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A novel nanocatalyst, denoted as UiO-66/Sal-ZnCl2, has been synthesized and systematically 
characterized employing a range of analytical techniques, including Fourier-transform infrared 
spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning 
electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis 
(TGA), Brunauer–Emmett–Teller (BET) surface area analysis, and inductively coupled plasma (ICP) 
analysis. The comprehensive analyses collectively affirm the effective coordination of zinc chloride 
onto the functionalized UiO-66. Subsequently, the catalytic efficacy of UiO-66/Sal-ZnCl2 was assessed 
in a one-pot, three-component click reaction involving terminal alkynes, alkyl halides, and sodium 
azide, conducted in an aqueous medium. The catalyst demonstrated remarkable catalytic activity, 
showcasing the capability to facilitate the reaction with high yields and exceptional regioselectivity. 
Noteworthy attributes of this nanocatalyst and the method include its elevated efficiency, 
recyclability, convenient product workup, and, significantly, the utilization of a sustainable solvent 
medium. The synthesis, characterization, and catalytic performance of this catalyst collectively 
contribute to its potential as an innovative and reusable nanocatalyst for diverse synthetic 
transformations.
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In recent years, caused by concern about environmental issues, the advancement of supported heterogeneous 
catalysts has emerged as a significant challenge for scientists, attributed to their enhanced environmental 
compatibility, superior efficiency, and efficient recycling of catalysts1–4. Metal-organic frameworks (MOFs) 
as heterogeneous catalysts have attracted considerable attention within the scientific community due to their 
unique characteristics as porous crystalline coordination polymers. These attributes encompass a substantial 
surface area, remarkable porosity, facile structural adaptability, and the ability to be functionalized with diverse 
organic linkers, along with adjustable pore sizes. These features contribute to their remarkable performance 
as catalysts, particularly in catalytic organic transformations5–7. MOFs also have found applications as gas 
absorbers, storage devices and separators, water purifiers, sensors, magnets, photocatalysts, and in drug 
delivery systems8–15. Their porous structure, characterized by accessible and large cavities, facilitates the 
efficient transport of reactants into the internal regions of the framework. This enables effective interaction with 
the catalytically active sites, followed by the subsequent release of products from the pores into the reaction 
environment7,16. MOFs have been employed extensively in catalytic reactions, either by creating inherent 
acidic and basic sites on their surfaces or by serving as supports for other catalysts. They can be used directly, 
without any alterations to their structure, and the desired catalyst developed on the surface or in its pores16. 
Also, it is advisable to carry out a structural modification prior to the loading of efficient catalytic systems17. By 
means of post-synthesis modification of MOFs, it is possible to adjust their chemical and physical properties, 
as well as to introduce a diverse array of organic and inorganic functionalities18,19. Among various MOFs, 
Zirconium-based MOFs (Zr-MOFs) have garnered substantial attention in chemical research20. UiO-66, the first 
synthesized Zr-MOF, consists of a zirconium-oxo cluster and 1,4-benzenedicarboxylic acid. This MOF exhibits 
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unparalleled hydrothermal stability21 and has been applied in water treatment22, remediation23, catalysis24, and 
various other fields25–28. Zr-MOFs have been employed in the synthesis of diverse organic compounds through 
multicomponent reactions29. Ionic liquid-supported Zr-MOF BAIL@UiO-66 was utilized in the preparation 
of pyrimidine and spirooxindole derivatives30,31. Pyrimidopyrimidines were prepared via TEDA-BAIL@UiO-
66 catalyzed reaction32. Zr-MOF-FePC was reported for synthesis of α-acyloxy amides33. Additionally, UiO-66 
modified with ethylene diamine (ED), UiO-66-SO3H, and Zr-MOF have been employed for the synthesis of 
2-aminotiophenes34, dihydro-2-oxopyrroles35, imidazo[1,2-a]pyridines, 3,4-dihydroquinoxaline-2-amines, and 
trisubstituted pyridine derivatives36, respectively.

