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Estimation of normal means in the tree order model by the
weighting methods

Reza Momeni, Javad Etminan, and M. Khanjari Sadegh

Department of Statistics, University of Birjand, Birjand, Iran

ABSTRACT
Consider kþ 1 independent normal populations with the tree order
restriction on the mean parameters. For the tree order model, the
restricted estimator of control group parameter is dominated by the
unrestricted estimator when the number of treatment groups is
large. We discuss two techniques for reducing of mean squared error
via to the two weighting methods which are dissimilarity and condi-
tional Bayesian criteria. Based on the bias and mean squared error
criteria, the performance of the proposed estimators is compared
with the alternative estimators in order to search for a better estima-
tor. Although the superior estimator that uniformly dominates the
others does not exist in general, but the proposed estimators domin-
ate the corresponding unrestricted estimator and compete very well
with the other alternative estimators introduced by the authors.
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1. Introduction

In many practical situations, statistical inference under order restrictions on the param-
eters is quite important. Estimation of parameters of the various types subject to order
restrictions has received substantial interest during the past several decades. Isotonic
regression inference concerns to the order restricted inference and includes situations in
which a set of parameters is assumed, a priori to satisfy certain order restrictions. In the
most common case, where the data are arranged in ordered groups, the mean value of a
random variable is assumed to change monotonically with the complete ordering of the
groups or the partial ordering of them. Related works to the statistical inference under
order restrictions are reviewed by Barlow et al. (1972) and Robertson, Wright, and
Dykstra (1988). Many authors have considered inference of restricted parameters of
independent populations and proposed improvements on the usual unbiased estimator,
especially for the normal distribution. Recently, one excellent context which serves as
major references for this subject is Silvapulle and Sen (2005).
When some additional information regarding to order of the parameters hi is avail-

able, then for estimating the components of the parameter vector h ¼ ðh0; h1; :::; hkÞ the
isotonic regression technique can be used. The main advantage of considering order
restrictions is that some information can be reflected in the model. For instance, if h0 is
the yield average of a crop with no fertilizer added and hi is the yield average of the
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crop when the ith brand of fertilizer is added, then it is reasonable to expect h0 � hi for
all i ¼ 1; :::; k although one may have no information regarding the relative performance
of the various brands i ¼ 1; :::; k. Bartholomew (1961) called this order restriction as the
tree order constraint. This restriction arises naturally when considering the problem of
comparing several treatments to a control where treatments are as effective as the con-
trol and is applied in many applications e.g. biomedical and toxicology studies.
Therefore, it is reasonable to take into account the order restrictions in making infer-
ences about the group means. We are interested in utilizing the prior knowledge (i.e.
tree order) to search for a better estimator with smaller mean squared error than the
usual sample mean estimator, component-wise.
The classical approach for the restricted maximum likelihood estimator (RMLE) is

the maximization of the likelihood function on the restricted parameter space. When
the components of the parameter vector h are estimated simultaneously, the RMLE is
known to perform better than the unrestricted maximum likelihood estimator (UMLE)
(Brunk 1965). Although its aggregate mean squared error is usually less than that of the
UMLE, but magnitude of the bias and hence mean squared error of a single component
of the RMLE may increase without bound as the dimension k increases. When underly-
ing distributions are independently normally distributed, the RMLE dominates the unre-
stricted one, under simple order h0 � h1 � ::: � hk (Lee 1981; Kelly 1989). But, Lee
(1988) recognized a shortcoming of the restricted maximum likelihood estimation for
the tree order model. Under the tree order restriction, Lee (1988) and Fernandez,
Rueda, and Salvador (1999) established that the RMLE of the control group h0 fails to
dominate the unrestricted estimator in terms of the mean squared error, especially
when k is large.
There are various suggestions for solving this drawback of the restricted maximum

likelihood estimator in the tree order restriction. Lee (1988) established that by increas-
ing of the weight of the control sample mean �X0 the mean squared error of the control
group estimator decreases. Hwang and Peddada (1994) studied alternative estimators to
the RMLEs in order restricted elliptically models and introduced restricted estimators
for some order restriction. They showed that their estimators have higher coverage
probability than the unrestricted estimators. Cohen and Sackrowitz (2002), and Betcher
and Peddada (2009) found some estimators in the normal models with equal known
variances that dominate the corresponding unrestricted estimator as k increases.
In the rest of this paper, in Sec. 2, the restricted estimator in the tree order restriction

