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ABSTRACT
For estimating the smallest location parameter in the location fam-
ily of distributions which are constrained by the tree ordering θ0 ≤ θi
for 1 ≤ i ≤ k, the restricted maximum likelihood estimator diverges
to −∞ as k → ∞ and therefore fails to dominate the correspond-
ing unrestricted estimator in terms of the bias and hence the mean
squared error (MSE). In this article, we propose a new procedure
for the estimation of the location parameters based on a random-
ized decision. The proposed randomized estimator of θ0 is improved
via the smooth approach to construct the better estimator which
remains bounded and decreases the growth rate of its bias and
MSE. We show in the case of normal distributions that the MSE of
the proposed estimator of θ0 is less than that of the correspond-
ing unrestricted estimator. By using a simulation study, the perfor-
mance of the improved estimators is comparedwith that of the other
restricted estimators in terms of three criteria (bias, MSE and cover-
age probability). The results show that the proposed estimator of θ0
is substantially better than that of the alternative estimators. Unlike
the other procedures, the proposed method for estimating θi , i =
1, . . . , k performs well.
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1. Introduction

Consider the problem of estimation in k+1 univariate independent populations with
location parameters θi, i = 0, 1, . . . , k which are constrained by the tree order restriction,
θ0 ≤ θi, for 1 ≤ i ≤ k. The tree order restriction plays an essential role in statistical infer-
ence, taking into account of this order to improve the efficiency of the estimators. It
arises in situations where one wishes to compare several treatments θi with a control or
standard θ0, using prior information that all of the treatment parameters are at least as
large as the control parameter. However, in some situations, this assumption is reasonable
and therefore one would like to incorporate it into the statistical methods. Its applica-
tion can be found in clinical trials and there are many examples in the ordered treatment
parameters [1].

There exist considerable research works in literatures on the estimation of parame-
ters under order restrictions in which the isotonic regression technique is used. Suppose
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θ̂
URE = (θ̂URE0 , . . . , θ̂UREk ) is an unrestricted estimator (URE) for θ = (θ0, . . . , θk) which

does not necessarily satisfy the set of constraintC on the parameters andw = (w0, . . . ,wk)

is a vector of given positive weights.

Definition 1.1: The isotonic regression estimator θ̂
IRE = (θ̂ IRE0 , . . . , θ̂ IREk ) of the vector

θ̂
URE

with weight w is the value of θ which minimizes the weighted sum of squares:

k∑
i=0

wi(θ̂
URE
i − θi)

2, (1)

subject to the order restriction i.e. θ ∈ C [1–3].

If θ̂
URE

has an elliptically symmetric unimodal distribution, then the isotonic regression
estimator is a restricted maximum likelihood estimator (RMLE) of θ [2]. It is well known
that the isotonic regression estimator θ̂

IRE
is the orthogonal projection of θ̂

URE
onto the

convex cone C with respect to the given weight w, geometrically.
Since the control group parameter θ0 is the smallest parameter in the tree order restric-

tion, it is first estimated. By using the nice form of the max–min formula in Barlow et al.
[2], the isotonic regression estimator of θ0 can be expressed explicitly for the tree order
constraint C as follows:

θ̂ IRE0 = min
S

{∑
j∈S wjθ̂

URE
j∑

j∈S wj

}
, (2)

where the minimization is taken over all S which is any subset of K = {0, 1, . . . , k}
containing element 0.

In a special case of k+1 normal populations with the tree ordering on means θi, i =
0, 1, . . . , k and with commonly known variance σ 2, Lee [4] showed that if 0 ≤ θi ≤ c for
some fixed c, the RMLE of θ0 diverges to −∞ as k → ∞ and demonstrated that when the
weight of the control samplemeanw0 increases, then the absolute bias andMSE of the θ̂ IRE0
will decrease. Various authors via the different procedures tried to decrease the bias and
MSE of the θ̂ IRE0 by increasing the weight w0.

Hwang and Peddada [5] proved that the coverage probability of the confidence interval
with fixed length centred at the θ̂ IRE0 tends to zero, when k becomes very large. In the related
result, Lee [6] proved that the isotonic regression for each i in the simple order has a smaller
mean square error than the corresponding unrestricted estimator; therefore, Hwang and
Peddada [5] transformed the tree order restriction to the simple order θ0 ≤ θ1 ≤ · · · ≤ θk,
and then estimated parameters which perform well when populations are independent.
But, it may perform poorly for some correlated patterns of populations. Hence, Cohen
and Sackrowitz [7] introduced an estimating procedure in the normal populations with
equal sample sizes based on the pairwise comparisons of each treatment with the control
group in which the weight w0 is increased and their estimator dominated the RMLE of
θ0 in the high dimensions k. Their estimator was motivated by the fact that each Mi =
min(θ̂URE0 , θ̂UREi ) has lower MSE than θ̂URE0 itself. Chaudhuri and Perlman [8] proposed
an alternative estimator with this property based on the pairwise RMLE of (θ̂URE0 , θ̂UREi )
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in which the bias of pairwise RMLE is less than that of pairwise minima. Betcher and Ped-
dada [9] modified the Chaudhuri and Perlman’s estimator in the analysis of covariance
models with the various structures of covariance matrices. In fact, they decomposed the
tree order problem into the collection of 2-dimensional simple orders by using the graph
theoretic ideas and derived the estimators in the normal model with the common known
variance.

Accordingly, in the tree order restriction, we found that by increasing k the iso-
tonic regression of the smallest parameter θ0, tends to the lower bound of the param-
eter space and hence underestimation will occur. Therefore, if the true value of the
parameter be within an open interval of the natural parameter space, then the θ̂ IRE0
away from the true value and hence the bias increases with the different growth rate in
the various models. Also, according to the dependency between the control and treat-
ment estimators, the overestimation can happen for treatment estimators. From this
viewpoint, under the tree order restriction the isotonic regression estimator of the con-
trol group parameter θ̂ IRE0 does not converge to the corresponding parameter when k
increases. Hence, the magnitude of the bias and MSE of IRE (RMLE) will increase as
k → ∞, while those of the corresponding unrestricted estimator (URE) do not vary
with k [4].

We note that this phenomenon occurs due to the increase of the probability P(θ̂URE
(1) ≤

θ̂URE0 ) as k → ∞, where θ̂URE(1) = mini≥1 θ̂UREi . Hence, based on (2) the magnitude of the
bias and therefore theMSE of θ̂ IRE0 are stochastically increasing in k. A natural way is that to
prevent from the increasing of this inappropriate chance. So, we reverse the scenario of this
inappropriate event by using a random decision and then improve the proposed estimators
by conditioning expectation based on the decision-theoretic approach. Furthermore under
some conditions, we demonstrate that the improved estimators perform better than the
alternative estimators due to the random device.