In the pursuit of novel catalytic systems for organic transformations37–41, this study presents the synthesis 
of a UiO-66 metal-organic framework post-modified with salicylaldehyde via Schiff base reaction, followed 
by coordination of Zinc chloride (UiO-66/Sal-ZnCl2). This method presents a robust catalyst for the efficient 
synthesis of 1,2,3-triazoles via a one-pot click coupling reaction involving terminal alkynes, aryl or alkyl halides, 
and sodium azide. Numerous methods have been developed for the synthesis of triazole derivatives, as recently 
reviewed42–44. Notable examples include the use of L-Proline‐MCM‐41‐CuCl45, [(Cell-ThP-Cu(II))]46, Cell/
SiO2-Sal-Pd(II)47, and CuIL1PPh3 (L1 = bis(pyrazolyl)methane)48 as catalysts for triazole synthesis. Nevertheless, 
a majority of the aforementioned catalysts and methodologies encountered significant challenges, including the 
high cost of catalyst preparation, the use of hazardous solvents and reagents, and the difficulties associated with 
catalyst recovery techniques. Consequently, the imperative to develop a novel and efficient catalyst becomes 
paramount within the domain of organic synthesis. This imperative is particularly emphasized in the synthesis 
of triazole derivatives, where the inadequacies of existing catalysts and methods underscore the urgency and 
desirability of advancing catalytic approaches for enhanced efficacy and sustainability in the synthesis of such 
compounds.

Experimental
All substrates, reagents, and solvents were procured from reputable suppliers, namely Merck and Aldrich. TEM 
Images were acquired using a Leo 912AB microscope at 120 kV and SEM images were acquired using a Leo 
1450VP microscope. Thermogravimetric analyses were recorded with Mettler Toledo LF -Switzerland and FT-IR 
spectra with Nicolet Fourier spectrophotometer using KBr pellets. The energy dispersive X-ray analysis (XRD) 
was utilized to examine the crystalline structure of the catalyst. The 1H- and 13C-NMR spectra of the products 
were acquired in CDCl3 solvent utilizing the Bruker DRX-300 AVANCE spectrometer operating at frequencies 
of 300 and 75 MHz, respectively.

General procedure for the synthesis of UiO-66-NH2
According to the literature49, ZrCl4 (11.652 g, 50 mmol) was dissolved in 250 ml DMF in a three-necked flask 
with vigorous stirring. Then 2-aminoterephthalic acid (9.058 g, 50 mmol) was added and stirred to give a yellow 
clear solution. Then concentrated HCl 37% (35 ml) was added to the flask with stirring and it was kept under 
reflux for 10 h. The suspension was then cooled to 30 °C and the light-yellow solid was filtered off. The precipitate 
was washed with DMF (2 × 10 ml) and deionized water (2 × 10 ml) and dried at 70 °C for 6 h to prepare UiO-
66-NH2.

General procedure for the synthesis of UiO-66-Sal
UiO-66-NH2 (0.15  g) was dispersed in absolute ethanol (100  ml) by sonication and then stirred with 
salicylaldehyde (1250 µL, 12 mmol) at 75 °C for 12 h. After this time, the mixture was cooled to 30 °C, then the 
solid was filtered, washed with water and ethanol (3 × 15 ml), and dried overnight at 75 °C (UiO-66/Sal)42.

General procedure for the synthesis of UiO-66/Sal-ZnCl2
The prepared UiO-66/Sal salt (0.15 g) and zinc chloride (0.82 g, 0.6 mmol) were dispersed in absolute ethanol 
(20 ml), and the suspension was then stirred for 24 h at 50 °C. The prepared solid catalyst was filtered off, washed 
with absolute ethanol (3 × 20 ml), and dried at 70 °C for 12 h (UiO-66/Sal-ZnCl2).

General procedure for the synthesis of 1,2,3-Triazoles
Phenylacetylene (1 mmol), sodium azide (1 mmol), halide (1 mmol), and UiO-66/Sal-ZnCl2 (20 mg) were mixed 
in water (2 mL) and stirred at 50 °C for the appropriate time. The progress of the reaction was monitored by 
thin-layer chromatography (TLC). After completion of the reaction, the reaction mixture was cooled to 30 °C 
and the catalyst was filtered off. The reaction mixture underwent extraction using a combination of ethyl acetate 
and water, followed by the subsequent evaporation of the organic layer. Subsequently, the product was subjected 
to a drying process at a temperature of 50 °C for 4 h.