with its shortcoming and two alternative estimators by authors are represented. Focus
of this article is to construct the estimation of the control group parameter in the tree
order model. So, in Sec. 3, we introduced two methods for the estimation of the control
group parameter in the tree order model. In this section, we transform the tree order
problem onto the several simple order restrictions and then introduced the weighted
estimators via to the dissimilarity criterion and Bayesian approach. In the first method,
we construct the weights by the Euclidean distance between the true order of parame-
ters and the sample order which is dissimilarity criterion among two mentioned orders.
In the second method, the posterior probabilities as the weights of any permutation of
the simple orders are constructed by using of the Bayes rule. In each method, the result-
ing quantity is the weighted average of the simple order estimators with control group
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parameter h0 being the smallest parameter as required by the tree order constraint h0 �
hi for all i ¼ 1; :::; k. These methods have higher accuracy in the sense of the least
squares error. As in first approach the weights are proportional to the inverse of the
sum of squared error in the selected simple orders. In another procedure, the weights
are constructed based on the posterior probability of any simple order of parameters,
given sample orders. On the other hand, for the construction of the simple orders from
tree order, we are not guessing the many unknown inequalities between the various
treatment means, when k is very large. We will consider a subset of all simple orders
and compute RMLE in any selected simple order, then the weighted estimators by using
of these methods are constructed. In Sec. 4, by using a simulation study the perform-
ance of the proposed estimators is compared with the UMLE, RMLE and two other esti-
mators which are introduced in the literature. The simulation results show that the
proposed estimators dominate the alternative estimators in terms of the mean squared
error (MSE) and appear to stabilize in biases, when k is large. Some concluding remarks
are given in Sec. 5.

2. Restricted maximum likelihood estimator

Suppose one has independent random samples from kþ 1 normal populations with
means h ¼ ðh0; h1; :::; hkÞ and a common variance r2. For the ith sample, let ni denote
the sample size and let Xij; i ¼ 0; 1; :::; k; j ¼ 1; :::; ni be mutually independent variables

in which �Xi ¼
Pni

j¼1
Xij

ni
is the sample mean in ith sample, i ¼ 0; 1; :::; k which is an

unbiased estimator. It is well known that the vector �X ¼ ð�X0; �X1; :::; �XkÞ is the unre-
stricted maximum likelihood estimator (UMLE) of the population mean vec-
tor h ¼ ðh0; h1; :::; hkÞ.
In viewpoint of the geometrically, under the tree order restriction the parameter

space for h ¼ ðh0; h1; :::; hkÞ forms a symmetric polyhedral cone C in Rkþ1 defined as
follows:

C ¼ h ¼ h0; h1; :::; hkð Þ 2 Rkþ1jh0 � hi; i ¼ 1; :::; k
� �

: (1)

The convex cone C has a linear subspace with spine:

L ¼ h ¼ h0; h1; :::; hkð Þ 2 Rkþ1jh0 ¼ h1 ¼ ::: ¼ hk
� �

; (2)

that is a one-dimensional line and is well known as the least favorable case at the
homogeneity of means.
The classical approach for the restricted maximum likelihood estimator (RMLE) is

the maximization of the likelihood function on the restricted parameter space which is
obtained by applying the isotonic regression transformation to the unrestricted max-
imum likelihood estimator(UMLE) �X ¼ ð�X0; �X1; :::; �XkÞ, which is a continuous function
of �X, i.e. ĥ

RMLE
i ¼ f h2Ci ð�XÞ (Robertson, Wright, and Dykstra 1988; Silvapulle and

Sen 2005).

Definition 2.1. For a given order restriction on the parameters h ¼ ðh0; h1; :::; hkÞ, the
isotonic regression estimator of �X ¼ ð�X0; �X1; :::; �XkÞ with given positive weights w ¼
ðw0; :::;wkÞ is the value of h that minimizes the weighted sum of squares:
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Xk
i¼0

�Xi�hið Þ2wi (3)

subject to the order restriction C on the parameters that is h 2 C, (Here C is the tree
order cone).
For the special case, in the normal populations when wi ¼ ðr2i Þ�1, the isotonic regres-

sion estimator is the RMLE subject to the tree order restriction C. The RMLE is
obtained by the min-max formula in the explicit form that is (Barlow et al. 1972):

ĥ
RMLE
0 ¼ min

S�K

P
j2S wj�XjP
j2S wj

(4)

where the minimization is taken over all subsets S of K ¼ f0; 1; :::; kg containing element 0.

We describe the restricted maximum likelihood estimator ĥ
RMLE
0 as follows. With

maintaining all the known inequalities h0 � hi, for i ¼ 1; 2; :::; k, we construct all k! sim-
ple order restrictions between h0; h1; :::; hk by considering all k! orderings between
h1; :::; hk. Under each simple order restriction, we obtain the corresponding RMLE.

