
A note on the stress-strength reliability of a coherent system
based on signature

Khanjari Sadegh, M. 1

1 Department of Statistics, University of Birjand

Abstract

This article considers the stress-strength reliability of a coherent system and discusses its
computation based on the concept of system signature. The system components may experience
the same or different stress levels. We have found some mistake results given by Eryilmaz
(2008). Some other mistake results of Bhattacharya and Roychowdhury (2013) was pointed out
by Sadegh (2021). All these mistake results are due to misapplication of the system reliability
in case of the system components are subjected to a common stress level. It is shown that
the system signature can be used for calculating of the stress-strength reliability of a coherent
system with different stress levels whereas when the system components are subjected to a
common stress level, the use of system signature may leads to a mistake result. Regarding this,
some mistake results given in Eryilmaz (2008) are pointed out.
Keywords: Coherent systems, stress-strength reliability, system signature.

1 Introduction
Stress-strength models are important in reliability literature and engineering applications. A system
or unit may be subjected to randomly occurring environmental stress such as pressure, temperature
and humidity and survival of the system depends on its resistance. In the simplest setup of stress-
strength models, a unit functions if its strength is greater than the stress imposed on it. The
reliability of the unit is then defined as R = P (Y > X), where Y and X represent the random values
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of strength of the unit and stress placed on the unit, respectively. The estimation of R has been
widely studied under various distributional assumptions on X and Y (see e.g., Kotz et al.(2003)).
These models have also been studied for the systems consist of more than one component. Eryilmaz
(2008) considered a multivariate stress-strength model for a coherent system. He assumed that the
components are subjected to a common random stress and then used the system signature to obtain
the stress-strength system reliability. We show in the next section, that his results given in Theorem
3 and Corollary 1 are not correct. Eryilmaz (2010) expressed the system stress-strength reliability in
terms of those of series systems and presented some approximations for system reliability. Eryilmaz
(2013) studied the stress-strength reliability of a system with a time dependent(dynamic) strength
and a static and common random value of the stress. Bhattacharya and Roychowdhury (2013)
studied the stress-strength reliability of a system with different stress levels and claimed their
results include the case when the system components are subjected to a common stress level as a
special case. Sadegh (2021) showed that their claim is not correct and gave the correct argument.

2 Main result
For the sake of completeness, in this section we first give some results of Sadegh (2021) and then
give our main results about the use of system signature in computing of the stress-strength system
reliability.
Let ϕ be the structure function of a coherent system with n components whose random strengths are
Y1, . . . , Yn and suppose the components are subjected to the stress levels X1, . . . , Xn, respectively.
The ith component fails if the imposed stress exceeds its strength at any time, i.e. if Xi ≥ Yi. Thus
pi = P (Yi > Xi) gives the stress-strength reliability of the ith component. We define the status of
components as follow:

Zi =

{
1 if Yi > Xi

0 if Yi ≤ Xi i = 1, 2, . . . , n
(2.1)

where we assume that X1, . . . , Xn are independent and have a common continuous distribution
function G. Also assume that Y1, . . . , Yn are independent random variables and have a common
continuous distribution function F . We also assume that F and G are independent distributions.
Then the reliability of the coherent system ϕ under the above mentioned stress-strength setup is
given by

Rϕ = Pr {ϕ(Z1, . . . , Zn) = 1}

where ϕ(z) indicates the state of the system. Note that the binary random variables defined by
(2.1) are independent and have a common distribuon Binomial(1, p), where

p = P (Y > X) =

∫
Ḡ(x)dF (x), (2.2)

and Ḡ = 1−G.
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In the following, using minimal path(cut) sets of the system, a general expression for Rϕ is given
(for a details on the coherent structures, minimal path(cut) sets etc. see e.g. Barlow and Proschan
(1975)). Suppose now that the coherent system has p minimal path sets given by P1, . . . , Pp and c
minimal cut sets C1, . . . , Cc. It is known that

ϕ(z) = max
1≤i≤p

min
j∈Pi

zj = min
1≤i≤c

max
j∈Ci

zj

= 1−
p∏
i=1

(1−
∏
j∈Pi

zj) =
c∏
i=1

1− ∏
j∈Ci

(1− zj).


Lemma 1. We have

Rϕ = Pr {∩ci=1[∪j∈Ci(Xj > Yj)]} = Pr {∪pi=1[∩j∈Pi(Xj > Yj)]} (2.3)

Proof. The first equality was proved by Bhattacharya and Roychowdhury (2013). The second
equality can be similarly proved.

Remark 1. The Equation (2.3) holds true in general even if the independence assumption does not
hold. Under independence assumption and according to the form of the minimal cut(path) sets of
the system, the first or the second equality in (2.3) may be easier to use than the other. For example
in a consecutive-k-out-of-n:F system, in which the system fails if at least k out of its n components
are consecutively failed, minimal cut sets are Ci = {i, i+ 1, . . . , i+ k − 1}, i = 1, . . . , c = n− k + 1
which are of simple form and easy to use whereas the minimal path sets of this system do not have
such a simple form and also determining of p(> c) for this system is usually complicated. Hence
the first equality in (2.3) is easier to use than the second one.