Fig. 1. The synthetic pathway for the production of UiO-66/Sal-ZnCl2.
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Results and discussion
The synthesis of the heterogeneous UiO-66/Sal-ZnCl2 nanocatalyst was successfully accomplished through a three-
step synthetic procedure. Initially, UiO-66-NH2 was synthesized by combining ZrCl4 and 2-aminoterephthalic 
acid. Subsequently, the -NH2 groups were chemically reacted with salicylaldehyde in a post-modification step, 
resulting in the formation of UiO-66/Sal. Finally, the coordination of ZnCl2 salt with UiO-66/Sal led to the 
formation of UiO-66/Sal-ZnCl2, as illustrated in Fig. 1. The chemical structure of prepared catalyst (UiO-66/
Sal-ZnCl2) was confirmed using various techniques, including ICP, FT-IR, TGA, BET, TEM, SEM, EDX, and 
XRD, as detailed in this section.

The quantification of zinc ions on the UiO-66/Sal-ZnCl2 nanocatalyst was conducted through ICP-OES 
analysis. The zinc concentration was determined to be 0.501 wt% of the catalyst.

The chemical structure and functional groups of UiO-66-NH2, UiO-66/Sal, and UiO-66/Sal-ZnCl2 were 
examined via FT-IR analysis, as depicted in Fig. 2. For UiO-66-NH2 (Fig. 2a), peaks at 3458 and 3348 cm-1 were 
assigned to asymmetric and symmetric vibrations, while the 1658 cm-1 peak indicated the bending vibration 
of NH2 groups. The symmetric and asymmetric stretching vibrations of carboxyl groups associated with Zr4+ 
were observed at 1580 and 1386 cm-1, respectively. A peak at 1509 cm-1 corresponded to the stretching vibration 
of C = C units in benzene rings, while the shear vibration of N-H groups appeared at 1436 cm-1. Additionally, 
a unique C-N stretching absorption of aromatic amines was evident at 1262 cm-1. Peaks at 768 and 662 cm-1 
were attributed to the stretching vibration of µ3-O in Zr-(OC)50,51. After salicylaldehyde modification of UiO-
66-NH2, the characteristic amine group peaks disappeared (Fig. 2b), the absorbance peaks observed at 3490 
and 3376 cm-1 belong to the stretching vibrations of -OH and -NH bonds, respectively. Also, an imine bond 
(C = N) stretching vibrations of the Schiff base was appeared at 1640  cm− 152,53, indicating successful post-
modification. Notably, the FT-IR spectrum of UiO-66/Sal-ZnCl2 (Fig. 2c) did not exhibit characteristic peaks 
of ZnCl2, possibly due to the weak bands associated with immobilized zinc ions on the nanocatalyst’s surface54. 
On the other hand, the decrease in the vibrational frequencies in the range of 3490 –3376 cm-1 are confirmed the 
successfully interaction between nitrogen (imine group) and hydroxyl groups with Zn ions. Figure 2d presents 
the FT-IR spectrum of the catalyst after five cycles of reuse, which appears identical to that of the fresh catalyst 

Fig. 2. FTIR spectrum of UiO-66-NH2 (a), UiO-66/Sal (b), UiO-66/Sal-ZnCl2 (c), 5th reused UiO-66/Sal-
ZnCl2 (d).
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(Fig. 2c). This result indicates that the catalyst structure remains stable and that the organic reaction condition 
did not affect its integrity.

