and Zuo (2003). The standby redundancy
methods are plagued by space limitation, complexity and higher development costs.
So, the reduction method may be an appropriate alternative.

Råde (1989) introduced the concept of reliability equivalence factors. The reliability
equivalence factor (REF) is a factor as 0 < ρ < 1 by which the failure rates of some
system components should be reduced to reach the value of reliability similar to a
system that improved by a redundancy method. The reliability equivalence factors
are well described in Råde (1989, 1990, 1991), Sarhan (2000, 2002, 2005, 2009),
Sarhan et al. (2008). In a real case, the reduction policy can be applied in different
ways. If we are designing the system, we can use higher quality components which is
equivalent with components with lower failure rate. For example, consider a battery of
a mobile phone. We know that the battery life of the smart phone is very important for
the users. Thus, many manufacturing companies are working to produce new types of
batteries with expected lifetimes which are at least double that of the current battery.
If we are in a point of time t = t0, we can replace the original component with a
component with more quality or if the original component is failed we can repair it.
An imperfect repair is equivalent to reduction policy with 0 ≤ ρ ≤ 1. Perfect repair
and minimal repair can be considered as special cases of imperfect repair. A perfect
repair is equivalent to reduction method with ρ = 0 and in a minimal repair the failure
rate is not changed as a result of the repair which is equivalent to reduction policy
with ρ = 1. Maintenance operations are usually time consuming and expensive. We
have to turn off the system when we are doing the repair actions. Thus, the reduction
method may be cheaper in these situations.

It should be noted that the reduction method may not be used in practice. This
method can be considered as a technique for comparing the different redundancy
policies.We can find the reduction factorρ such that two different redundancymethods
are equivalent and compare different policies based on their correspond reduction
factors. This is one of the most advantage of the reduction policy. This method also
has some limitations such as other redundancy methods. Sometimes we can not find
the reduction factor ρ such that the system reliability (or mean times to failure) reaches
to the desired values. Because, the reduction factor is limited to the interval [0, 1].

The reduction factors are often obtained by numerical methods and mathematical
packages in literature. In this paper based on the system reliability function, the equiv-
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alence between redundancy and reduction methods in a general coherent system with
independent components is investigated. In Sect. 2, we present a closed-formula solu-
tion to the problemwhen the reliability function of one component improved according
to the reduction method. In Sect. 3, we introduce a new idea to consider the REF as
an importance measure of component. A preliminary comparison indicates that our
idea has advantageous in selecting the best component to apply reduction method.
We also study the relationship between REF as a measure of importance with some
other measures, such as Xie and Shen (1989) measures. Finally in Sect. 4, based on
the mean reliability equivalent factor we define a new relative importance measure of
components. Some numerical examples are also given to illustrate how the theoretical
results obtained in this paper can be applied.

2 Reductionmethod

The use of redundancy method may not be optimal in systems when the minimum
size and weight are overriding considerations. In these cases improving the system
reliability through other alternative methods such as reduction method is done. In this
section we obtain a closed formula for the REF when the reduction method on a single
component of the system is used.

Assume that the reliability of i th component, pi (t), with failure rate ri (t), can
be increased by reducing its failure rate via r ′

i (t) = ρi ri (t) by a factor ρi such that
0 ≤ ρi ≤ 1. Then the reliability function of component i after reducing its failure rate
function is given by

p′
i (t) = e− ∫ t0 ρi ri (x) dx = [pi (t)]

ρi .

Let

(p(t) ; ρ) = p′(t) = (p′
1(t), . . . , p

′
n(t)),

denote the improved reliability vector of the system components with corresponded
reduction factors ρ = (ρ1, . . . , ρn). If we reduce the component failure rates of subset
K by reduction vector ρK = (ρ1K , . . . , ρnK ), such that

ρiK =
{

ρi i ∈ K

1 i /∈ K ,
(2)

then the system reliability can be expressed as RρK
(t) = h(p(t) ; ρK ) ; where

RρK
(t) ∈ [h(p(t)), h(1K ,p(t))

]
and (1K ,p(t)) denotes an improved reliability vector

p′(t) such that

p′
i (t) =

{
1 i ∈ K

pi (t) i /∈ K .
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If ω be an arbitrary level of system reliability, then for ω ∈ [h(p(t)), h(1K ,p(t))
]

there exists a vector of component reduction factors ρK , such that RρK
(t) =

ω. Also for some arbitrary sets Ki , i ∈ I of the system components, if ω ∈[
h(p(t)),mini {h(1Ki ,p(t)) }] then there exist some vectors of component reduction
factors ρKi

, i ∈ I , where I is a finite index set.
In the next theorem, we present a closed form for the reduction factor of the com-

ponent i . We suppose that the reliability of the system components are known at a
particular instant t , and then reduce the failure rate of the i th component such that the
system reliability is increased to ω. Since the time is fixed and the reduction factor
depends on i and ω, we denote the reduction factor by ρi (ω).