Then ĥ
RMLE
0 is the minimum among all such RMLEs. Furthermore, the isotonic regres-

sion estimators for the treatment parameters are:

ĥ
RMLE
i ¼ max ĥ

RMLE
0 ; �Xi

n o
for i ¼ 1; :::; k: (5)

It is clear that ĥ
RMLE
0 � �X0 and ĥ

RMLE
i � �Xi; for i � 1. Since these inequalities are

strict with positive probabilities, hence the isotonic regression estimators are always
biased. So, their efficiency is measured by the mean squared error (MSE) (Chaudhuri
and Perlman 2005). On the other hand, Brunk (1965) showed that the total mean
squared error of the RMLE is strictly smaller than that of the UMLE, i.e.

Xk
i¼0

E ĥ
RMLE
i �hi

� �2

wi<
Xk
i¼0

E �Xi�hið Þ2wi: (6)

The estimate ĥ
RMLE ¼ ðĥRMLE

0 ; ĥ
RMLE
1 ; :::; ĥ

RMLE
k Þ is the vector in the convex cone C

which is the closest to �X ¼ ð�X0; �X1; :::; �XkÞ in the sense that it minimizes:

Xk
i¼0

�Xi�hið Þ2wi (7)

among all h ¼ ðh0; h1; :::; hkÞ 2 C. For positive weights w ¼ ðw0;w1; :::;wkÞ the vector

ĥ
RMLE

denote the projection of vector �X ¼ ð�X0; �X1; :::; �XkÞ into the convex cone C with

Euclidean distance between �X and ĥ
RMLE

that is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼0

wi ĥ
RMLE
i ��Xi

� �2

vuut (8)

The smaller value of d is equivalent to the higher accuracy of the restricted estima-
tors. So, the choice of d�1 where d is dissimilarity criterion, as the suitable weight of
the proposed method can be substantial increases the precision of the new estimator in
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the next section. Because of Eq. (4), ĥ
RMLE
0 is increasing in w0 and the magnitude of the

bias of ĥ
RMLE
0 is decreasing in w0. But, Lee (1988) in Theorem 2.1 shows that the MSE

of ĥ
RMLE
0 is unbounded, when k is very large. We present this theorem in the following.

Theorem 2.2. Lee (1988): If the means h0; h1; :::; hk and the sample sizes n0; n1; :::; nk are
bounded in the tree order normal models, then for sufficiently large k,

E �X0�h0ð Þ2<E ĥ
RMLE
0 �h0

� �2

: (9)

Ever since Lee (1981) showed that the simple order estimators dominate the corre-
sponding UMLEs if tree order restriction is replaced by the simple order. The reverse
inequality (9) under the tree ordering is the first counterexample in the literature.
Nevertheless, to overcome of this difficulty in (9), Lee (1988) demonstrated that by
increasing of the control group weight the MSE reduction can be achieved. Hwang and
Peddada (1994) established a similar phenomenon in terms of the coverage probability
of any fixed width confidence interval of h0 centered at ĥ

RMLE
0 . So, the RMLE of the

control group mean under the tree order restrictions may perform poorly, in terms of
the MSE and coverage probability. Therefore, Hwang and Peddada (1994) introduced a
new estimation procedure for estimating of parameters in the elliptically unimodal dis-
tributions (e.g. normal and t-student distributions) subject to the tree order restriction.
They chose one of the orderings rather than considering all possible k! orderings
between h1; :::; hk arbitrarily, e.g. h0 � h1 � ::: � hk. They then introduced the following
estimators:

ĥ
HP
0 ¼ min

0�t

Pt
j¼0

wj�Xj

Pt
j¼0

wj

8>>>><
>>>>:

9>>>>=
>>>>;
; ĥ

HP
i ¼ max ĥ

HP
0 ; �Xi

n o
; i ¼ 1; :::; k: (10)

But their estimators depend on the chosen simple order between treatment groups
and hence is not uniquely defined. Also, Tan and Peddada (2000) observed that for
non-diagonal covariance matrix these estimators may be inconsistent, especially for
k¼ 2. For this reason, Dunbar, Conaway, and Peddada (2001) proposed a modification
to the Hwang and Peddadas procedure. As in the case of the RMLE, Dunbar, Conaway,
and Peddada (2001) considered all possible k! orderings of the parameters h1; h2; :::; hk
with each ordering resulting in a simple order restriction between h0; h1; :::; hk. They
then estimated h0 by taking the mean of all such RMLEs of h0. Dunbar, Conaway, and
Peddada (2001) also proved that their estimator has a smaller risk than the UMLE in
terms of all convex monotone functions of the absolute loss function. This result holds
true even if it is taken a subset of k! orderings of the treatment parameters h1; h2; :::; hk
rather than all k! orderings. For this reason Cohen and Sackrowitz (2002) stated that
the RMLE is undesirable and proposed an alternative estimator whose bias remains
bounded. So, independently of the other works, the Cohen and Sackrowitz (2002) pro-
posed a method for restrictive parameters in the tree order model that is:
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ĥ
CS
0 ¼