The crystalline structure of UiO-66-NH2 and UiO-66/Sal-ZnCl2 was investigated using XRD analysis within 
the 2θ range of 6–80° (Fig. 3). The XRD pattern of UiO-66-NH2 (Fig. 3a) displayed characteristic diffraction 
peaks at 2θ values of 7.5°, 8.7°, 14.6°, 17.5°, 22.3°, 25.6°, 30.5°, 31.2°, 35.9°, 37.8°, 40.2°, 43.5°, 50.6°, and 56.9°, 
corresponding to the crystal lattice with Fm3m symmetry of zirconium benzene carboxylate units55. These 
diffraction peaks were also observed in the XRD pattern of UiO-66/Sal-ZnCl2 (Fig.  3b), indicating that the 
catalyst’s crystalline structure remained unchanged after modification and coordination of zinc units on the 
surface. The characteristic peaks of ZnCl2 should be at 2θ of 16.2°, 17.2°, 26.0°, 29.9°, 35.5°, 38.9°, 49.3°, 49.8°, 
51.9°, 52.9°, and 56.8° (JCPDS card no. 96-810-3830)56 (Trivedi et al., 2017), however the intensity of these 
expected peaks was quite low, likely due to the results from the ICP analysis and the relatively low metal loading.

As depicted in Fig. 4, the elemental composition of UiO-66-NH2 and UiO-66/Sal-ZnCl2 was determined 
through EDX analysis. In the EDX spectrum of UiO-66-NH2 (Fig.  4a), signals corresponding to Zirconium 
(Zr), Oxygen (O), and Nitrogen (N) were observed, representing the primary elements of the intended MOF 
structure57. In the case of UiO-66/Sal-ZnCl2 EDX analysis (Fig. 4b), these expected elements (Zr, O, and N) were 
again observed, alongside the presence of elemental zinc and chlorine57.

Following the elemental composition analysis, the distribution of these elements on the catalyst’s surface 
was examined. Figure  5 presents the X-ray elemental mapping of UiO-66/Sal-ZnCl2, demonstrating the 
even dispersion of elements within the catalyst framework. Zirconium (Zr), being the fundamental building 
block with a considerably higher density compared to other elements, exhibited a uniform distribution. This 
observation further underscores the crucial role of uniform zinc (Zn) distribution within the catalyst matrix, 
which contributes significantly to its exceptional catalytic performance. These observations are in agreement 
with ICP and EDX analyses and confirm the successful coordination of Zn complexes onto the surface of 
modified MOF.

In order to ascertain the loading capacity of the organic linker and examine the thermal stability of UiO-
66-NH2 and UiO-66/Sal-ZnCl2, thermal gravimetric analysis (TGA) was conducted across a temperature range 
spanning from 25 to 700 °C (Fig. 6). Three weight losses were observed in the thermogravimetric analysis (TGA) 
curve of UiO-66-NH2, as depicted in Figure (Fig. 6a). The initial weight reduction step, occurring up to 150 °C, 
involved the removal of trapped water, solvent, and CO2 molecules. During the second phase of weight loss, 
occurring at temperatures exceeding 180 °C, the organic linker initiates decomposition. The third stage of weight 
loss, occurring between 350 °C and 500 °C, can be attributed to the complete disassembly of the framework. In 
the case of UiO-66/Sal-ZnCl2, a greater weight loss was observed during this stage compared to UiO-66-NH2, 
primarily due to the presence of a surface-bound organic linker (Fig.  6b)58. From these results, the amount 
of organic linker was estimated to be about 6% by weight These results are in accordance with other analyses 
approve the successful synthesis and post-synthetic modification of UiO-66.

The porous structures of UiO-66-NH2 and UiO-66/Sal-ZnCl2 were characterized using N2 adsorption-
desorption analysis (Fig. 7). According to Brunauer-Emmett-Teller (BET) analysis, the surface areas of UiO-
66-NH2 and UiO-66/Sal-ZnCl2 were measured to be 909.59 and 550.11 m2g− 1, respectively (Fig.  7a and b). 
The observed reduction in surface area for UiO-66/Sal-ZnCl2 compared to UiO-66-NH2 suggests that the post-

Fig. 3. XRD patterns of UiO-66-NH2 (black PXRD pattern), and UiO-66/Sal-ZnCl2 (red thin-layer PXRD 
pattern).
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modification and coordination steps involving ZnCl2 primarily occurred on the support surface. The adsorption-
desorption isotherm of UiO-66-NH2 displayed a type I isotherm, indicative of a microporous structure (Fig. 7a). 
The Barrett-Joyner-Halenda (BJH) diagram for UiO-66-NH2 revealed the presence of a single type of micropores 
with a pore diameter of 1.21 nm (Fig. 7c). Similarly, the BJH plot for UiO-66/Sal-ZnCl2 also indicated reduced-
intensity micropores, consistent with changes in surface area and pore filling resulting from the coordination of 
the zinc salt (Fig. 7d)58.