Theorem 2.1 Consider a coherent system with n independent component lifetimes.
Suppose that the failure rate function of the component i is reduced by reduction
factor ρi such that the system reliability is increased to specified value ω. Then

ρi (ω) =

⎧⎪⎪⎨
⎪⎪⎩
1 i f ω = h(p)

1
ln pi

× ln

(
ω − h(0i ,p)

IB(i;p)

)
i f ω ∈ (h(p), h(1i ,p))

0 i f ω = h(1i ,p).

In particular, if p j = 1
2 for all j �= i , then

ρi (ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 i f ω = h(pi , p
(i)
1
2

)

1
ln pi

× ln

⎛
⎜⎝

ω − h(pi , p
(i)
1
2

)

Iϕ(i)

⎞
⎟⎠ i f ω ∈

(
h(pi ,p

(i)
1
2

), h(1i , p
(i)
1
2

)

)

0 i f ω = h(1i ,p
(i)
1
2

),

where p(i)
1
2

= (
1

2
, . . . ,

1

2︸ ︷︷ ︸
i−1

, ·, 1
2
, . . . ,

1

2︸ ︷︷ ︸
n−i

).

Proof : By using the pivotal decomposition on component i , we have

h(p) = pi h(1i ,p) + (1 − pi )h(0i ,p)

= h(0i ,p) + pi IB(i;p).

For reduction set Ki = {i} ; i = 1, . . . , n, we obtain

h(p ; ρKi
) = h(0i ,p) + [pi ]

ρi IB(i;p).

Note that h(p ; ρKi
) ∈ [h(p), h(1i ,p)

]
. Thus, for any ω ∈ (h(p), h(1i ,p)), we derive

h(0i ,p)+ [pi ]ρi (ω) IB(i;p) = ω or equivalently ρi (ω) = 1
ln pi

× ln

(
ω − h(0i ,p)

IB(i;p)

)
.
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Thus,

ρi (ω) =

⎧⎪⎪⎨
⎪⎪⎩
1 i f ω = h(p)

1
ln pi

× ln

(
ω − h(0i ,p)

IB(i;p)

)
i f ω ∈ (h(p), h(1i ,p))

0 i f ω = h(1i ,p).

In particular, if p j = 1
2 for all j �= i , then IB(i;p) = Iϕ(i) and the system reliability

is given by

h(pi ,p
(i)
1
2

) = h(0i ,p
(i)
1
2

) + pi Iϕ(i),

wherep(i)
1
2

= (
1

2
, . . . ,

1

2︸ ︷︷ ︸
i−1

, ·, 1
2
, . . . ,

1

2︸ ︷︷ ︸
n−i

). Sinceh(p(i)
1
2

; ρKi
) ∈
[
h(pi ,p

(i)
1
2

), h(1i ,p
(i)
1
2

)

]
,

for any ω belongs to

(
h(pi ,p

(i)
1
2

), h(1i ,p
(i)
1
2

)

)
we should solve h(0i ,p

(i)
1
2

) +

[pi ]ρi (ω) Iϕ(i) = ω, that concludes ρi (ω) = 1
ln pi

× ln

⎛
⎝ω − h(0i ,p

(i)
1
2

)

Iϕ(i)

⎞
⎠ and this

completes the proof. ��
In the following, we present some examples to illustrate how the result of Theorem
2.1 can be used to find admissible bounds for a system whose reliability is improved
according to the reduction method.

Example 2.1 The reliability function of the bridge system, shown in Fig. 1, is given by

h(p) = p3 (1 − q1q4) (1 − q2q5)

+ q3 [1 − (1 − p1 p2) (1 − p4 p5)] ; qi = 1 − pi .