Pk
i¼0 nimin �X0; �Xið ÞPk

i¼0 ni
; (11)

ĥ
CS
i ¼ ĥ

CS
0 þ �Xi��X0ð Þþ; i ¼ 1; 2; :::; k; (12)

where aþ ¼ maxð0; aÞ. Like the RMLE, the magnitude of the bias of Cohen and
Sackrowitz estimator (CSE) is again greatest under the equality of population parame-
ters, which is the least favorable case for the bias of these estimators i.e. h 2 L.
The CS estimator ĥ

CS
0 was motivated by the fact that each Mi ¼ minð�X0; �XiÞ has

lower MSE for h0 than �X0 itself (Chaudhuri and Drton (2003)). An alternative pair-wise
estimator with these properties is the RMLE ĥ

RMLE
0 ð�X0; �XiÞ based on the paired variable

ð�X0; �XiÞ for i ¼ 1; :::; k. Since each ĥ
RMLE
0 ð�X0; �XiÞ also dominates the UMLE �X0 as an

estimator of h0. Hence, Betcher and Peddada (2009) by using of this principle, intro-
duced a modification of the RMLE for the tree order restriction as follows:

ĥ
BP
0 ¼

Pk
j¼0 ajĥ

RMLE
0

�X0; �Xið ÞPk
j¼0 aj

; ĥ
BP
i ¼ max ĥ

BP
0 ; ĥ

RMLE
0

n o
; for i � 1: (13)

where aj is the inverse of the variance of UMLE �Xj and ĥ
RMLE
0 ð�X0; �XiÞ is the RMLE of

two linked parameters ðh0; hjÞ, that is:

ĥ
RMLE
0

�X0; �Xið Þ ¼
�X0 if �X0<�Xj

a0�X0 þ aj�Xj

a0 þ aj
if �X0 � �Xj

8><
>:

Based on the Theorem 6 in Chaudhuri and Drton (2003), the bias of ĥ
RMLE
0 ð�X0; �XiÞ is

substantially smaller than that of Mi ¼ minð�X0; �XiÞ when h 2 L. Thus the pairwise
RMLEs are preferable to the pairwise minima in the least favorable case that is h 2 L
(Chaudhuri and Drton (2003)). Therefore, the Betcher and Peddada estimator (BPE)
dominates the CSE in terms of the bias. The BPE only for the case of equal known nor-
mal variances is constructed. Hence in the general case, the RMLE for the target param-
eter can be adjusted to reduce its bias, and hence decrease the MSE.

3. The proposed procedures

In this section we discuss two methods of calculating estimators for tree order parame-
ters which are suitable weighting methods by using of the dissimilarity criterion and
conditional Bayesian principal.
The control group parameter h0 in the tree order restriction is said the nodal param-

eter, because the inequality between h0 and every treatment parameter hi is known a
priori. We first estimate the only nodal parameter h0 in the tree order constrained
which is the smallest location parameter in the normal mean parameters. It will be con-
venient to consider a slightly more general setup in the previous section.

By Eq. (4), ĥ
RMLE
0 equals to �X0 if the treatment means �Xi; i ¼ 1; :::; k are at least as

large as �X0, else computed
w0 �X 0þwð1Þ �X ð1Þ

w0þwð1Þ
where �X ð1Þ ¼ minf�Xi; i � 1g. Now, if the com-

puted value is smaller than the other treatment groups, then ĥ
RMLE
0 equals to the
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w0 �X 0þwð1Þ �X ð1Þ
w0þwð1Þ

, otherwise we then compute the new weighted average of the �X0 and two

first order statistics of treatment means and so on.
For instance, suppose k¼ 4 and the order of sample means is

�X ð1Þ � �X ð2Þ � �X ð3Þ � �X0 � �X ð4Þ. For notational simplicity, assume that wi ¼ 1. Here, in

order to get the RMLE ĥ
RMLE
0 , we have some reasonable facts of this estimator that are:

1. Smallest order statistics �X ð1Þ is involved in the computation of ĥ
RMLE
0 , certainly.

2. The highest order statistics �X ð4Þ is not considered in the computation of ĥ
RMLE
0 .

3. The first considerable value for ĥ
RMLE
0 equals to

�X0þ�X ð1Þ
2 and the last feasible value

is
�X 0þ�X ð1Þþ�X ð2Þþ�X ð3Þ

4 , that is the worst case of the sample order.