The remainder of this paper is organized as follows. In Section 2, the asymptotic bias and
MSEof the IRE (RMLE) are studied, and alternative estimators are introduced. In Section 3,
according to the basic estimators URE and IRE, and based on a random decision, we con-
struct a new estimator. On this basis, we give feasible probability to the unrestricted sample
estimator to decrease the divergency and then by the use of a probabilistic combination
between two underlying estimators URE and IRE the proposed randomized estimator is
improved. On the other hand, in some situations of the sampling configurations the pro-
posed estimator and alternatives may not have the isotonic property. In order to obtain
such estimators that are the isotonic smooth estimators, we use a technique for arising of
the isotonic regression. So, in Section 4, we transform the proposed estimator to an isotonic
regression estimator through an iteration algorithm. In this section, we show how to adapt
the random device to the case when the smooth estimators are not the isotonic regression
estimators. In Section 5, by using a simulation study we compare the performance of the
proposed estimator with the performance of alternative procedures in terms of the bias,
MSE and coverage probability which are the most popular statistical criteria. According to
the simulation results, the bias and MSE of our estimators remain bounded or grow at a
much slower rate than those of the other alternatives. Also, the coverage probability of the
proposed estimator is higher than those of the URE, IRE and other alternative estimators.
Concluding remarks are given in Section 6.
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2. The asymptotic bias andMSE of the isotonic regression estimator

Let Xij for j = 1, . . . , ni and i = 0, 1, . . . , k are independent random samples from k+1
populations that belong to a location family {Pθ (x); θ ∈ � ⊆ R}. Here θ = (θ0, . . . , θk)
is the vector of location parameters in which the support of the underlying distributions
or the distribution of the unrestricted estimators is either unbounded or at least is lower
unbounded, as in the case of the normal distribution.

We can mathematically formulate the expression (2) in a simpler form as follows,

θ̂ IRE0 =

⎧⎪⎪⎨
⎪⎪⎩

θ̂URE0 if r(0) = 1

mini<r(0)

{
w0θ̂

URE
0 +∑i

j=1 w(j)θ̂
URE
(j)

w0 +∑i
j=1 w(j)

}
if r(0) > 1,

(3)

where r(0) is the rank of θ̂URE0 among θ̂URE0 , . . . , θ̂UREk and θ̂URE(r) is the rth order statistic of
the unrestricted sample estimators θ̂URE1 , . . . , θ̂UREk for r = 1, . . . , k. The isotonic regression
estimators of the treatment parameters are as follows:

θ̂ IREi = max
(
θ̂ IRE0 , θ̂UREi

)
, i = 1, . . . , k. (4)

The computation of the IRE depends heavily on the specific form of the observable
sampling order.

Example 2.1: Consider a balanced design (wi = w) and k=3 treatments. If the sample
order is of the form θ̂URE(1) ≤ θ̂URE(2) ≤ θ̂URE(3) ≤ θ̂URE0 (i.e. the worst case), then based on the
Equation (3) the IRE of θ0 can be obtained as follows:

θ̂ IRE0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̂URE0 + θ̂URE(1)

2
if θ̂URE0 ≤ 2θ̂URE(2) − θ̂URE(1)

θ̂URE0 + θ̂URE(1) + θ̂URE(2) + θ̂URE(3)

4
if θ̂URE0 > 3θ̂URE(3) − (θ̂URE(1) + θ̂URE(2) )

θ̂URE0 + θ̂URE(1) + θ̂URE(2)

3
otherwise.

(5)

This procedure is a corrected arithmetic means of the UREs according to the given order
restriction.

On the other hand, by (3) and (4) we have θ̂ IRE0 ≤ θ̂URE0 and θ̂ IREi ≥ θ̂UREi , respectively.
Thus, when θ̂UREi , i = 0, . . . , k are unbiased estimators, the bias of θ̂ IRE0 is strictly negative
and the bias of θ̂ IREi for i ≥ 1, is strictly positive, i.e.

b(θ̂ IRE0 ) = Eθ (θ̂
IRE
0 ) − θ0 < 0, b(θ̂ IREi ) = Eθ (θ̂

IRE
i ) − θi > 0, i ≥ 1,

and from these inequalities, the magnitude of the bias of θ̂ IRE0 is greatest when θ0 = θ1 =
· · · = θk, which is known as the least favourable case.
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Corollary 2.2: In the tree order model, when θ̂UREi , i = 0, . . . , k are unbiased estimators, the
squared bias and MSE of the θ̂ IRE0 diverge to ∞ as k → ∞.

Proof: By Theorem 1.3.6 of Robertson et al. [1] we have:

k∑
i=0

wiθ̂
IRE
i =

k∑
i=0

wiθ̂
URE
i ,

i.e. the weighted sum is preserved. So,

w0Eθ (θ̂
IRE
0 − θ0) = −

k∑
i=1

wiEθ (θ̂
IRE
i − θi),

when w0 = wi = 1 and θi = θ for i = 1, . . . , k, by symmetry we have,

Eθ (θ̂
IRE
0 − θ0) = −kEθ (θ̂

IRE
1 − θ),

also, from (3) it is easy to see that,

min(θ̂URE0 , θ̂URE(1) ) ≤ θ̂ IRE0 ≤
θ̂URE0 + θ̂URE(1)

2
.

Now, suppose θ̂URE1 , . . . , θ̂UREk are independent and identically distributed (i.i.d) with com-
mon distribution function F(.) and l = sup{x; F(x) = 0}, since θ̂URE(1) → l almost surely, as
k → ∞,

l ≤ θ̂ IRE0 ≤ θ̂URE0 + l
2

,

therefore,

l − θ0 ≤ Eθ (θ̂
IRE
0 ) − θ0 ≤ l − θ0

2
,

especially, if l = −∞ when k → ∞ we have,

b(θ̂ IRE0 ) → −∞, MSEθ (θ̂
IRE
0 ) = Eθ (θ̂

IRE
0 − θ0)

2 → ∞. �

For instance, in the tree order normal model, θ̂UREi ∼iidN(θi, 1) with wi = 1 for i =
0, 1, . . . , k, Chaudhuri and Perlman [8], showed that∣∣∣Eθ (θ̂

IRE
0 ) − θ0

∣∣∣ = O(
√
2 log k) and Eθ (θ̂

IRE
0 − θ0)

2 = O(2 log k).

So, both the squared bias and MSE of the smallest parameter in the tree ordering tend
to infinity at a logarithmic rate in the least favourable case. Lee [4] established that if
the weight w0 corresponding to θ̂URE0 is chosen to be sufficiently large, then the MSE of
the isotonic regression estimator θ̂ IRE0 is strictly smaller than that of the corresponding
unrestricted estimator.
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Theorem 2.3 (Lee [4]): In the normal model θ̂UREi ∼iidN(θi, σ 2), let the means θ0, . . . , θk,
the sample sizes n0, . . . , nk and the positive weights w1, . . . ,wk be fixed. There exists a positive
real W such that if w0 ≥ W, then:

E(θ̂ IRE0 − θ0)
2 < E(θ̂URE0 − θ0)

2. (6)

Various estimation methods have been proposed by authors, tried in a generic manner
to increase the weight w0. Although Lee [6] showed that

E(θ̂ IREi − θi)
2 < E(θ̂UREi − θi)

2, (7)

holds for all i = 0, 1, . . . , k, if the tree order cone is replaced by a simple order cone, for
example, θ0 ≤ θ1 ≤ · · · ≤ θk. So, Hwang and Peddada [5] considered Lee’s result in (7)
and they chose only one of the simple orderings rather than considering all possible
k! simple orderings between θ1, . . . , θk arbitrarily (e.g. θ0 ≤ θ1 ≤ · · · ≤ θk). Under this
consideration, they introduced the following estimators:

θ̂HP0 = min
t≥0

{∑t
j=0 wjθ̂

URE
j∑t

j=0 wj

}
; θ̂HPi = max

{
θ̂UREi , θ̂HP0

}
for i ≥ 1.