Let p0 = (0.5, 0.5, 0.5, 0.5, 0.5) and p1 = (0.8, 0.6, 0.5, 0.3, 0.7) be respectively the
homogeneous and non-homogeneous vectors of the component reliabilities. Table 1
provides the lower andupper bounds for system reliabilitywhen the system is improved
by reducing the failure rate of component i . For example, if p = p0 and K1 = {1},
then there exists the reduction factor ρ1 such that the system reliability is increased to
ω ∈ [0.5, 0.6875].Note that by applying the reductionmethod on component 1,we can
not improve the system reliability to ω ∈ [0.6875, 1]. If ω ∈ [h(p),mini {h(1i ,p)}],
then all reduction factors ρi , i = 1, . . . , n exist. Thus, for p = p0 and by reducing the
failure rate of each component of the system, we can improve the system reliability
to ω, where ω ∈ [0.5, 0.5625]. For p = p1 this interval becomes [0.673, 0.748].

Figure 2 illustrates the reduction factors ρ1(ω) = 1
ln p1

× ln

⎛
⎝ω − h(01,p

(1)
1
2

)

Iϕ(1)

⎞
⎠ and
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Fig. 1 A bridge system

Table 1 Admissible intervals of ω by reducing the failure rate function of component i in the bridge system

Reduction set Interval
[
h(p), h(1i , p)

]
p = p0 p = p1

K1 = {1} (0.5, 0.6875) (0.673, 0.7820)

K2 = {2} (0.5, 0.6875) (0.6730, 0.8510)

K3 = {3} (0.5, 0.5625) (0.6730, 0.7568)

K4 = {4} (0.5, 0.6875) (0.6730, 0.8620)

K5 = {5} (0.5, 0.6875) (0.6730, 0.7480)[
h(p),mini {h(1i ,p) }] : (0.5, 0.5625) (0.6730, 0.7480)

ρ′
1(ω) = 1

ln p1
× ln

(
ω − h(0i ,p)

IB(1;p)

)
, respectively for the homogeneous and non-

homogeneous vectors.
In the next example, we are interested in finding the most appropriate component

for reducing failure rate when the importance measures are given.

Example 2.2 Consider the bridge system in Fig. 1. The Birnbaum structural impor-
tance measures of the system components are given by Iϕ(1) = Iϕ(2) = Iϕ(4) =
Iϕ(5) = 0.375 and Iϕ(3) = 0.125. Thus, the components 1,2,4 and 5 have the
same and the highest structural importance. If p = p1 = (0.8, 0.6, 0.5, 0.3, 0.7),
then the most important component based on the Birnbaum reliability importance
measure is component 1. It is known that for p = p0 = (0.5, 0.5, 0.5, 0.5, 0.5) the
Birnbaum reliability importance reduces to Birnbaum structural importance. If we
compute the general importance measure introduced by Shen and Xie (1989), we find
that the most important components for p = p0 are {1, 2, 4, 5} and for p = p1 is
component 4. Now, we consider the reliability vectors p0 and p1 and find the best
component for reducing the failure rate. From Table 1 we know that for p = p0 and
ω ∈ [0.5, 0.5625] all the reduction factors ρi ; i = 1, . . . , 5 exist. So let us to consider
ω = 0.5625 and calculate the reduction factors. Table 2 shows that for p = p0 we have
ρ1 = ρ2 = ρ4 = ρ5 = 0.5850 ≥ ρ3 = 0. Thus, reducing the failure rate of component
i; i ∈ {1, 2, 4, 5} concludes more improving than component 3. For p = p1 we select
ω = 0.748 because there exist all of the reduction factors for ω ∈ [0.5, 0.748]. From
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612 J. Etminan et al.

Fig. 2 The values of ρ1(ω) (solid line) and ρ′
1(ω) (dotted line) in Example 2.1

Table 2, we find that component 2 which is the most important component has the
highest reduction factor and therefore is the best component for reducting the failure
rate.

Example 2.2 motivates us to a new light of the reduction factor as a new importance
measure. We follow this idea in the next section.