Since �X0 is an unbiased estimator of h0, it follows that ĥ
RMLE
0 tends to underestimate

h0, so it has a negatively biased. By increasing of k (number of treatment groups) the

magnitude of the bias of ĥ
RMLE
0 is unbounded.

Hence, rather than using Hwang and Peddada estimator (HPE) ĥ
HP
0 from one arbi-

trary choice of the inequalities between h1; :::; hk, we consider all k! simple orderings
and compute the weighted average of the resulting RMLEs of h0 under all k! simple
order restrictions. Rather than considering all possible simple orderings between
h1; :::; hk, we select any subset of the simple orderings arbitrarily, when k be very large
i.e. k � 10. Although the number of treatments k is usually small for practical reasons,
frequently k 2 f2; 3; 4g (Bretz and Hothorn (2003)). More complex designs, for
example, those including an additional treatment groups are possible, but will not be
considered in this paper. So, we do not require to take a subset of the simple orders
from permutations of the treatment means h1; :::; hk.

3.1. Weighted method by dissimilarity criterion

In this procedure, we choose the dissimilarity criterion between the observations and
corresponding order as the weighting of the preliminary simple estimators. Dissimilarity
is the relevant notion, which defines a positive real value function of two variables or
estimators. For instance, a zero value of this criterion, means that two objects are simi-
lar and a large value implies a high dissimilarity. We construct the distance between the
observing of the sample order and the true order restriction between the parameters as
the dissimilarity criterion. Whatever, distance between sample order and the corre-
sponding true order among the parameters be higher, the affected of the simple order
estimator by these observations is lower. Hence, we derive the weighted estimator of the
control group parameter based on the dissimilarity criterion in the following:

ĥ
WA1
0 ¼

Pk!
j¼1

ĥ
jð Þ
0
djPk!

j¼1
1
dj

� � ; (14)

where ĥ
ðjÞ
0 is the control group estimator in the jth ðj ¼ 1; :::; k!Þ selected simple order.

For example, if the jth simple order be h0 � h1 � ::: � hk we have:
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ĥ
jð Þ
i ¼ min

t�i

max
s�i

Pt
l¼s wl�XlPt
l¼s wl

; for i ¼ 0; 1; :::; k; (15)

and for j ¼ 1; :::; k! simple orders. The weights d ¼ ðd1; d2; :::; dk!Þ derived based on the
Euclidean distance in each k! simple order which is defined in (8). So, for jth simple
order the weight dj is given by:

dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼0

wi ĥ
jð Þ
i ��Xi

� �2

vuut ; for j ¼ 1; 2; :::; k!; (16)

where w ¼ ðw0;w1; :::;wkÞ is same as the given positive weights in the definition of the
isotonic regression estimator in (3). The weight dj in (16) means that whatever the dis-
tance between the RMLE and corresponding UMLE is higher in certain simple order,
the effect of the RMLE extracted from corresponding simple order is lower on the
evaluation of the proposed estimator ĥ

WA1
0 .

Using (14), we then provide general strategies to estimate the non-nodal treatment
parameters that are:

ĥ
WA1
i ¼ max ĥ

WA1
0 ; �Xi

n o
; for i ¼ 1; :::; k: (17)

3.2. Weighted method by Bayesian approach

In this subsection, an alternative method of involving a prior distribution, pðhÞ, in view
point of the Bayesian principle is presented. To estimate the parameters in the tree
order cone C, we apply a conditional approach for estimating population means satisfy-
ing k! simple order restriction extracted from the tree order constraint.
In this conditional approach, the tree order restriction is considered to be k! permu-

tation of simple orders whose these variations can be described by a prior distribution.
The prior distribution is updated with the use of Bayes rule, and hence the posterior
distribution is constructed.
The tree order constraint on the k treatment means with a control can be expressed

as the k! of simple orderings among of the treatment means, h1; :::; hk. Thus, we choose
the uniform non-informative prior distribution for h1; h2; :::; hk that is:

p h1; h2; :::; hkð Þ ¼ 1

where all k! permutations of the simple orders of h1; :::; hk are equally likely with pro-
portion of 1=k!. By using of the Bayes rule, the joint posterior distribution of
h0; h1; :::; hk is as follows:

p h0; h1; :::; hkj�xð Þ / N �x0; r
2
�x0

� �
:
Yk
i¼1

TNh�0 �xi; r
2
�xi

� �
(18)