Electron microscopy analyses, including TEM and SEM, were conducted to assess the morphology and 
size distribution of the synthesized samples (Fig. 8). The TEM images of UiO-66-NH2 and UiO-66/Sal-ZnCl2 

Fig. 4. EDX analysis of (a) UiO-66-NH2, and (b) UiO-66/Sal-ZnCl2.
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revealed aggregated octahedral particles with sizes ranging from 30 to 100 nm (Fig. 8a and b). Notably, the 
TEM image of UiO-66/Sal-ZnCl2 exhibited a similar morphology to the unmodified MOF, indicating that the 
post-synthetic modification with salicylaldehyde and subsequent zinc coordination did not significantly alter 
the MOF’s structural morphology and sizes (Fig. 8b). Furthermore, SEM analysis has been conducted for both 
UiO-66-NH2 and UiO-66/Sal-ZnCl2 (Fig. 8d and e) and the images exhibited aggregated octahedral particles for 

Fig. 6. TGA curve of UiO-66-NH2 (a), and UiO-66/Sal-ZnCl2 (b).

 

Fig. 5. Elemental mapping of UiO-66/Sal-ZnCl2 (the atomic distribution: Zr, O, C, N, Cl and Zn).
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two materials before and after post-synthetic modification and zinc coordination, confirming the preservation 
of the MOF’s morphology throughout the modification and coordination processes.

Following the successful synthesis and characterization of UiO-66/Sal-ZnCl2, its catalytic activity was 
evaluated in a one-pot multicomponent reaction involving benzyl halides/alkyl halides, phenylacetylene/
propargyl alcohol, and sodium azide for the synthesis of 1,2,3-triazole, as depicted in Fig. 9.

In this specific context, a comprehensive analysis was conducted to investigate the influence of various 
parameters, including reaction time, solvent, temperature, and catalyst quantity. Initially, the selection of 
phenylacetylene, benzyl bromide, and NaN3 was made as model substrates to optimize the reaction conditions, 
as presented in Table 1. It was observed that the model reaction failed to proceed in absence of catalyst, even 
after 3 h in water at 60 °C, thereby confirming the essential role of the catalyst in facilitating the reaction (Table 1, 
entry 1). In model reactions catalyzed by UiO-66-NH2 and ZnCl2, the product yields were only 30% and 15%, 
respectively (Table 1, entries 2 and 3). However, upon the addition of 5 mol% UiO-66/Sal-ZnCl2 as a catalyst 
in the model reaction, the yield of the isolated product reached 98% (Table  1, entry 4). Various polar and 
nonpolar solvents were examined while using UiO-66/Sal-ZnCl2 as the catalyst (Table 1, entries 5–9). Ultimately, 
considering the green nature of water and the achieved yield, water was chosen as the reaction solvent for further 
investigation. Model reactions were monitored at different time intervals, such as 2, 1, and 0.5 h. The results 
indicated that the reaction was completed after 2 h (Table 1, entries 10–12). Different quantities of catalysts 
were also tested in the model reaction. It was observed that the product yield decreased from 5 to 3.1 mol% with 
decreasing catalyst loading (Table 1, entries 13 and 14). Additionally, the reaction temperature was evaluated, 
revealing a decrease in yield with decreasing temperature. Consequently, the optimal reaction conditions were 
determined as follows: phenylacetylene (1.0 mmol), benzyl bromide (1.0 mmol), sodium azide (1.0 mmol), and 
a catalyst (5 mol%) in an aqueous medium at a temperature of 60 °C for 2 h.