3 Relative importance of components based on reliability
equivalence factor

Asmentioned in Sect. 1, in redundancymethod, the system reliability can be improved
using active or standby redundancy in three types of hot, warm, and cold standby. We
suppose that the system reliability can be improved by a set of different methods
of redundancy that we call them redundancy mechanisms. We denote by Q the set
of all redundancy mechanisms, and an arbitrary element of Q is denoted by Q. For
example, Q1 = {H = {i}} means that we improve the system reliability by adding
a hot standby component to the component i or Q2 = {H = {i} ,C = { j}} means
that the system reliability is improved by adding a hot standby component to the
component i and a cold standby component to the component j of the system.We will
denote the reliability of improved system via an arbitrary redundancy mechanism Q,
by h(p ; Q).

The survival reliability equivalence factor (SREF) for a redundancy mechanism Q
is defined in the following.

Definition 3.1 Let Rρ0K
(t) = h(p(t) ; ρ0K ) denote the reliability function of the

improved system by reducing the component failure rates of the subset K by the
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reduction vector ρ0K = (ρ1K , . . . , ρnK ), where

ρiK =
{

ρ0 i ∈ K

1 i /∈ K ,

and h(p(t) ; Q) denote the reliability function of the improved system by using an
arbitrary redundancy mechanism Q. Then, a solution ρ0 of equation

h(p(t) ; Q) = h(p(t) ; ρK ), (3)

is said the SREF of mechanism Q in redundancy method.
SincemaxρK h(p(t) ; ρK ) = h(1K ,p(t)) andminρK h(p(t) ; ρK ) = h(p(t)), so for

any Q such that h(p(t) ; Q) ∈ [h(p(t)), h(1K ,p(t))
]
there exists a ρ0 that satisfies in

(3).

Now, we can introduce a new measure of importance based on the equivalence
factors in reduction method.

Definition 3.2 Consider an arbitrary redundancymechanismQ such thath(p(t) ; Q) =
ω. Suppose that ρC and ρD are the SREFs for the reduction subsets C and D of the
components, respectively, such that

h(p(t) ; ρC ) = h(p(t) ; ρD) = ω.

We say that the subset C is more important than the subset D in the sense of SREF,
written as C ≥(ρS ,ω) D, if and only if ρC ≥ ρD .

In Definition 3.2, if C = {i} and D = { j}, then we say that component i is more
important than component j in the sense of SREF, denoted by i ≥(ρS ,ω) j , if ρi ≥ ρ j .

Example 3.1 Assume that the component lifetimes of bridge system in Fig. 1 are
independent and distributed exponentially with parameters λi = i, i = 1, . . . , 5.
Consider a redundancy mechanism Q, as Q1 = {H = {1}}, such that a hot standby
component from exponential distribution with λ = 2 is added to component 1. The
reliability function of the bridge system whose reliability is improved according to the
redundancy mechanism Q1 is given by

h(p(t) ; Q1) =
(
e−3 t − 1

) ((
e−3 t − 1

) (
e−9 t − 1

)
− 1
)

+ e−3 t
((
e−t − 1

) (
e−4 t − 1

)
− 1
) ((

e−2 t − 1
) (

e−5 t − 1
)

− 1
)

.

The SREFs can be obtained by solving the following set of equations

h(p(t) ; Q1) = h(p(t) ; ρKi ) = ω, i = 1, . . . , 5,
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A new light on reliability equivalence factors 615

for the appropriate reduction factor ρKi and time fractile t = t0 corresponding to
specified reliability ω. Note that we have 25 − 1 = 31 possible reduction sets and we
only present some of them in Table 3. The following results can be observed from
Table 3.

(1) The values ρKi ; i = 1, . . . , 10 in this table show that reducing the failure rate of
each component belonging to the reduction set Ki by reduction factorρKi improves
the system reliability like adding a hot redundant component from exponential
distribution with λ = 2 to component 1 where the system reliability is chosen to be
specified valueω. For example, forω = 0.5 after solving equation h(p(t0) ; Q1) =
0.5, we obtain t0 = 0.3316, i.e., the system reliability of the bridge system with a
hot duplication on component 1 at time t0 = 0.3316 is equal to 0.5. Now if wewant
to have the same reliability by reducing the failure rate of only one component of
the system, component 2 is the best possible for improvement.

(2) Missing values of ρKi for i = 3 mean that it is not possible to reduce the failure
rate for the set K3 in order to improve the system reliability to be equivalent with
the system reliability that is obtained by hot duplication on component 1. Figure
3 clearly presents h(p(t) ; Q1), h(p(t) ; ρK3 = 1) and h(p(t) ; ρK3 = 0). We see
that h(p(t) ; ρK3 = 0) has no intersection with h(p(t) ; Q1) except at the start and
end points. We also have the same result for ω = 0.01 and K4.