where TNh�0 ð�xi; r2�xiÞ is the truncated normal distribution with left truncation point h�0 .
Therefore, these posterior probabilities are proportional to Nð�xi; r2�xiÞ subject to the tree
order restriction. By considering all k! simple orders between h1; :::; hk, we estimate the
posterior probabilities for each simple order.
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Note that the posterior distribution is a conditional distribution upon the sample
observations. The posterior probabilities of the order of populations are now used to
make weightings about k! simple orders and make evidence about order of parameters
h1; :::; hk. Thus, by maintaining all the known inequalities h0 � hi, for 1 � i � k, if the
posterior probability of an arbitrary simple order i.e. pðh0 � h1 � ::: � hkj�xÞ be large,
then it is more likely to be the true order of population than another simple order and
therefore the corresponding weight will be large. Thus, the weighted average is con-
structed based on the posterior probabilities as the second proposed weighting method.
Moreover, it would be a more plausible occurrence if corresponding posterior prob-

ability is large. Therefore, by using of these posterior probabilities as the weights, we
propose the weighted estimator for the control group h0 in the following:

ĥ
WA2
0 ¼

Xk!
j¼1

p h
jð Þ
1 � h

jð Þ
2 � ::: � h

jð Þ
k j�x

� �
ĥ

jð Þ
0 (19)

where ĥ
ðjÞ
0 is the RMLE of the smallest parameter (i.e. control group) in jth simple

order, Eq. (15), and pðhðjÞ1 � hðjÞ2 � :::;� hðjÞk j�xÞ is the posterior probability of the jth
simple order, where j is the permutation of the treatment groups f1; 2; :::; kg. Whatever,
the posterior probability in this estimator is higher, we allocate higher weight to the
preliminary estimator of the corresponding simple order. Hence, this simple order is
affected than the others in the estimating procedure.

3.3. Dominance of two weighted estimators over UMLE

The two weighted proposed estimators of h0 ĥ
WA1
0 and ĥ

WA2
0

� �
dominate the corre-

sponding UMLE �X0 in the tree order restriction. We demonstrate this domination in
Theorem 3.1 for one estimator e.g. ĥ

WA
0 . Without loss of generality, we may assume

that wj ¼ 1, i.e. the worse case.

Theorem 3.1. Suppose that ĥ
ðjÞ
0 is the RMLE of the smallest parameter in the jth simple

order constructed between h1; :::; hk, in which h0 satisfied in the tree order restriction

h0 � hi; i ¼ 1; :::; k. If ĥ
WA
0 ¼

Pk!

j¼1
ĥ
ðjÞ
0

k! be a weighted estimator, then for all non-decreasing
convex function / we have:

E / ĥ
WA
0 �ĥ0

��� ���
� 	
 �

� E / j�X0�h0j
� � �

(20)

Proof. Since / is a non-decreasing function, by triangle inequality we have:

E / ĥ
WA
0 �ĥ0j

� �n o
¼ E /

1
k!

Xk!
j¼0

ĥ
jð Þ
0 �h0

�����
�����

0
@

1
A

8<
:

9=
; � E /

1
k!

Xk!
j¼0

ĥ
jð Þ
0 �h0

��� ���
0
@

1
A

8<
:

9=
;

Since / is a convex function, so by Jensen’s inequality

E /
1
k!

Xk!
j¼0

ĥ
jð Þ
0 �h0

��� ���
0
@

1
A

8<
:

9=
; � 1

k!

Xk!
j¼0

E / ĥ
jð Þ
0 �h0

��� ���
� 	
 �

(21)
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From Kelly (1989) for each simple order j we know that,

E / ĥ
jð Þ
0 �ĥ0

��� ���
� 	
 �

� E / j�X0�h0j
� � �

(22)

with a strict inequality for at least one value of the parameter. Now, if two estimators
ĥ
ð1Þ
0 and ĥ

ð2Þ
0 dominate �X0 for estimating h0 in terms of all non-decreasing convex func-

tions of the absolute loss function, then the weighted average of estimators, w1ĥ
ð1Þ
0 þw2ĥ

ð2Þ
0

w1þw2
,

will dominate �X0 (Dunbar, Conaway, and Peddada 2001). Therefore, by using of
inequalities (21) and (22) we deduce that

E /
1
k!

Xk!
j¼0

ĥ
jð Þ
0 �h0

�����
�����

0
@

1
A

8<
:

9=
; � E / j�X0�h0j

� � �

Thus, for any convex non-decreasing function / we have

E / ĥ
WA
0 �ĥ0

��� ���
� 	
 �

� E / j�X0�h0j
� � �

Also, if k be very large, each obtained simple order estimator from a subset of these
simple orders (i.e. k0 � k!) dominates the corresponding sample mean �X0 (Dunbar,
Conaway, and Peddada 2001).
Hence, the two weighted estimators ĥ

WA1
0 and ĥ

WA2
0 analogous to Theorem 3.1,

improve upon the corresponding unrestricted sample mean estimator �X0 in terms of all
nondecreasing convex functions of the absolute loss. This is a very strong property for
an estimator to have and includes the MSE criterion. All results about the domination
of our proposed estimators are represented in the next section.