Their estimators depend on the chosen simple order between treatment groups. Also, Tan
and Peddada [10] observed that for nondiagonal covariance matrix, these estimators may
be inconsistent, especially for two populations i.e. k=1, treatment group. So, Cohen and
Sackrowitz (CS) [7] introduced an estimator for equal sample sizes based on the pairwise
minima as follows:

θ̂CS0 =
∑k

i=0 min(θ̂URE0 , θ̂UREi )

k + 1
θ̂CSi = θ̂CS0 + (θ̂UREi − θ̂URE0 )+, i = 1, . . . , k. (8)

TheCohen and Sackrowitz’s estimatorwasmotivated by the fact that eachmin(θ̂URE0 , θ̂UREi )

has lower MSE than θ̂URE0 itself. On the other hand, Chaudhuri and Perlman (CP) [8] pro-
posed an alternative estimator with this property based on the θ̂ IRE0 (θ̂URE0 , θ̂UREi ) instead of
min(θ̂URE0 , θ̂UREi ) in (8),where

θ̂ IRE0

(
θ̂URE0 , θ̂UREi

)
= θ̂URE0 I{

θ̂URE0 ≤θ̂UREi

} +
(

θ̂URE0 + θ̂UREi
2

)
I{θ̂URE0 >θ̂UREi } . (9)

In fact, the MSE of pairwise RMLE i.e. θ̂ IRE0 (θ̂URE0 , θ̂UREi ) in the least favourable case is
substantially smaller than that of pairwise minima i.e. min(θ̂URE0 , θ̂UREi ) [11]. So, the CPE
dominates the CSE in terms of the biases and MSEs. Also, Betcher and Peddada [9] mod-
ified the CP estimator for the analysis of covariance model with the different covariance
structures in the normal model i.e. θ̂

UMLE ∼ Nk+1(θ , σ 2�), where � = [σij] is known.
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They estimated the components of θ as follows:

θ̂BP0 =
∑k

i=1 σ−1
ii θ̂

(0,i)RMLE
0∑k

i=1 σii−1
, θ̂BPi = max

{
θ̂BP0 , θ̂RMLE

i

}
, for i ≥ 1, (10)

where,

(
θ̂

(0,i)RMLE
0 , θ̂RMLE

i

)
=
⎧⎨
⎩
(
θ̂UMLE
0 , θ̂UMLE

i

)
if θ̂UMLE

0 ≤ θ̂UMLE
i ,(

αiθ̂
UMLE
0 + (1 − αi)θ̂

UMLE
i

)
(1, 1) otherwise,

and αi = (σii − σ0i)/(σ00 + σii − 2σ0i), for i = 1, . . . , k.
In the next section, based on the two basic estimators i.e. URE and IRE, we propose an

alternative estimator which dominates the unrestricted estimator (URE) and do not have
the drawbacks of the isotonic regression estimator (IRE).

3. The proposed procedures (RE, SE)

In order to estimate the control group parameter θ0 through a different argument, we intro-
duce a probability via the random device and show that the dominancy of the improved
estimators over the corresponding UMLEs. By (3), θ̂ IRE0 is decreasing in k and diverges to
−∞. From this viewpoint, by increasing k, the IRE (RMLE) of the control group parameter
which is the smallest parameter in the tree order restriction, performs poorly. In fact, this
natural phenomenon occurs due to,

lim
k→∞

P
(
θ̂URE(1) ≤ θ̂URE0

)
= 1. (11)

We remove this divergency from the θ̂ IRE0 through a probability which is allocated to the
basic unrestricted estimator θ̂URE0 . In fact, our idea implies Lee’s [4] result which demon-
strated that the MSE of θ̂ IRE0 can be reduced by increasing the weight w0. According to the
Theorem 2.3, we increase the control group weightw0 by using the allocated probability to
the unrestricted sample estimator θ̂URE0 .

We noted that P(θ̂URE(1) ≤ θ̂URE0 )will be increased as k increases, i.e. the chance of occur-

ring the inappropriate event
{
θ̂UREi ≤ θ̂URE0

}
for at least one value of i ≥ 1, converges to 1

as k → ∞. In fact, the pressure of the tree order constraint directly stands on the control
group parameter to satisfy the tree ordering. A certain way for preventing this pressure is to
choose θ̂URE0 and θ̂ IRE0 by a randommechanism. For such decision problems, a natural way
to do this is simply to choose θ̂URE0 and θ̂ IRE0 with probabilities pk and 1 − pk, respectively
[12]. Hence, we reverse the scenario of this inappropriate chance by the allocated proba-
bility to the unrestricted basic estimator θ̂URE0 . It is obvious that the probability pk must be
dependent (i.e. increasing) on the number of treatments k. In order to improve upon the
IRE, we first consider the estimator of the form,

θ̂RE0 =
⎧⎨
⎩

θ̂URE0 with probability pk,

θ̂ IRE0 with probability qk = 1 − pk,
(12)
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where θ̂URE0 is the usual unrestricted estimator and θ̂ IRE0 is the isotonic regression estimator
(IRE) which is given in (3).

We seek the value of pk tomake the bias and hence theMSE of the proposed estimator of
θ0 as small as possible. One choice of pk is the value that minimizes the MSE of θ̂RE0 . Thus,
the MSE of the proposed estimator can be reduced by a suitable choice of pk. But this MSE
depends on the unknown location parameters.

In this mechanism, there exist several ways for the selection of probability, pk. An
intuitive basic idea to determine pk in (12) is raised from order restricted methodology
which is employed at the hypothesis testing framework. In order to test the null hypothe-
sisH0 : θ0 = θ1 = · · · = θk against the tree order restricted alternativeH1 : θ0 ≤ θi; i ≥ 1,
where the inequality is strict for at least one value of i, it might be reasonable to consider
a test statistic based on the nature of alternative hypothesis that can be interpreted as the
number of indices i such that θ̂URE0 ≤ θ̂UREi . Hence, this quantity can be defined as the
weighted sum of indicator functions:

N(θ̂
URE

) =
k∑

i=0
wiI{

θ̂URE0 ≤θ̂UREi

},

where the coefficient vector w = (w0,w1, . . . ,wk) is the same vector of weights in the
isotonic regression (Eq.1) and depends upon the precisions of the unrestricted sample
estimators. So, in our stochastic mechanism the following proportion,

pk =
∑k

i=0 wiI{
θ̂URE0 ≤θ̂UREi

}
∑k

i=0 wi
= w0 +∑k

i=r(0) w(i)∑k
i=0 wi

, (13)

is the probability of the selection of θ̂URE0 which is a function of the test statistic in the tree
order problem.