(3) If Ki ⊆ K j , then ρKi ≤ ρK j .
(4) Based on the concept of SREF, the subsets of original components that their reduc-

tion factors exist (belong to [0, 1]) are comparable . For example when ω = 0.01
we have

ρK10 ≥ ρK8 ≥ ρK7 ≥ ρK2 ≥ ρK6 ≥ ρK1 ≥ ρK9 ≥ ρK5 .

It can be written equivalently as

K10 ≥ (ρS ,ω=0.01)K8 ≥(ρS ,ω=0.01) K7 ≥ (ρS ,ω=0.01)K2

K2 ≥ (ρS ,ω=0.01)K6 ≥(ρS ,ω=0.01) K1 ≥ (ρS ,ω=0.01)K9

≥(ρS ,ω=0.01) K5.

The following theorem pertains to the comparison between original components
of the system based on the SREF which is used for improving survival function in
reduction method.

Theorem 3.3 Let h(p, ρi ) denote the reliability function of a coherent system improved
by reducing the failure rate function of the component i . If h(p, ρi ) = h(p, ρ j ), then
we have the following results.

1) The reduction factors ρi and ρ j satisfy in

(pρi
i − pi )IB(i;p) = (p

ρ j
j − p j )IB( j;p). (4)

2) If
p j IB ( j;p)

pi IB (i;p)
≥ 1 and pi ≥ p j then ρi ≤ ρ j .

123



616 J. Etminan et al.

Ta
bl
e
3

SR
E
Fs

fo
r
Q
1

=
{H

=
{1}

}in
br
id
ge

sy
st
em

So
m
e
re
du

ct
io
n
se
t

R
ed
uc
tio

n
fa
ct
or

ω 0.
01

0.
1

0.
5

0.
9

0.
99

t 0 1.
58

54
0.
84

45
0.
33

16
0.
10

83
0.
03

20

K
1

=
{1}

ρ
K
1

0.
90

48
0.
74

05
0.
44

37
0.
18

65
0.
06

11

K
2

=
{2}

ρ
K
2

0.
95

24
0.
87

02
0.
72

47
0.
62

05
0.
59

63

K
3

=
{3}

ρ
K
3

−
−

−
−

−
K
4

=
{4}

ρ
K
4

−0
.1
22

7
⊗

0.
01

58
0.
20

66
0.
18

98
0.
09

62

K
5

=
{5}

ρ
K
5

0.
11

29
0.
24

81
0.
45

72
0.
53

67
0.
57

25

K
6

=
{1,

5}
ρ
K
6

0.
90

49
0.
76

01
0.
69

04
0.
69

05
0.
70

11

K
7

=
{2,

3}
ρ
K
7

0.
95

24
0.
87

19
0.
75

36
0.
66

83
0.
62

36

K
8

=
{1,

2,
3}

ρ
K
8

0.
96

83
0.
91

42
0.
82

78
0.
76

17
0.
72

95

K
9

=
{3,

4,
5}

ρ
K
9

0.
49

14
0.
57

78
0.
70

09
0.
72

49
0.
71

93

K
10

=
{1,

2,
4,
5}

ρ
K
10

0.
96

83
0.
91

61
0.
86

28
0.
84

50
0.
84

25

123



A new light on reliability equivalence factors 617

Fig. 3 Plots of h(p(t) ; Q1)(solid line), h(p(t) ; ρK3 = 1) (dashed line) and h(p(t) ; ρK3 = 0) (dotted line)
versus time

Table 4 The Birnbaum reliability importance measure of component i

ω t0 IB (1; p(t0)) IB (2; p(t0)) IB (3; p(t0)) IB (4;p(t0)) IB (5;p(t0))

0.01 2.6921 0.0711 0.0711 0.0080 0.0711 0.0711

0.1 1.5866 0.2157 0.2157 0.0530 0.2157 0.2157

0.5 0.7489 0.3735 0.3735 0.1243 0.3735 0.3735

Table 5 The importance measure based on SREF

Reduction set Reduction factor ω

0.01 0.1 0.5

t0

2.6921 1.5866 0.7489

K1 = {1} ρK1 0.4886 0.4525 0.3514

K2 = {2} ρK2 0.4886 0.4525 0.3514

K3 = {3} ρK3 0.4170 0.3398 0.1267

K4 = {4} ρK4 0.4886 0.4525 0.3514

K5 = {5} ρK5 0.4886 0.4525 0.3514

3) If the system components are i.i.d and IB(i;p) ≥ IB( j;p) then ρi ≥ ρ j .