Fig. 7. The BET of UiO-66-NH2 (a), and UiO-66/Sal-ZnCl2 (b), BJH of UiO-66-NH2 (c), and UiO-66/Sal-
ZnCl2 (d).
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The versatility of UiO-66/Sal-ZnCl2 was further explored with different substrates under the optimized 
reaction conditions. Substituted phenylacetylene and propargyl alcohol were successfully converted to terminal 
alkynes and benzyl /alkyl halides (Table 2). Employing various terminal alkynes, corresponding triazoles were 
obtained with exceptional performance under these optimal conditions. Additionally, a range of aryl and alkyl 
halides exhibited favorable reactivity in the presence of UiO-66/Sal-ZnCl2, as demonstrated in Table 2.

The potential for reusing the UiO-66/Sal-ZnCl2 catalyst was also evaluated. In this investigation, the model 
reaction was performed using a fresh catalyst under the optimized condition. Upon confirming the completion 
of the reaction through thin-layer chromatography (TLC), the catalyst was subjected to filtration, followed by 
multiple washes with water and ethyl acetate. Subsequently, the recovered catalyst was dried in an oven at 70 °C. 
Remarkably, this regenerated catalyst demonstrated activity for five consecutive cycles in model reactions with 
new substrates. The efficiency of the catalyst slightly decreased from 99% in the first cycle to 86% in the last one, 
as illustrated in Fig. 10.

A plausible mechanism59–61 for a model click reaction catalyzed by UiO-66/Sal-ZnCl2 is shown in Fig. 11. 
In the first step, coordination between the catalyst and the terminal alkyne transforms the activated acetylene 
(I) into a more potent dienophile. In the next step, the intermediate alkyl azide formed by the reaction of alkyl 
halide and sodium azide interacts with complex (I) to form complex (II). Complex (II) gives complex (III) via 
a 1,3-dipolar cycloaddition reaction. The final step converts the complex (III) to the desired triazole (IV) and 
regenerates the catalyst.

Fig. 9. The UiO-66/Sal-ZnCl2 catalyzed click reaction.

 

Fig. 8. The TEM images of UiO-66-NH2 (a), and UiO-66/Sal-ZnCl2 (b), 5th reused UiO-66/Sal-ZnCl2 (c), 
SEM images of UiO-66-NH2 (d), UiO-66/Sal-ZnCl2 (e).
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Hot filtration test
The hot filtration test was conducted to evaluate the possible leaching of zinc ions during the reaction (Fig. 12). 
Precisely, at the midway of the reaction (60 min), the nanocatalyst was separated from the reaction mixture by 
filtration. In this step, only 53% conversion was achieved. Subsequently, the reaction mixture was allowed to 
continue without a catalyst for another 60 min under similar conditions. The reaction progress before and after 
the separation was checked by TLC. Assessment of the rate of the desired product preparation demonstrates that 
no remarkable increase in conversion was observed even after an expanded time.

Also, to elucidate the stability of the catalyst, after five cycles in the model reaction, any structural changes 
of the catalyst were studied by FT-IR, TEM and ICP-OES techniques. It is evident from the FT-IR spectrum 
of the 5th reused catalyst that no significant changes in the frequencies, intensities, and shapes of absorption 
bands were observed (Fig. 1d). Moreover, the TEM image of the 5th reused catalyst confirmed the aggregated 
octahedral particles measuring less than 50 nm in size which was approximately similar to the TEM image of 
the fresh catalyst, and there were not any significant differences in size and morphology (Fig. 8c). Regarding the 
ICP-OES analysis, the exact quantity of zinc was 0.501 wt% in the fresh catalyst, which was decreased to 0.492 
wt% and demonstrated a negligible leaching of Zn ions in the reaction medium after 5th iteration (less than 0.01 
wt%). These results confirmed the admirable structural and mechanical stabilities of the reused catalyst after five 
reuse cycles.

By knowing the effectiveness of the prepared nanocatalyst, a comparison investigated between its catalytic 
performance and that of zinc-based catalyst systems documented in the existing literature in the reaction of 
benzyl bromide, sodium azide, and phenylacetylene under various catalytic conditions (Table 3, entries 1–7).

