
LightTwinSVM: A Simple and Fast Implementation of
Standard Twin Support Vector Machine Classifier
Amir M. Mir1 and Jalal A. Nasiri1

1 Iranian Research Institute for Information Science and Technology (IranDoc), Tehran, Iran

DOI: 10.21105/joss.01252

Software
• Review
• Repository
• Archive

Submitted: 05 January 2019
Published: 31 March 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Abstract

This paper presents the LightTwinSVM program and its features. It is a simple and
fast implementation of twin support vector machine algorithm (TwinSVM). Numerical
experiments on benchmark datasets show the effectiveness of the LightTwinSVM program
in terms of accuracy. This program can be used by researchers, students, and practitioners
to solve classifications tasks.

Introduction

Classification is a widely-used learning method in machine learning. The task of classifi-
cation consists of training samples for which the class labels are available. On the basis of
such training samples, a classifier learns a rule for predicting an unseen sample (Shalev-
Shwartz & Ben-David, 2014). To do a classification task, many algorithms have been
proposed in machine learning literature such as Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), K-nearest neighbors (KNN), and Decision Trees. Among
these classification algorithms, SVM classifier has relatively better prediction accuracy
and generalization (Kotsiantis, Zaharakis, & Pintelas, 2007). The main idea of SVM is to
find the optimal separating hyperplane with the largest margin between the two classes.
Figure 1 shows the geometric illustration of SVM classifier.

Over the past decade, researchers have proposed new classifiers based on the SVM (Nayak,
Naik, & Behera, 2015). Of these extensions of SVM, the twin support vector machine
(TwinSVM) (Jayadeva, Khemchandani, & Chandra, 2007) has received more attention
from scholars in the field of SVM research. This may be due to the novel idea of TwinSVM
which is doing classification using two non-parallel hyperplanes. Each of which is as close
as possible to samples of its own class and far from samples of the other class. To show
the central idea of TwinSVM graphically, Figure 2 shows the geometric illustration of
TwinSVM classifier.

For SVMs, there exist several stable software packages and implementations such as LIB
SVM (C.-C. Chang & Lin, 2011) and LIBLINEAR (Fan, Chang, Hsieh, Wang, & Lin, 2008).
These packages were used to implement SVM in scikit-learn (Pedregosa et al., 2011)
which is a widely-used machine learning package for Python programming language. To
solve a classification problem with the SVM algorithm, one can use scikit-learn with
only a few lines of code in Python.

Even though TwinSVM is a popular classification algorithm in the field of SVM research,
to the best of our knowledge, there exists no free and reliable implementation with a
user guide on the internet. This motivated us to develop LightTwinSVM program to

Mir et al., (2019). LightTwinSVM: A Simple and Fast Implementation of Standard Twin Support Vector Machine Classifier. Journal of Open
Source Software, 4(35), 1252. https://doi.org/10.21105/joss.01252

1

https://doi.org/10.21105/joss.01252
https://github.com/openjournals/joss-reviews/issues/1252
https://github.com/mir-am/LightTwinSVM
https://doi.org/10.5281/zenodo.2619436
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01252


Figure 1: Geometric illustration of SVM classifier.

Figure 2: Geometric illustration of TwinSVM classifier.

Mir et al., (2019). LightTwinSVM: A Simple and Fast Implementation of Standard Twin Support Vector Machine Classifier. Journal of Open
Source Software, 4(35), 1252. https://doi.org/10.21105/joss.01252

2

https://doi.org/10.21105/joss.01252


help researchers, practitioners, and students build their own classifier on the basis of
LightTwinSVM. Moreover, this program can be used to solve classification problems. In the
next section, we present LightTwinSVM, its features, and compare it with scikit-learn’s
SVM.

LightTwinSVM

The LightTwinSVM program is a simple and fast implementation of the TwinSVM clas-
sifier. It is mostly written in Python and its main design goals are simplicity and
speed. Also, this program is free, open source, and licensed under the terms of GNU
GPL v31. LightTwinSVM is built on top of NumPy (Walt, Colbert, & Varoquaux, 2011),
scikit-learn (Pedregosa et al., 2011), and pandas (McKinney, 2011).

LightTwinSVM program can be used by both researchers in the field of SVM research
and by students in courses on pattern recognition and machine learning. Moreover, this
software can be applied to a wide variety of research applications such as text classification,
image or video recognition, medical diagnosis, and bioinformatics. For example, Light
TwinSVM was used for the numerical experiments in our previous research paper (Mir &
Nasiri, 2018).

The main features of the LightTwinSVM program are the following:

• To make its usage simple, a command-line application was created to help users
solve classification tasks step-by-step.

• Since speed is one of the design goals, the clipDCD optimization algorithm
(Peng, Chen, & Kong, 2014) is employed which is a simple and fast external opti-
mizer. It was improved and implemented in C++.

• In order to solve linear or non-linear classification problems, both linear and RBF
kernels are supported.

• Multi-class classification problems can be solved using either One-vs-One or One-
vs-All scheme.

• The One-vs-One classifier is scikit-learn compatible. Therefore, scikit-learn
tools such as GridSearchCV and cross_val_score can be employed.

• To evaluate the performance of the classifier, K-fold cross-validation and
train/test split are supported.

• The optimal values of hyper-parameters can be found with grid search.
• CSV and LIBSVM formats are supported for importing datasets.
• Detailed classification results are saved in a spreadsheet file so that results can be

analyzed and interpreted.

The source code of LightTwinSVM, its installation guide and usage example can be found
at https://github.com/mir-am/LightTwinSVM.