Proof Part 1): From h(p, ρi ) = h(p, ρ j ) we obtain

h(p, ρi ) − h(p) = h(p, ρ j ) − h(p),
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and this means that IRI P (i;p) = IRI P ( j;p). Then from Eq. (1) we have

(p′
i − pi )IB(i;p) = (p′

j − p j )IB( j;p), (5)

and since p′
i = R′

i (t) = e− ∫ t0 ρi ri (x) dx =
[
e− ∫ t0 ri (x) dx]ρi = pρi

i , then

(pρi
i − pi )IB(i;p) = (p

ρ j
j − p j )IB( j;p).

Part 2): From Eq. (4), we obtain

(pρi−1
i − 1) = (p

ρ j−1
j − 1)

p j IB( j;p)

pi IB(i;p)
.

Now as
p j IB ( j;p)

pi IB (i;p)
≥ 1, we get that (pρi−1

i − 1) ≥ (p
ρ j−1
j − 1), so

pρi−1
i ≥ p

ρ j−1
j ,

or equivalently

(ρi − 1)

(ρ j − 1)
≥ ln p j

ln pi
≥ 1,

as pi ≥ p j . Therefore ρi ≤ ρ j .
Part 3): The result follows immediately from pi = p j = p and Eq. 5). ��

Example 3.2 Consider the bridge system in Fig. 1 with i.i.d components whose
lifetimes are distributed exponentially with λ = 1 and a redundancy mechanism
Q1 = {H = {1}}, such that a hot standby component from exponential lifetime
distribution with λ = 2 is added to component 1.

Table 5 lists the SREFs which are calculated for ω = 0.01, 0.1, 0.5 and all sin-
gletone reduction sets. In this table we first find t0 such that h(p(t0) ; Q1) = ω for a
specified reliability requirement ω, and then obtain ρKi ; i = 1, 2, 3 such that satisfies
in h(p(t0) ; ρKi ) = ω. TheBirnbaum reliability importancemeasures at time t0 are pre-
sented in Table 4. The results show that for all values ofω, IB(3;p(t0)) < IB(i;p(t0))
and also ρi ≥ ρ3; i = 1, 2, 4, 5 which support part 3 of Theorem 3.3.

The next example is given to clarify the result of part 2) in Theorem 3.3.

Example 3.3 Reonsider the system in Example 3.1. It is not difficult to verify that for
ω = 0.1 and t0 = 0.8445, we have p4(t0) = 0.0341, p5(t0) = 0.0147, IB(4,p(t0)) =
0.0213, IB(5,p(t0)) = 0.0580 and then p5 IB (5;p)

p4 IB (4;p)
= 0.0009

0.0007 ≥ 1. Since p4 = 0.0341 ≥
p5 = .0147 and ρ4 = 0.0158 ≤ ρ5 = 0.2481, the results support part 2 of Theorem
3.3.
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A random vector T = (T1, . . . , Tn) with mutually s-independent random vari-
ables is said to follow the proportional hazard rates (PHR) model (denoted as
T ∼ PHR(F̄,λ)), if

P(Ti > t) = F̄λi (t), f or λi > 0, i = 1, . . . , n, (6)

where F̄ is the baseline survival function and λ = (λ1, . . . , λn) is the proportional
hazard vector. For more details on PHR models refer to Kumar and Klefsjö (1994)
and references therein.

In the following theorem, we present a result about relative importance of survival
equivalence factor in a series system when the components having lifetimes following
the proportional hazard rates model.

Theorem 3.4 In a series system with independent components, suppose there exist ρi
and ρ j such that h(p, ρi ) = h(p, ρ j ), and p ∼ PHR(p,λ) where p is the baseline
survival function and λ = (λ1, . . . , λn) is the proportional hazard vector. Then λi >

λ j if and only if ρi > ρ j .