Nearly all the catalysts mentioned below exhibit notable yields of the desired products. However, the 
limitations including the long reaction time (Table 3, entries 1 & 2), the high reaction temperature (Table 3, 
entries 1, 3 & 5), and applying hazardous solvent and reaction conditions (Table 3, entries 2 & 4) represent the 
drawbacks of some of these methods. As is evident, our studied system (Table 3, entry 6) has advantages such 
as an excellent yield in a shorter reaction time, simple separation, easy preparation of the catalyst, and milder 
reaction conditions. Although some reported catalysts have demonstrated the ability to catalyze the azide-alkyne 
reaction in shorter or comparable reaction times, our catalyst has achieved a higher yield in comparison to these 
reports (Table 3, entries 3–5).

Conclusion
In conclusion, the UiO-66/Sal-ZnCl2 catalyst was successfully synthesized using a post-modification approach. 
A comprehensive characterization of the catalyst was carried out utilizing various techniques, including TEM, 
SEM, FTIR, ICP, TGA, Mapping, XRD, and BET. The results confirmed the effective incorporation of Zn 
units into the UiO-66-NH2 post-modified salicylaldehyde nanoreactor. Importantly, the morphology of the 
catalyst remained unaltered throughout the modification and coordination processes. The UiO-66/Sal-ZnCl2 
catalyst exhibited remarkable catalytic activity in the click reaction involving benzyl halides/alkyl halides, 
phenylacetylene/propargyl alcohol, and sodium azide, leading to the synthesis of 1,2,3-triazole. Furthermore, 
this catalyst displayed reusability, retaining its activity for five consecutive cycles. These findings underscore 
the potential of UiO-66/Sal-ZnCl2 as an efficient and recyclable nanocatalyst for click reactions and related 
applications.

Entry Catalyst Catalyst amount Solvent Temp. (°C) Time (h) Yield (%)

1 – – Water 60 3 0

2 UiO-66-NH2 0.1 g Water 60 3 30

3 ZnCl2 0.1 g Water 60 3 15

4 UiO-66/Sal-ZnCl2 5 mol% Water 60 3 98

5 UiO-66/Sal-ZnCl2 5 mol% EtOH 60 3 95

6 UiO-66/Sal-ZnCl2 5 mol% DMF 60 3 96

7 UiO-66/Sal-ZnCl2 5 mol% Toluene 60 3 65

8 UiO-66/Sal-ZnCl2 5 mol% Hexane 60 3 50

9 UiO-66/Sal-ZnCl2 5 mol% CH3CN 60 3 85

10 UiO-66/Sal-ZnCl2 5 mol% Water 60 2 98

11 UiO-66/Sal-ZnCl2 5 mol% Water 60 1 70

12 UiO-66/Sal-ZnCl2 5 mol% Water 60 0.5 50

13 UiO-66/Sal-ZnCl2 3 mol% Water 60 2 80

14 UiO-66/Sal-ZnCl2 1 mol% Water 60 2 70

15 UiO-66/Sal-ZnCl2 5 mol% Water 50 2 85

16 UiO-66/Sal-ZnCl2 5 mol% water 40 2 65

Table 1. The optimized reaction conditions for the synthesis of triazole via the model reaction. Reaction 
conditions: phenylacetylene (1.0 mmol), benzyl bromide (1.0 mmol), sodium azide (1.0 mmol), catalyst (x 
mol%), and solvent (2 ml).
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Table 2. Synthesis of 1,4-disubstituted 1,2,3-triazoles using UiO-66/Sal-ZnCl2.
Reaction conditions: alkyne (1 mmol), sodium azide (1 mmol), benzyl /alkyl halide (1 mmol), UiO-66/Sal-
ZnCl2 (5 mol%), water (2 mL), 60 °C.
aIsolated yields.
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Figure 2. (continued)
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Fig. 11. Plausible mechanistic route for the UiO-66/Sal-ZnCl2 mediated synthesis of triazoles.

 

Fig. 10. The study of the catalyst recyclability.
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Data availability
The data sets used and analyzed during the current study are available in supplementary information.
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