Example 3.1: The randomized estimator in (8) with 2+1 populations constrained by the
tree order parameters θ0 ≤ θi, i = 1, 2, and wi = w, i = 0, 1, 2, derived as follows:

θ̂RE0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̂URE0 if r(0) = 1,⎧⎨
⎩

θ̂URE0 w.p. 23 ,

θ̂ IRE0 w.p. 13 ,
if r(0) = 2,

⎧⎨
⎩

θ̂URE0 w.p. 13 ,

θ̂ IRE0 w.p. 23 ,
if r(0) = 3,

(14)

where θ̂ IRE0 is obtained analogous to (5) for k=2.
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Thus, for general k when r(0) is the rank of θ̂URE0 , it can be shown that the extension of
the randomized estimator for equal weights (i.e. equal sample sizes) is as follows:

θ̂RE0 =

⎧⎪⎪⎨
⎪⎪⎩

θ̂URE0 w.p. pk = k − r(0) + 2
k + 1

,

θ̂ IRE0 w.p. 1 − pk = r(0) − 1
k + 1

.
(15)

In the following, for comparing the MSEs, we first derive the MSE of θ̂RE0 when
θ̂URE0 , θ̂URE1 , . . . , θ̂UREk are i.i.d with distribution Fθ where θ0 = θ1 = · · · = θk = θ , i.e. the
least favourable case,

MSEθ (θ̂
RE
0 ) =

k+1∑
r=1

E
(
(θ̂RE0 − θ)2|r(0) = r

) 1
k + 1

= 1
k + 1

k+1∑
r=1

{
k − r + 2
k + 1

E
(
(θ̂URE0 − θ)2|r(0) = r

)

+ r − 1
k + 1

E
(
(θ̂ IRE0 − θ)2|r(0) = r

)}

= 1
k + 1

k+1∑
r=1

E
(
(θ̂URE0 − θ)2|r(0) = r

)

+ 1
k + 1

k+1∑
r=2

r − 1
k + 1

E
(
(θ̂ IRE0 − θ)2 − (θ̂URE0 − θ)2|r(0) = r

)

= Var(θ̂URE0 ) + 1
(k + 1)2

k+1∑
r=2

(r − 1)E
(
(θ̂ IRE0 − θ)2 − (θ̂URE0 − θ)2|r(0) = r

)
.

Proposition 3.2: Let μ̂URE
i ∼N(μi, σ 2), and wi = w, i = 0, 1,whereμ0 ≤ μ1. Suppose that

μ̂URE
0 and μ̂URE

1 are mutually independent. Then, the MSE of the proposed estimator μ̂RE
0 is

smaller than that of μ̂URE
0 when μ0 = μ1 = μ.

Proof:

MSE(μ̂RE
0 ) = 1

2
E
[
(μ̂URE

0 − μ)2|μ̂URE
0 ≤ μ̂URE

1
]+ 1

4
E
[
(μ̂URE

0 − μ)2|μ̂URE
0 > μ̂URE

1
]

+ 1
4
E

[(
μ̂URE
0 + μ̂URE

1
2

− μ

)2∣∣∣∣∣ μ̂URE
0 > μ̂URE

1

]

= Var(μ̂URE
0 ) − 1

4
E
[
(μ̂URE

0 − μ)2|μ̂URE
0 > μ̂URE

1
]+ 1

4
Var
(

μ̂URE
0 + μ̂URE

1
2

)

= σ 2 − 1
4

∫ ∞

−∞
2(x − μ)2

1
σ

φ

(
x − μ

σ

)[
1 − �

(
x − μ

σ

)]
dx + σ 2

8
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= 9
8
σ 2 − 1

4
σ 2
∫ ∞

−∞
2z2φ(z)[1 − �(z)] dz

= 9
8
σ 2 − 1

4
σ 2

= 7
8
σ 2 < σ 2 = MSE(μ̂URE

0 ),

whereas,

E

[(
μ̂URE
0 + μ̂URE

1
2

− μ

)2∣∣∣∣∣ μ̂URE
0 > μ̂URE

1

]

= E

[(
μ̂URE
0 + μ̂URE

1
2

− μ

)2∣∣∣∣∣ μ̂URE
0 < μ̂URE

1

]

= E

[(
μ̂URE
0 + μ̂URE

1
2

− μ

)2]

and
∫∞
−∞ 2z2φ(z)[1 − �(z)] dz is the second moment of the skewed-normal distribution

with skewness parameter λ = 1 [13]. �

Because of the complexity of the above calculations even for moderate k, in Section 5,
we can rely on the Monte Carlo simulation study for comparison of the procedures.

Another generalization of the proposed procedure is based on the conditional expec-
tation over the actions space. According to the randomized estimator θ̂RE0 , we can use its
expectation based on the Theorem 3.3, in which the obtained smoothed estimator has a
smaller MSE than that of the randomized estimator. The results contained in this section
are basically driven by the following theorem.

Theorem 3.3 ([12]): Assume that A is a convex subset of Rk, and that for each θ ∈ � the
loss function L(θ , a) is a convex function of a ∈ A. Let δ∗ be a randomized decision rule in
D∗ for which Eδ∗(x,.)(|a|) < ∞ for all x ∈ X . Then for the smoothed rule δ(x) = Eδ∗(x,.)(a)
we have:

L(θ , δ(x)) ≤ L(θ , δ∗(x, .)) for all x and θ .

In particular, for any given loss function the risk of any estimator is reduced by taking
its conditional expectation given a sufficient statistic [14].

Therefore, based on the Theorem 3.3 in order to reduce theMSE, a smoothed estimator
is provided as,

θ̂SE0 = pkθ̂URE0 + (1 − pk)θ̂ IRE0 ; θ̂SEi = max
{
θ̂SE0 , θ̂UREi

}
, i = 1, . . . , k, (16)

which, for a given θ̂
URE

, is the expected value of θ̂RE0 in the sense of the Theorem 3.3 and
pk is defined in (10). In constructing this estimator, by the use of the probability pk as the
smoother factor, we lead to the linear combination of the URE and IRE in which it tends
to shrink the θ̂ IRE0 toward θ̂URE0 . Hence, it permits any smooth transition between the two
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extreme values of these estimators. Note that θ̂ IRE0 ≤ θ̂SE0 ≤ θ̂URE0 and therefore via this
combination the two basic estimators (IRE and URE) will approach each other.

According to the θ̂SE0 which is a smoothed estimator between two basic estimators, we
adjusted the restricted estimator of θ0. Therefore, we found that the IRE (RMLE) neither is
undesirable nor fails in terms of the MSE for the tree order constraint, but it requires some
modification on the IRE and URE of θ0.

Example 3.4: Based on (13), the randomized estimator given in (14) can be written as
follows:

θ̂SE0 =

⎧⎪⎪⎨
⎪⎪⎩

θ̂URE0 if r(0) = 1,
2
3 θ̂

URE
0 + 1

3 θ̂
IRE
0 if r(0) = 2,

1
3 θ̂

URE
0 + 2

3 θ̂
IRE
0 if r(0) = 3,

in which the θ̂ IRE0 is again obtained analogous to (5).