Proof For simplicity we ignored the time t in p(t) and p(t). In a series system h(p) =∏n
i=1 pi implies that IB(i;p) =∏n

k �=i pk . So from Eq. 4 we have

(pρiλi − pλi )

n∏
k �=i

pk = (pρ jλ j − pλ j )

n∏
k �= j

pk .

According to the PHR model property we have

pλi (pλi (ρi−1) − 1)p
∑

k �=i λk = pλ j (pλ j (ρ j−1) − 1)p
∑

k �= j λk ,

which means that λi (1 − ρi ) = λ j (1 − ρ j ). So λi > λ j if and only if ρi > ρ j . ��

4 Relative importance of components based on themean reliability
equivalence factor

The mean time to failure (MTTF) is a measure that indicates how long a device can
last on average when no repairs are allowed. The MTTF of a system can be derived
from its reliability function as follows:

MTT F =
∞∫
0

h(p(t))dt .

So we will denote by MTT FQ =
∞∫
0
h(p(t) ; Q)dt, the MTTF of an improved system

via an arbitrary redundancymechanism Q. Similarly theMTTF of an improved system
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by reducing the component failure rates of the subset K is given by MTT FρK
=

∞∫
0
h(p(t) ; ρK )dt, where ρK = (ρ1K , . . . , ρnK ) is defined in (2).

The mean reliability equivalence factor, (MREF), is defined as a factor ρ such that
the failure rates of some system components should be reduced to obtain a MTTF
equals to that of a system improved by a redundancy method, see Sarhan (2000) and
Sarhan (2009).

In the following,we extend the definition of theMREF for a redundancymechanism
Q.

Definition 4.1 Let Rρ0K
(t) = h(p(t) ; ρ0K ) and h(p(t) ; Q) be as defined inDefinition

3.1. A solution ρ0 of the equation

∞∫
0

h(p(t) ; Q)dt =
∞∫
0

h(p(t) ; ρ0K )dt,

is said the mean reliability equivalence factor.

Now similar to the previous section, we suggest a new light to the MREF as an
importance measure in reduction method.

Definition 4.2 Consider a coherent system improved by redundancy mechanism Q

such that
∞∫
0
h(p(t) ; Q)dt = μ. Suppose ρC and ρD are the MREFs of the reduction

subsets C and D of the original components, respectively, that satisfy in

∞∫
0

h(p(t) ; ρC )dt =
∞∫
0

h(p(t) ; ρD)dt = μ.

We say that the subset C is more important than the subset D in the sense of MREF,
written as C ≥(ρM ,μ) D, if and only if ρC ≥ ρD .

In particular, if C = {i} and D = { j} we say that component i is more important than
component j in the sense of MREF, written as i ≥(ρM ,μ) j , if and only if ρi ≥ ρ j .

Theorem 4.3 In a coherent system with i.i.d components and MREFs ρi and ρ j satis-
fying in MT T FρKi

= MTT FρK j
,.

IB(i;p(t)) ≥ IB( j;p(t)), if and only if i ≥(ρM ,μ) j .

Proof Since h(p ; ρKi
) = h(p) + (pρi

i − pi )IB(i;p), we can write

MTT FρKi
= MTT F +

∞∫
0

(pρi
i (t) − pi (t))IB(i;p(t))dt . (7)
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Table 6 The Barlow–Proschan importance measure of system components in Example 4.2

Reduction set

K1 = {1} K2 = {2} K3 = {3} K4 = {4} K5 = {5}
IBP (Ki ; F) 0.2266 0.4642 0.0489 0.0955 0.1648

If MTT FρKi
= MTT FρK j

= μ, then

∞∫
0

(pρi
i (t) − pi (t))IB(i;p(t))dt =

∞∫
0

(p
ρ j
j (t) − p j (t))IB( j;p(t))dt .

Since pi (t) = p j (t) = p(t) and IB(i;p(t)) ≥ IB( j;p(t)), then ρi ≥ ρ j . ��

Example 4.1 Consider the bridge system with i.i.d component lifetimes from expo-
nential distribution with parameter λ. Since IB(3;p(t)) ≤ IB(i;p(t)); i = 1, 2, 4, 5,
Theorem 4.3 concludes i ≥(ρM ,μ) 3; i = 1, 2, 4, 5.