Remark 2. Note that when Xi = X, the binary random variables Z1, . . . , Zn (or equivalently
the events (Yi > X)) are not independent. For example in a series system we now have Rϕ =
Pr(minZi = 1) = Pr(Z1 = 1, . . . , Zn = 1) = Pr(Y1 > X, . . . , Yn > X) = Pr(minYi > X) 6=∏n

1 Pr(Yi > X). Hence those expressions given by Bhattacharya and Roychowdhury (2013) for the
reliability of k-out-of-n systems, a series-parallel system(including Examples 1, 2 and 4), a hi-fi
system(Example 5) and a bridge system(Example 6) are not correct. To see the correct values of
those examples see Sadegh (2021).

We now give our main results related to the use of system signature in computing of the stress-
strength system reliability. Let T1, . . . , Tn and T = ϕ(T1, . . . , Tn) be the component lifetimes
and the system lifetime, respectively. When Tis are continuous and are independent and identically
distributed ( IID ), the following well known and important result is obtained by Samaniego (1985):

P (T > t) =
n∑
i=1

siP (Ti:n > t), (2.4)

where Ti:n is the ith ordered lifetime of components and si = P (T = Ti:n). The probability vector
s = (s1, . . . , sn) is called the signature of the system.
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In the following lemma we use the system signature to obtain Rϕ.

Lemma 2. Let Xis denote the stresses at component level and Yis are component strengths of the
coherent system ϕ, i = 1, . . . , n. Suppose Xis are IID and have a common distribution F and Yis
are IID with a common distribution G which is independent of F . We have

Rϕ =

n∑
i=1

si

i−1∑
j=0

(
n

j

)
(1− p)jpn−j , (2.5)

where s = (s1, . . . , sn) is the system signature and p is given by (2.2).
Proof. By using of Equation (2.4) and in view of the distribution function of order statistic Ti:n, if
we replace P (T > t) and P (Ti > t) by Rϕ and p, respectively then the proof of the lemma follows.
Note that under the assumptions of the lemma, the component lifetimes Tis or equivalently the
binary random variables Zis are IID.

Remark 3. Although P (T1:n < · · · < Tn:n) = 1, but under the conditions of Lemma 2, it does
not necessarily imply that a component with small strength fails before a component with large
strength. For example when n = 2 we have

P (XR1 < Y1:2, XR2 > Y2:2) > 0,

where 1 ≤ R1, R2 ≤ 2 and YR1 = Y1:2 and YR2 = Y2:2, as the event XR1 < Y1:2 < Y2:2 < XR2 has a
positive probability.

Remark 4. In case of stress at system level, that is Xi = X, obviously a component with low
strength fails before another component with high strength. For example when n = 2 we have

P (X < Y1:2, X > Y2:2) = 0.

Lemma 3. The Equation (2.5) does not hold true if Xi = X, i = 1, . . . , n.

Proof. In view of Remark 2, when Xi = X, the binary random variables Zis and therefore the
component lifetimes Tis are not IID. Hence the Equation (2.4) and therefore the Equation (2.5)
does not hold.

Remark 5. Based on the Lemma 3, the results given in Theorem 3 and Corollary 1 of Eryilmaz
(2008) are not correct. See the following examples.

Example 1. Consider the following series-parallel system.
It is known that the signature of this system is s = (1/3, 2/3, 0). Also its minimal path sets are

{1, 2} and {1, 3}.
(a). If Yis are distributed as Exp(λ), i = 1, 2, 3 and Xis are distributed as Exp(µ), and Xis and Yis
are independent, then

p = P (Y > X) =
µ

µ+ λ
.
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c
1

2

c3
c

Therefore we have the following expression for Rϕ

Pr [(Y1 > X1) ∩ {(Y2 > X2) ∪ (Y3 > X3)}] = 2p2 − p3 = 2(
µ

µ+ λ
)2 − (

µ

µ+ λ
)3.

Equivalently using Equation (2.5) we have

Rϕ =

3∑
i=1

si

i−1∑
j=0

(
3

j

)
(1− p)jp3−j = 2p2 − p3.

(b). If Xi = X then
Rϕ = Pr [(Y1 > X) ∩ {(Y2 > X) ∪ (Y3 > X)}] ,

= Pr(min(Y1, Y2) > X) + Pr(min(Y1, Y3) > X)− Pr(Y1:3 > X)

=
2µ

µ+ 2λ
− µ

µ+ 3λ
6= 2p2 − p3.

Example 2. Consider the following series-parallel system in 4 components.c
1

2

c c3 4
c

The minimal path sets of this system are {1, 2} and {1, 3, 4} and system signature is s =
(6/24, 14/24, 4/24, 0). Under the assumption of exponential distributions for strength and stress
variables in Example 1, the stress-strength reliability of the system is given as follows:
(a). In case of stress at component level we have

Rϕ = Pr [(Y1 > X1) ∩ {(Y2 > X2) ∪ (Y3 > X3) ∩ (Y4 > X3)}] = p2 + p3 − p4,

where p = P (Y > X) = µ
µ+λ . Equivalently using Equation (2.5) we have

Rϕ =
4∑
i=1

si

i−1∑
j=0

(
4

j

)
(1− p)jp3−j = p2 + p3 − p4.
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(b). In case of stress at system level, that is Xi = X, we have

Rϕ = Pr [(Y1 > X) ∩ {(Y2 > X) ∪ (Y3 > X) ∩ (Y4 > X)}] ,

which is equal to

Pr(min(Y1, Y2) > X) + Pr(min(Y1, Y3, Y4) > X)− Pr(min{Y1, Y2, Y3, Y4} > X)

=
µ

µ+ 2λ
+

µ

µ+ 3λ
− µ

µ+ 4λ
, which is quite different withp2 + p3 − p4.
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