In a general case, when there are k+1 populations with equal weights (wi = w), by using
the randomized estimator in (12), we smooth this estimator as follows:

θ̂SE0 =
(
k − r(0) + 2

k + 1

)
θ̂URE0 +

(
r(0) − 1
k + 1

)
θ̂ IRE0 . (17)

From the smoothed estimator in (14), we derive the MSE of θ̂SE0 in the following:

MSE
(
θ̂SE0

)
=

k+1∑
r=1

E
(
(θ̂SE0 − θ0)

2 | r(0) = r
) 1
k + 1

= 1
k + 1

k+1∑
r=1

E

⎛
⎝( (k − r + 2)θ̂URE0 + (r − 1)θ̂ IRE0

k + 1
− θ0

)2
∣∣∣∣∣∣ r(0) = r

⎞
⎠

= 1
(k + 1)3

k+1∑
r=1

E
((

(k − r + 2)(θ̂URE0 − θ0)

+(r − 1)(θ̂ IRE0 − θ0)
)2 | r(0) = r

)
.

It should be noted that even for moderate k, no analytic expressions for the biases and
variances of θ̂RE0 , θ̂SE0 and θ̂ IRE0 are available. Thus, the mean squared error of these estima-
tors cannot be compared analytically. Furthermore, this case remains unresolved. These
questions are explored in a simulation study presented in Section 5.

In the sequel, we show under some specific conditions that the proposed smooth esti-
mator and Chaudhuri and Perlman’s (CPE) [8] estimator are the same. For this purpose,
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when wi = w, i = 0, 1, . . . , k, then CPE can be rewritten as follows:

θ̂CP0 = 1
k + 1

(
θ̂URE0 +

k∑
i=1

min

(
θ̂URE0 ,

θ̂URE0 + θ̂UREi
2

))

= 1
k + 1

⎛
⎝θ̂URE0 +

r(0)−1∑
i=1

θ̂URE0 + θ̂URE(i)

2
+

k+1∑
i=r(0)+1

θ̂URE0

⎞
⎠

= 1
2(k + 1)

((
2(k − r(0) + 2) + (r(0) − 1)

)
θ̂URE0 + θ̂URE(1) + · · · + θ̂URE

(r(0)−1)

)

= 1
2(k + 1)

((
2k + 3 − r(0)

)
θ̂URE0 + θ̂URE(1) + · · · + θ̂URE

(r(0)−1)

)

=
(
2k + 3 − r(0)

2(k + 1)

)
θ̂URE0 + 1

2(k + 1)

(
θ̂URE(1) + · · · + θ̂URE

(r(0)−1)

)
, (18)

now for some i < r(0) as in (3), we have,

θ̂ IRE0 =
θ̂URE0 +∑i

j=1 θ̂URE(j)

i + 1
. (19)

Hence, by the mathematical induction we can obtain the smooth estimator as follows:

θ̂SE0 = pkθ̂URE0 + (1 − pk)θ̂ IRE0

=
(
ipk + 1
i + 1

)
θ̂URE0 + (1 − pk)

(
θ̂URE(1) + · · · + θ̂URE(i)

i + 1

)
. (20)

Now by comparison of the Equations (18) and (20), we see that if i = r(0) − 1 and,

pk = (2k − r(0) + 3)i − r(0) + 1
2i(k + 1)

, (21)

then θ̂SE0 = θ̂CP0 .

4. Isotonicity of the proposed estimator

As mentioned in Section 3, θ̂ IRE0 ≤ θ̂SE0 ≤ θ̂URE0 . For estimating the control group param-
eter, θ̂SE0 may not be the isotonic regression. Suppose that the subscript i is the highest
index of the treatment groups which is involved in making of θ̂ IRE0 as in (3). From the
Equation (16) we have,

θ̂SE0 = pkθ̂URE0 + (1 − pk)θ̂ IRE0

= pkθ̂URE0 + (1 − pk)
w0θ̂

URE
0 +∑i

j=1 w(j)θ̂
URE
(j)

w0 +∑i
j=1 w(j)

=
(
w0 + pk

∑i
j=1 w(j)

)
θ̂URE0 + (1 − pk)

∑i
j=1 w(j)θ̂

URE
(j)

w0 +∑i
j=1 w(j)

, (22)



1998 R. MOMENI ET AL.

now two cases may occur:

(i) If θ̂SE0 ≤ θ̂URE(i+1), then the isotonicity of the smooth proposed estimator, θ̂SE0 , with new
weights w0 + pk

∑i
j=1 w(j), (1 − pk)w(1), . . . , (1 − pk)w(i),w(i+1), . . . ,w(k), would be

maintained. We call this estimator the isotonic smoothed estimator (ISE) and will
denote by θ̂ ISE0 .

(ii) If there exists a fixed j = i + 1, . . . , r(0) − 1, such that θ̂URE(j) ≤ θ̂SE0 , then with above
newweights theminimization in (3) does not hold and therefore θ̂SE0 is not an isotonic
regression. But as follows, one can make an estimator for θ0 based on θ̂SE0 having the
isotonic regression property,

θ̂ IRSE0 = min
i+1≤l<r(0)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
w0 + pk

∑i
j=1 w(j)

)
θ̂URE0 + (1 − pk)

∑i
j=1 w(j)θ̂

URE
(j)

+∑l
j=i+1 w(j)θ̂

URE
(j)

w0 + pk
∑i

j=1 w(j) + (1 − pk)
∑i

j=1 w(j) +∑l
j=i+1 w(j)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= min
i+1≤l<r(0)

⎧⎨
⎩
(
w0 +∑i

j=1 w(j)

)
θ̂SE0 +∑l

j=i+1 w(j)θ̂
URE
(j)

w0 +∑i
j=1 w(j) +∑l

j=i+1 w(j)

⎫⎬
⎭ , (23)

Thismotivates us to derive smooth estimators that have the isotonic regression property
as in (3). In order to achieve an estimator having this property, in the sequel we propose
an iteration algorithm starting with θ̂SE

(0)
0 = θ̂SE0 as given in (22).

Algorithm:
Set t=1,

Step 1. If θ̂SE
(t−1)

0 ≤ θ̂URE(i+1), where i is the highest index of treatment groups that is involved

in the construction of θ̂SE
(t−1)

0 , return θ̂ ISE0 = θ̂SE
(t−1)

0 and then stop. Otherwise,
continue steps 2 to 5.

Step 2. In view of Equation (23), the isotonic regression estimator which is constructed
based on θ̂SE

(t−1)
0 is given by,

θ̂ IRSE
(t)

0 = min
i+1≤l<r(0)

⎧⎨
⎩

(w0 +∑i
j=1 w(j))θ̂

SE(t−1)
0 +∑l

j=i+1 w(j)θ̂
URE
(j)

w0 +∑i
j=1 w(j) +∑l

j=i+1 w(j)

⎫⎬
⎭ .