4. Simulation study

We conducted a simulation study to evaluate the performance of the two proposed
methods with the 1) UMLE 2) RMLE 3) CSE 4) BPE in the tree order normal means.
Because of the BPE dominates the HPE (Betcher and Peddada 2009), so the HPE
exclude from this comparison and just dominators are presented. We generated

Table 1. MSE and Bias values for RMLE, CSE, BPE, ĥ
WA1
0 and ĥ

WA2
0 estimators, least favorable

case h ¼ ð0; 0; :::; 0Þ.
MSE Bias

k RMLE CSE BPE WA1 WA2 RMLE CSE BPE WA1 WA2

1 0.733 0.733 0.733 0.733 0.733 –0.280 –0.280 –0.280 –0.280 –0.280
2 0.745 0.705 0.674 0.703 0.727 –0.447 –0.378 –0.331 –0.385 –0.419
3 0.786 0.680 0.610 0.676 0.702 –0.571 –0.436 –0.352 –0.446 –0.481
4 0.820 0.653 0.553 0.642 0.673 –0.649 –0.456 –0.347 –0.465 –0.504
5 0.875 0.642 0.514 0.626 0.661 –0.715 –0.469 –0.334 –0.477 –0.517
6 0.923 0.627 0.489 0.616 0.647 –0.769 –0.475 –0.336 –0.491 –0.528
7 1.004 0.642 0.482 0.627 0.658 –0.831 –0.497 –0.342 –0.511 –0.547
8 1.044 0.619 0.442 0.605 0.635 –0.866 –0.489 –0.325 –0.506 –0.542
9 1.103 0.617 0.418 0.603 0.632 –0.910 –0.503 –0.326 –0.520 –0.554
10 1.157 0.626 0.415 0.611 0.637 –0.947 –0.516 –0.332 –0.533 –0.564
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observations from k normal distributions with mean parameters h ¼ ðh0; h1; :::; hkÞ 2 C
and equal population variances r2 ¼ 1 across groups. We consider two different config-
urations of the normal means that is the least favorable case h ¼ ð0; 0; :::; 0Þ i.e. in this
configuration the magnitude of the biases is greatest and interior case h ¼ ð0; 1; :::; 1Þ
with the small sample sizes of ni ¼ 1; i ¼ 0; 1; :::; k subject per groups. All simulation
results are based on 50000 simulation runs by increasing of the number of populations
k¼ 1 up to 10. The MSE and bias values for estimators in the least favorable and inter-
ior case are represented in the Tables 1 and 2, respectively. For computation of the pos-
terior probabilities as the weights in the second method i.e. ĥ

WA2
0 , we consider all k!

permutation of simple orders and then generated h0�Nðx0; r2Þ, then for i ¼ 1; 2; :::; k,
we generate hi�TNh�0 ðxi; r2Þ i.e. the truncated normal distribution with left truncation
point h�0 . The proportion of each permutation of simple orders from these generated
data to the total number of them is the posterior probability as the weight in the second
proposed estimator ĥ

WA2
0 .

In Table 1, as k increases, the RMLE performs poorly in terms of the MSE and bias.
In several cases, the MSE of the RMLE is substantially larger than all its competitors.
Instead, the proposed estimators of the control group h0 enjoy lower MSE than the
RMLE, CSE and BPE. As k increases, the MSE values for two proposed estimators
appear to stabilize or decrease. Also, the bias values of the proposed estimator are stabi-
lized for higher values of k and these values are lower than that of the RMLE. In the
least favorable case, the growth rate of the bias of BPE and latter WA1 estimator are
smaller than those of the rest estimators. It might be expected that from the discussion
in preceding section, the bias of the BPE is less than that of the CSE. This can be
explained by the fact that of the bias of each pair-wise RMLE is less than that of the
bias of each pair-wise minima. By comparison of the MSEs and biases, it is seen that
the two weighting methods for estimating the control parameter h0 are desirable alter-
natives to the RMLE, and compete very well with the CSE and BPE, especially in terms
of the MSE criterion.
By viewing of Table 2, for the interior case of parameter space h ¼ ð0; 1; :::; 1Þ, the