Numerical Experiments

In this section, we conducted experiments to show the efficiency of LightTwinSVM pro-
gram, and compared it with the implementation of SVM in scikit-learn on the UCI2

benchmark datasets. To evaluate the classifiers’ performance, 5-fold cross-validation is
used. For both standard SVM and TwinSVM, the penalty parameter C was selected

1https://opensource.org/licenses/GPL-3.0
2http://archive.ics.uci.edu/ml/datasets.html

Mir et al., (2019). LightTwinSVM: A Simple and Fast Implementation of Standard Twin Support Vector Machine Classifier. Journal of Open
Source Software, 4(35), 1252. https://doi.org/10.21105/joss.01252

3

https://github.com/mir-am/LightTwinSVM
https://opensource.org/licenses/GPL-3.0
http://archive.ics.uci.edu/ml/datasets.html
https://doi.org/10.21105/joss.01252


from the set {2i | i = −10,−9, . . . , 5}. Moreover, the RBF kernel was used and its pa-
rameter γ was chosen over the range {2i | i = −15,−14, . . . , 5}. Since the classification
performance of standard SVM and TwinSVM depends heavily on the optimal choice of
hyper-parameters, grid search is used to find the optimal values of hyper-parameters.

To analyze the classification performance of LightTwinSVM and scikit-learn’s SVM,
the results on benchmark datasets are summarized in Table 1.

Table 1: The accuracy comparison between LightTwinSVM and scikit-learn’s SVM

Datasets LightTwinSVM scikit-learn’s SVM Difference in Accuracy
Pima-Indian 78.91±3.73 78.26±2.62 0.65
Australian 87.25±2.27 86.81±3.22 0.44
Haberman 76.12±4.79 76.80±2.68 -0.68
Cleveland 85.14±5.45 84.82±4.04 0.32

Sonar 84.62±4.89 64.42±6.81 20.2
Heart-Statlog 85.56±2.96 85.19±2.62 0.37

Hepatitis 86.45±5.16 83.23±3.55 3.22
WDBC 98.24±1.36 98.07±0.85 0.17
Spectf 81.68±5.35 79.78±0.19 1.9
Titanic 81.93±2.59 82.27±1.83 -0.34

Mean Accuracy 84.59 81.94 2.65

From the Table 1, it can be seen that LightTwinSVM outperforms scikit-learn’s SVM on
most datasets. For instance, the accuracy difference in Sonar dataset is as high as 20.2%
which is a significant result. However, in consideration of the mean accuracy, one may
notice that the difference in accuracy between the two classifiers is not very large. To show
whether a significant difference exists, statistical tests are often used in research papers
on classification (Demšar, 2006). Due to the limited space, comprehensive experiments
with statistical tests are skipped in this paper. In summary, the experiment indicates
that the LightTwinSVM program can be used for classification tasks and it may produce
a better prediction accuracy.

Acknowledgments

This research work was carried out at the machine learning lab of IranDoc Institution.
We would like to thank the director of IranDoc Institution for providing us with research
facilities.

References

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3), 27. doi:10.1145/
1961189.1961199

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research, 7(Jan), 1–30. Journal Article.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR:
A library for large linear classification. Journal of machine learning research, 9(Aug),
1871–1874.

Mir et al., (2019). LightTwinSVM: A Simple and Fast Implementation of Standard Twin Support Vector Machine Classifier. Journal of Open
Source Software, 4(35), 1252. https://doi.org/10.21105/joss.01252

4

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.21105/joss.01252


Jayadeva, Khemchandani, R., & Chandra, S. (2007). Twin support vector machines for
pattern classification. IEEE Transactions on pattern analysis and machine intelligence,
29(5). Journal Article. doi:10.1109/TPAMI.2007.1068

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A re-
view of classification techniques. Emerging artificial intelligence applications in computer
engineering, 160, 3–24.

McKinney, W. (2011). Pandas: A foundational python library for data analysis and
statistics. Python for High Performance and Scientific Computing, 1–9.

Mir, A., & Nasiri, J. A. (2018). KNN-based least squares twin support vector ma-
chine for pattern classification. Applied Intelligence, 48(12), 4551–4564. doi:10.1007/
s10489-018-1225-z

Nayak, J., Naik, B., & Behera, H. (2015). A comprehensive survey on support vector
machine in data mining tasks: Applications and challenges. International Journal of
Database Theory and Application, 8(1), 169–186. Journal Article.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., et al. (2011). Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct), 2825–2830.

Peng, X., Chen, D., & Kong, L. (2014). A clipping dual coordinate descent algorithm
for solving support vector machines. Knowledge-Based Systems, 71, 266–278. Journal
Article. doi:10.1016/j.knosys.2014.08.005

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From
theory to algorithms. Cambridge university press. doi:10.1017/CBO9781107298019

Walt, S. van der, Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure
for efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30.
Journal Article. doi:10.1109/MCSE.2011.37

Mir et al., (2019). LightTwinSVM: A Simple and Fast Implementation of Standard Twin Support Vector Machine Classifier. Journal of Open
Source Software, 4(35), 1252. https://doi.org/10.21105/joss.01252

5

https://doi.org/10.1109/TPAMI.2007.1068
https://doi.org/10.1007/s10489-018-1225-z
https://doi.org/10.1007/s10489-018-1225-z
https://doi.org/10.1016/j.knosys.2014.08.005
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.01252

	Abstract
	Introduction
	LightTwinSVM
	Numerical Experiments
	Acknowledgments
	References