Step 3. As the stochastic mechanism in (12), we may again make a randomized estimator
of the control group as follows,

θ̂RE
(t)

0 =
{

θ̂SE
(t−1)

0 w.p. pk−i,
θ̂ IRSE

(t)
0 w.p. 1 − pk−i,

where pk−i is a newly allocated probability that can be determined as like as pk,
but with k−i treatment groups.
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Step 4. Now in view of (16), the smoothed estimator is given by,

θ̂SE
(t)

0 = pk−iθ̂
SE(t−1)

0 + (1 − pk−i)θ̂
IRSE(t)
0 ,

Step 5. Set t= t+1, and go to step 1.

At the end of iteration t, the obtained estimator is more efficient and has lower MSE,
since the weight of control group is increased and this agrees with Lee’s [4] result in the
Theorem 2.3. This algorithm is continued until the smoothed proposed estimator will be
an isotonic regression estimator. For the CSE and CPE, it is clear that the isotonicity will
not hold in some situations. It can be argued that the estimators which were constructed
by this way satisfy in the tree order constraint.

Since expressions for the risk functions of the smooth estimators may not be expressed
in simple closed forms, we use in the next section the Monte Carlo simulation to compare
the behaviour of these estimators.

5. Simulation study

We conducted a large simulation study to compare the performance of the proposed
estimators with other relevant procedures. Besides assesing the performance of unre-
stricted estimators (URE), we also assess the performance of four alternative estimators
which are the isotonic regression, IRE (RMLE), Chaudhuri and Perlman [8] estimator
(CPE), randomized estimator (RE) and smoothed estimator (SE). We generated indepen-
dent observations with the small sample sizes ni = 1 from k + 1 normal distributions
i.e. Xij ∼ N(μi, σ 2), here θ = μ and the values of mean parameters (0,μ, . . . ,μ) for
μ = 0, 0.5, 1, 1.5, 2 and standard deviations (1, σ , ., .σ) for σ = 0.5, 1, 1.5, 2, which are con-
strained by the tree order restriction on the mean parameters μi ≥ μ0 = 0; i = 1, . . . , k.
The values of biases, MSEs and coverage probabilities (CPs) are obtained for different pat-
terns of k=4,9,14 based on 100,000 repetitions and only a subset of results are summarized
in Table 1.

We noted in the normal model that the unrestricted estimator (URE) and isotonic
regression estimator (IRE) are equivalent to the unrestricted maximum likelihood esti-
mator (UMLE) and restricted maximum likelihood estimator (RMLE), respectively. For
convenience, we assume that the treatment means are homogeneous, so the average of
treatment means is considered as the representative of treatment parameters. For any
parameter, the coverage probability of a fixed width simultaneous confidence interval for
μi, i = 1, . . . , k centred at the μ̂i is defined as P(|μ̂1 − μ1| < cs1, . . . , |μ̂k − μk| < csk),
where si is the standard deviation of the UMLE of μi. The constant c is chosen such that
P(|X̄1 − μ1| < cs1, . . . , |X̄k − μk| < csk) = 0.95. The individual version of this criterion
for the nodal parameterμ0 is defined accordingly. This is the peakedness criterion of Birn-
baum [15] for comparing estimators. Therefore, the estimator that has higher coverage
probability is preferred, because it has a larger concentration of distribution around the
true parameter.

As mentioned previously, the restricted estimators are biased. Table 1 shows that the
absolute biases of the RE and SE for the control mean parameter are smaller than those of
the RMLE, and compete very well with the CPE. Also, the biases of RE and SE for treatment
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Table 1. Biases, MSEs and CPs of the UMLE, RMLE, CPE, RE and SE forμ0 = 0 andμ in the parentheses.

Bias MSE CP

k μ σ UMLE RMLE CPE RE SE UMLE RMLE CPE RE SE UMLE RMLE CPE RE SE

4 0 1 −0.003 −0.648 −0.283 −0.394 −0.393 0.9998 0.822 0.679 0.784 0.637 0.949 0.970 0.974 0.968 0.974
(0.0004) (0.167) (0.372) (0.294) (0.276) (0.9998) (0.721) (0.722) (0.759) (0.660) (0.950) (0.974) (0.974) (0.973) (0.975)

2 0.002 −0.550 −0.175 −0.292 −0.293 0.998 0.952 0.855 0.897 0.790 0.949 0.957 0.964 0.960 0.969
(0.008) (0.561) (0.780) (0.697) (0.689) (4.017) (2.393) (2.392) (2.406) (2.334) (0.949) (0.974) (0.974) (0.974) (0.974)

1 1 0.002 −0.267 −0.098 −0.128 −0.128 1.002 0.672 0.803 0.795 0.747 0.950 0.975 0.972 0.968 0.974
(−0.0004) (0.067) (0.143) (0.124) (0.119) (1.0001) (0.845) (0.780) (0.804) (0.779) (0.949) (0.971) (0.972) (0.972) (0.973)

2 0.002 −0.316 −0.094 −0.138 −0.138 1.0003 0.826 0.891 0.877 0.831 0.950 0.967 0.961 0.962 0.967
(0.007) (0.325) (0.432) (0.402) (0.400) (4.003) (2.729) (2.576) (2.619) (2.595) (0.950) (0.974) (0.974) (0.974) (0.974)

2 1 0.0004 −0.078 −0.025 −0.029 −0.029 0.999 0.824 0.926 0.921 0.911 0.949 0.970 0.960 0.960 0.963
(0.001) (0.021) (0.040) (0.038) (0.037) (1.002) (0.944) (0.910) (0.915) (0.912) (0.951) (0.964) (0.967) (0.967) (0.967)

2 0.0002 −0.160 −0.045 −0.057 −0.057 0.999 0.842 0.933 0.923 0.906 0.950 0.966 0.958 0.958 0.961
(0.003) (0.163) (0.209) (0.201) (0.200) (4.00) (3.171) (3.036) (3.060) (3.053) (0.950) (0.974) (0.974) (0.974) (0.974)

9 0 1 −0.0024 −0.916 −0.284 −0.574 −0.577 0.995 1.11 0.660 0.861 0.651 0.950 0.965 0.975 0.971 0.975
(−0.0006) (0.101) (0.382) (0.234) (0.199) (1.002) (0.768) (0.718) (0.750) (0.654) (0.950) (0.974) (0.974) (0.974) (0.975)

2 0.004 −0.937 −0.175 −0.510 −0.510 0.993 1.357 0.842 1.016 0.771 0.951 0.927 0.966 0.955 0.970
(−0.002) (0.416) (0.784) (0.603) (0.583) (3.999) (2.470) (2.358) (2.399) (2.274) (0.950) (0.975) (0.975) (0.975) (0.975)

1 1 −0.0007 −0.417 −0.100 −0.194 −0.192 0.997 0.633 0.794 0.730 0.654 0.950 0.974 0.972 0.970 0.975
(0.001) (0.047) (0.150) (0.111) (0.100) (0.998) (0.870) (0.773) (0.806) (0.783) (0.950) (0.972) (0.973) (0.973) (0.973)

2 0.001 −0.573 −0.095 −0.239 −0.238 0.997 0.895 0.883 0.847 0.733 0.950 0.962 0.963 0.964 0.973
(−0.001) (0.254) (0.434) (0.368) (0.359) (3.999) (2.834) (2.548) (2.642) (2.602) (0.950) (0.975) (0.975) (0.975) (0.975)