MSE values of the proposed estimators for the control group mean are lower than that
of the competitor estimators. When the vector of population means lies in the interior
case, the proposed estimators and RMLE are preferable for small values of k, while our

Table 2. MSE and Bias values for RMLE, CSE, BPE, ĥ
WA1
0 and ĥ

WA2
0 estimators, interior

case h ¼ ð0; 1; :::; 1Þ.
MSE Bias

k RMLE CSE BPE WA1 WA2 RMLE CSE BPE WA1 WA2

1 0.821 0.821 0.821 0.821 0.821 –0.102 –0.102 –0.102 –0.102 –0.102
2 0.733 0.757 0.779 0.754 0.742 –0.163 –0.125 –0.082 –0.125 –0.147
3 0.694 0.736 0.779 0.732 0.720 –0.223 –0.151 –0.066 –0.148 –0.168
4 0.664 0.708 0.757 0.704 0.690 –0.268 –0.162 –0.043 –0.154 –0.178
5 0.651 0.706 0.772 0.702 0.688 –0.307 –0.171 –0.022 –0.161 –0.185
6 0.639 0.697 0.770 0.691 0.676 –0.332 –0.165 –0.007 –0.155 –0.178
7 0.617 0.677 0.745 0.670 0.655 –0.355 –0.161 –0.033 –0.150 –0.173
8 0.645 0.694 0.761 0.685 0.672 –0.407 –0.190 –0.019 –0.179 –0.201
9 0.623 0.673 0.745 0.665 0.650 –0.413 –0.172 –0.055 –0.162 –0.183
10 0.643 0.685 0.751 0.676 0.663 –0.450 –0.193 –0.047 –0.183 –0.203
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estimators offer improvements for larger values of k. In all cases of Table 2, the pro-
posed estimators improve upon the competitor estimators CSE and BPE in terms of the
MSEs and biases.
We note that the RMLE never performed better than the two proposed estimators. In

most cases, we observe that the proposed estimators achieve a substantial reduction in
the MSE compared to the alternative estimators, especially for the weighted estimator
when the dissimilarity weights are used i.e. ĥ

WA1
0 . On the other hand, in all various pat-

terns the MSE values of the proposed estimators are always lower than those of the
unbiased UMLE which are equal to their variances and in this simulation they are set
to be equal 1. Furthermore, the biases of the proposed estimators and CSE perform
similarly for the least favorable case. Relative to the RMLE, the weighted proposed esti-
mators perform well for all patterns of simulation. In most cases considered in our
simulation study, the gain in the MSE of ĥ

WA1
0 is substantial. Also, the first proposed

estimator ĥ
WA1
0 based on the dissimilarity weights improves upon ĥ

WA2
0 which is based

on the posterior probability weights, but this superiority is negligible. Since proposed
estimators dominate the BPE in terms of the MSE, these estimators dominate the HPE
based on the transition property. Thus we conclude in overall that performances of the
proposed estimators are superior in comparison of the relevant estimators.

5. Concluding remarks

In this article, we considered an experimental situation in which one wishes to compare
several treatments with a control when it is believed a priori that all of the treatments
are as effective as the control. Therefore, we had the problem of estimation of parame-
ters in the tree order restriction under normality models with common variance, in the
presence of an increasing number of treatment parameters h1; :::; hk. The research of
Lee (1988) demonstrated that the RMLE of h0 by increasing of the number of treatment
populations k, fails disastrously in terms of the MSE and solved this problem by
increasing of the weight of the control group w0. Because of the computational difficul-
ties inherent in the RMLEs as expressed in Sec. 2, and also counterexample represented
by Lee (1988), other estimators have been proposed by authors, recently. In some con-
ditions, these estimators are more efficient than the corresponding RMLE and for some
patterns are inconsistent (Chung and Shinozaki 2012). Therefore, depending on the
configuration of the population means, their estimators can outperform the RMLE in
certain regions of the tree order space.
In the present paper, we proposed two modified estimators in the tree order con-

straint and compared control group estimators with the corresponding UMLE, RMLE
and other estimators that are listed in the literature. We showed that under squared
error loss function, the proposed estimators of the control group parameter h0 have a
smaller MSE than the UMLE and RMLE, especially when the number of populations k
is large. Thus, two proposed estimators do not have the drawbacks of the RMLE.
On the other hand, the proposed estimators via to the weighting methods compete

very well with the CSE and BPE procedures. If the true parameters are in the interior
parameter space then the proposed estimators perform substantially better than the CSE
and BPE in almost every situation. Of course, for least favorable case these dominations
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are true, in terms of the MSE. Also, unlike the RMLE of h0 under the tree order restric-
tion, these estimators do not fail for large k in terms of the bias and MSE.
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