Barlow and Proschan (1975b) introduced the importance measure of component i as

IBP (i; F̄) =
∫ ∞

0

[
h(1i , F̄(t)) − h(0i , F̄(t))

]
dFi (t),

where (0i , F̄(t)) = (F̄1(t), . . . , F̄i−1(t), 0, F̄i+1(t), . . . , F̄n(t)) and (1i , F̄(t)) =
(F̄1(t), . . . , F̄i−1(t), 1, F̄i+1(t), . . . , F̄n(t)). The Barlow–Proschan importance mea-
sure can be interpreted as the probability that component i is critical to the system
functioning on infinite interval. Since the Barlow–Proschan and the MREF, as impor-
tance measures, do not dependent on time t , we compare them in the next example.

Example 4.2 Reconsider bridge system in Example 3.1. The Barlow-Proschan impor-
tance measure of the system components are presented in Table 6. The most important
component is component 2. The MREFs are obtained by Matlab software and pre-
sented in Table 7 for all possible reduction sets. Based on MREF, component 2 is the
best component in reduction method. In view of all possible reduction sets, we find
that K30 = {1, 2, 3, 4, 5} is the most appropriate subset for reducing the failure rates
based on theMREFmeasure. The values ofMREFs outside of [0, 1] are not acceptable
and marked with the symbol

⊗
in Table 7.

In the next theorem we present a result similar to Theorem 4.3 based on MREF
measures.

Theorem 4.4 Let T denote the lifetime of a series system with independent and non-
identical component lifetimes T1, . . . , Tn.
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(1) Let F̄i (t) is the survival function of component i ; i = 1, . . . , n, and F̄(t) =
(F̄1(t), . . . , . . . , F̄n(t)). The MTTF of an improved series system by reducing the
failure rate function of component i ,MT T Fρi , is given by

MTT Fρi =
∫ ∞

0
F̄ρi−1
i (t)h

(
F̄(t)
)
dt . (8)

(2) Under the PHR model (6) and baseline distribution F̄(t) = e−x ; x > 0, the
MREF for the reduction set Ki = {i} and an arbitrary redundancy mechanism Q
which MTT FQ = μ is given by

ρi = 1 + 1

λi

(
1

μ
−

n∑
i=1

λi

)

when
∑

j �=i λ j ≤ 1
μ

≤∑n
i=1 λi . So in this condition, if there exist MREFs ρi and

ρ j satisfying in MT T Fρi = MTT Fρ j , then i ≥(ρM ,μ) j if and only if λi ≥ λ j .

Proof Part 1): Since h(F̄(t) ; ρi ) = h(F̄(t)) + (F̄ρi
i (t) − F̄i (t))IB(i; F̄(t))

MTT Fρi
= MTT F +

∞∫
0

(F̄ρi
i (t) − F̄i (t))IB(i; F̄(t))dt . (9)

In series system IB(i; F̄(t)) =∏k �=i F̄k(t), so

MTT Fρi =
∫ ∞

0
F̄ρi−1
i (t)h

(
F̄(t)
)
dt .

Part 2): From Eq. 8, MTT Fρi in a series system with component lifetimes
T1, . . . , Tn which are under the PHR model with a baseline distribution F̄(t) =
e−x ; x > 0, is given by

MTT Fρi =
∫ ∞

0
F̄ρi−1
i (t)h

(
F̄(t)
)
dt =

∫ ∞

0

(
e−λi t

)ρi−1
e−∑n

i=1 λi t dt

= 1∑n
i=1 λi + λi (ρi − 1)

.

So the MREF for the reduction set Ki = {i} is given by

ρi = 1 + 1

λi

(
1

μ
−

n∑
i=1

λi

)

when
∑

j �=i λ j ≤ 1
μ

≤∑n
i=1 λi . ��
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5 Conclusion

There are different techniques for improving the system reliability. It is important for
the reliability engineers to find the most appropriate technique. We investigated the
analysis of improving system reliability via two types of reliability equivalence fac-
tors; respectively, SREF and MREF. These factors help us to equivalent and compare
various improving methods. In this paper, we could offer a closed form of SREF in
general, based on the improvement level of the original system reliability.We proposed
a new light on REFs as importance measures in the analysis of improving system reli-
ability. We also obtained some basic properties of the concepts of survival and mean
reliability equivalence factors as importancemeasures. Some exampleswith numerical
calculations are given to illustrate the results.
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