2 1 0.001 −0.135 −0.024 −0.043 −0.042 0.997 0.733 0.923 0.886 0.870 0.950 0.975 0.962 0.965 0.972
(−0.001) (0.014) (0.040) (0.034) (0.032) (0.998) (0.948) (0.903) (0.912) (0.908) (0.951) (0.966) (0.969) (0.969) (0.969)

2 0.004 −0.305 −0.042 −0.090 −0.091 0.993 0.772 0.924 0.786 0.834 0.951 0.971 0.959 0.962 0.969
(−0.002) (0.135) (0.209) (0.191) (0.187) (4.003) (3.234) (3.019) (3.068) (3.060) (0.950) (0.974) (0.974) (0.974) (0.974)

14 0 1 0.001 −1.06 −0.281 −0.678 −0.677 0.995 1.362 0.656 0.972 0.711 0.950 0.958 0.974 0.970 0.974
(0.0003) (0.077) (0.387) (0.208) (0.167) (1.003) (0.803) (0.717) (0.761) (0.670) (0.949) (0.974) (0.974) (0.974) (0.974)

2 0.001 −1.193 −0.177 −0.656 −0.654 1.003 1.822 0.848 1.214 0.843 0.950 0.886 0.965 0.941 0.968
(−0.0009) (0.340) (0.788) (0.556) (0.524) (4.0005) (2.593) (2.364) (2.455) (2.297) (0.950) (0.975) (0.975) (0.975) (0.975)

1 1 0.002 −0.513 −0.979 −0.229 −0.229 1.002 0.652 0.794 0.717 0.611 0.949 0.973 0.972 0.970 0.974
(−0.002) (0.035) (0.149) (0.104) (0.088) (0.999) (0.887) (0.770) (0.810) (0.788) (0.950) (0.973) (0.974) (0.974) (0.974)

2 −0.006 −0.759 −0.102 −0.314 −0.314 1.004 1.057 0.890 0.876 0.697 0.949 0.952 0.962 0.963 0.973
(0.002) (0.217) (0.436) (0.353) (0.338) (3.995) (2.934) (2.551) (2.680) (2.630) (0.951) (0.975) (0.975) (0.975) (0.975)

2 1 0.003 −0.176 −0.022 −0.048 −0.048 1.000 0.685 0.926 0.875 0.849 0.949 0.975 0.961 0.964 0.973
(−0.0007) (0.012) (0.041) (0.034) (0.031) (1.002) (0.957) (0.904) (0.915) (0.912) (0.949) (0.967) (0.970) (0.970) (0.970)

2 −0.001 −0.423 −0.047 −0.122 −0.122 0.994 0.777 0.925 0.861 0.796 0.950 0.969 0.958 0.963 0.971
(−0.001) (0.120) (0.210) (0.187) (0.182) (4.008) (3.303) (3.023) (3.087) (3.078) (0.951) (0.975) (0.975) (0.975) (0.975)
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Table 2. Square root of the MSE ratio of the estimators relative to the UMLE, and coverage prob-
abilities (CP) for the control group and treatment groups for different values of k on the set
{(μ, σ) : μ = 0, 0.5, 1, 1.5, 2; σ = 0.5, 1, 1.5, 2}.

Control group Treatment groups

k RMLE CPE SE RMLE CPE SE(
MSE(.)

MSE(UMLE)

)1/2
4 0.881 0.906 0.883 0.894 0.883 0.867

9 0.909 0.903 0.852 0.907 0.881 0.867
14 0.951 0.902 0.844 0.917 0.880 0.871
24 1.034 0.902 0.846 0.932 0.880 0.878

CP 4 0.970 0.967 0.970 0.970 0.969 0.971
9 0.967 0.968 0.973 0.970 0.970 0.971
14 0.960 0.968 0.973 0.971 0.971 0.972
24 0.946 0.968 0.974 0.971 0.971 0.972

mean parameters (in parentheses) are smaller than those of CPE. According to Table 1, the
growth rate of the biases of the RE and SE is about half of the RMLE.

From Table 1, it is remarkable that the MSE values of the smooth estimator (SE)
are smaller than those of CPE and RMLE, especially in the least favourable case μ =
(0, 0, . . . , 0). Also, the biases and hence the MSEs of the proposed estimators for treat-
ment parameters perform better than the alternatives. In several cases, these values were
substantially smaller than all its competitors. It is seen that the MSEs of the proposed esti-
mators (RE, SE) appear to stabilize or decrease with k, especially for the least favourable
case. In all cases for different patterns, the coverage probability of the proposed methods
can be substantially higher than that of the other alternatives (UMLE,RMLE,CPE).Among
these estimators for any pattern of parameters, SE has the most coverage probabilities and
always exceeded the nominal level 0.95. By increasing k, unlike the RMLE and CPE, the
coverage probabilities of the proposed procedures (RE, SE) do not decrease and therefore,
the parameters are coveraged with the high probabilities by the proposed estimators.

Table 2 gives a summary of the relative performance of the estimators in terms of
the averaged CPs and

√
MSE(.)/MSE(UMLE) values. We extract from this table that the

proposed estimator SE has comparatively good performance relative to the alternatives.
Therefore, according to the simulation results, we found that the quantity pk in (10) is a
suitable choice to reduce the squared error of proposed estimators significantly, whereas
the MSE of the UMLE is set to be equal to σ 2.

Since the smooth estimator and CPE may not be the isotonic regression, it is reason-
able to derive the isotonic smooth estimator (ISE), as it is done in Section 4. Hence in the
sequel, we also compare the performance of the isotonic smooth estimator with the other
estimators IRE (RMLE) and CPE. Here, like Chaudhuri and Perlman [8], we present some
results for σ 2 = 1 and small sample sizes ni = 1. For k=1,2,3,5,10,20,100 normal popu-
lations with two configurations of μ = (μ0,μ1, . . . ,μk) are considered: (0, . . . , 0) that is
the least favourable case and the interior case (0, 1, . . . , 1). The presented results are based
on 100,000 repetitions, for each k.

For evaluation of the proposed algorithm in Section 4, we compute the percentage
of times that the smooth estimator exceeded the natural treatment estimator which is
included in the computation of the smooth estimator in each pattern. Based on the propor-
tions in Table 3, it indicates that the proposed algorithm for obtaining the isotonic smooth
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Table 3. The ratio of times that the smooth estimator is not the isotonic regression estimator.

k 2 3 5 10 20 50 100

μ = (0, 0, . . . , 0) 0.06 0.14 0.30 0.59 0.81 0.92 0.97
μ = (0, 1, . . . , 1) 0.02 0.05 0.14 0.35 0.56 0.75 0.84

Table 4. Bias and MSE of the estimators ofμ0 forμ = (0, 0, . . . , 0).

Bias MSE

k RMLE CPE SE ISE RMLE CPE SE ISE

1 −0.279 − 0.138 −0.138 −0.138 0.747 0.811 0.811 0.811
2 −0.444 −0.186 −0.248 −0.249 0.730 0.754 0.704 0.703
3 −0.557 −0.209 −0.327 −0.329 0.762 0.727 0.654 0.653
5 −0.718 −0.236 −0.441 −0.445 0.879 0.703 0.628 0.628
10 −0.953 −0.258 −0.603 −0.610 1.17 0.682 0.669 0.673
20 −1.18 −0.266 −0.755 −0.766 1.60 0.662 0.778 0.792
100 −1.85 −0.283 −0.763 −0.769 3.177 0.655 0.687 0.690

Table 5. Bias and MSE of the estimators ofμ0 forμ = (0, 1, . . . , 1).

Bias MSE

k RMLE CPE SE ISE RMLE CPE SE ISE

1 −0.100 − 0.050 −0.050 −0.050 0.832 0.898 0.898 0.898
2 −0.171 −0.068 −0.085 −0.085 0.746 0.860 0.826 0.826
3 −0.223 −0.074 −0.108 −0.108 0.701 0.844 0.781 0.780
5 −0.304 −0.083 −0.145 −0.147 0.653 0.826 0.719 0.717
10 −0.439 −0.087 −0.199 −0.202 0.634 0.811 0.642 0.638
20 −0.598 −0.097 −0.262 −0.269 0.700 0.807 0.591 0.587
100 −1.119 −0.117 −0.268 −0.273 1.187 0.797 0.545 0.539

estimators is very essential. As k increases, these proportions are increased, but the growth
rate is greater for the least favourable case (0, . . . , 0).

The bias and MSE values of the control group estimators for two considered configu-
rations are presented in Tables 4 and 5, respectively. These values for the treatment group
estimators are listed in Tables 6 and 7 for two patterns, respectively. From Table 4, it is clear
that the proposed estimators (SE, ISE) perform better than the RMLE and CPE in terms
of the MSEs. The MSE values for proposed estimators seem to drop much more rapidly,
which reflect a rapid decline in the least favourable case. We note that for certain values of
the parameters on the boundary points, the RMLE never performed better than the pro-
posed estimators. This is similar to our conclusion made above (cf. Table 1). In Table 5, for
small values of k, it is seen that the RMLE has the smallest MSE when μ lies in the interior
of the parameter space, but it reverses for larger values of k. Although the biases of two
proposed estimators for the control group are slightly larger than those of the CPE, the
MSE values of the proposed estimators appear to stabilize or decrease with k. For instance,
in k=100, these values for SE and ISE are 0.545 and 0.539, while for the RMLE and CPE
are 1.187 and 0.797, respectively.

For the evaluation of treatment estimators by variousmethods for simplicity, we assume
all treatment means μi, i ≥ 1 to be equal. So, for comparing the treatment estimators we
compare one treatment mean μ1. In Table 6, the proposed estimators (SE, ISE) for treat-
ment mean μ1 provide the smallest MSEs, with relative improvement by increasing k. As
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Table 6. Bias and MSE of the estimators ofμ1 forμ = (0, 0, . . . , 0).

Bias MSE

k RMLE CPE SE ISE RMLE CPE SE ISE

1 0.283 0.424 0.424 0.424 0.743 0.807 0.807 0.807
2 0.217 0.398 0.346 0.345 0.717 0.761 0.716 0.716
3 0.185 0.393 0.306 0.304 0.713 0.740 0.676 0.675
5 0.143 0.384 0.253 0.251 0.728 0.718 0.650 0.650
10 0.096 0.378 0.193 0.190 0.778 0.702 0.658 0.660
20 0.061 0.375 0.146 0.143 0.830 0.694 0.688 0.692
100 0.052 0.368 0.133 0.130 0.849 0.683 0.680 0.682

Table 7. Bias and MSE of the estimators ofμ1 forμ = (0, 1, . . . , 1).

Bias MSE

k RMLE CPE SE ISE RMLE CPE SE ISE

1 0.100 0.149 0.149 0.149 0.834 0.801 0.801 0.801
2 0.083 0.147 0.134 0.133 0.833 0.785 0.785 0.785
3 0.072 0.146 0.123 0.123 0.833 0.775 0.775 0.775
5 0.062 0.149 0.114 0.113 0.850 0.775 0.780 0.780
10 0.039 0.145 0.093 0.091 0.872 0.765 0.781 0.782
20 0.033 0.151 0.086 0.084 0.903 0.769 0.797 0.798
100 0.030 0.160 0.075 0.074 0.923 0.781 0.785 0.779

seen in this table, the CPE is more biased than the proposed estimators. Also, in Table 7
the proposed estimators compete very well with the competitors in terms of the biases and
MSEs.

Inmost cases, both proposed estimators (SE, ISE) have substantially lowerMSE than the
RMLE and CPE and compete very well with these estimators in terms of the biases. From
simulation results in Tables 4–7, it is seen that the proposed algorithm for derivation of the
ISE is successful. Thus we conclude in practical settings that the overall performance of the
ISE is likely to be superior with respect to any alternative estimators over a large portion of
the parametric space.

6. Concluding remarks

In this article, motivated by the Lee’s [4] counterexample, we presented the modified
estimation of the control group parameter in the tree order restriction as a problem of esti-
mating a single target parameter θ0 in the presence of an increasing number of treatment
parameters θ1, . . . , θk. To find an improvement over the URE (UMLE) and IRE (RMLE),
we first consider the random device based on the allocated probability. The improved esti-
mators (RE, SE) allocate a greater weight to the unrestricted sample estimator as compared
with the alternative procedures. In particular, the appearance of the probability in the pro-
posed estimators is essential for optimality. The simulation results show that the proposed
estimators (RE, SE) are substantially better than the IRE (RMLE) and standard ones ofURE
(UMLE). Also, they compete very well with the other estimators, CPE and CSE.

In general, it can be argued based on the minimization operator as in (3), that the CSE,
CPE and SE may not be satisfied in the isotonic property. It is also essential to investigate
the proposed approach in terms of the important property such as isotonicity of the esti-
mators. Thus, we extended the proposed decision approach by using an iteration algorithm
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to solve the general problem (the isotonic regression problem) described in Section 1. This
property is shared by the isotonic smooth procedure. We used the iteration algorithm to
obtain isotonic smooth estimators that improve upon the other alternatives which does not
have the isotonic properties such as CPE and CSE.

Although the performance of the proposed estimators (SE, ISE) is impressive when
θ lies in the boundary point (0, . . . , 0), the gains are much more for the interior case
(0, 1, . . . , 1). On the other hand, the performance of the proposed estimators for treat-
ment groups is substantially better than the alternatives. This suggests the desirability of
the allocated probability to the basic unrestricted control estimator. So, it is seen that the
proposed random device is successful.

The isotonic smooth estimator based upon the iteration procedure seems to be more
desirable in this study because of the stability of its biases and MSEs. Unlike the CPE and
CSE, this estimator has the isotonic property. It appears that the CSE and CPE procedures
lose the isotonic regression property. The proposed method in this paper can be gener-
alized to the other distributions in which the support of the underlying distributions or
the distribution of the unrestricted estimators are at least unbounded exactly on the lower
bound, and admit the divergency of the minimum location parameter to the lower bound
of the natural parameter space.
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