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Abstract
This study aimed to address the need for a comprehensive assessment tool to evaluate the
mathematical abilities of first-grade students through cognitive diagnostic assessment (CDA). The
primary challenge involved in this endeavor was to delineate the specific cognitive skills and sub-
skills pertinent to first-grade mathematics (FG-M) and to determine the most suitable model for
assessment. Employing a mixed-methods approach, the research identified nine cognitive at-
tributes essential for FG-M and developed a Q-matrix delineating the relationship between these
attributes. A preliminary version of the FG-M checklist comprising 74 items was formulated.
Subsequently, the assessment tool was administered to 1018 first-grade students, with their
teachers utilizing the FG-M checklist for evaluation. Results indicated a commendable accuracy in
classifying the nine cognitive attributes, ranging from 0.68 to 0.92, with an average accuracy of
0.76. Furthermore, the validity of the scores was corroborated by a substantial correlation (r =
0.78) between scores from the FG-M checklist and the arithmetic subtest of the Wechsler
Intelligence Scale for Children, Fourth Edition (WISC-IV). Overall, the study concluded that the
scores from the FG-M checklist are reliable for assessing the mathematical skills of first-grade
students. The findings underscored the students’ proficiency in fundamental mathematical
concepts such as cardinality, addition, subtraction, weight, and statistics. However, areas of
weakness were identified in concepts related to multiplication, time, symmetry, and geometry.
This research contributes significantly to the advancement of CDA in educational contexts,
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providing educators with a valuable tool for identifying students’ strengths and weaknesses in
mathematical cognition.

Keywords
cognitive diagnostic assessment, first-grade mathematics, mathematical knowledge and skills,
elementary education

Introduction

Early assessment of mathematical skills plays a critical role for educators and caregivers in
understanding young learners’ grasp of fundamental mathematical concepts. Identifying any
potential gaps in learning at this early stage is crucial for creating targeted interventions that can
prevent long-term academic challenges. Early assessments provide valuable insights into a child’s
cognitive development, spatial reasoning, and problem-solving abilities, allowing educators to
design personalized educational plans that cater to individual learning needs (Sjoe et al., 2019;
Verbruggen et al., 2021). Recognizing the importance of early mathematics education in shaping a
child’s cognitive development and academic journey, the first grade of primary school marks a
pivotal period for laying the foundation of essential mathematical skills (Rittle-Johnson et al.,
2019). Assessing young learners’ mathematical abilities during this crucial phase helps identify
strengths and weaknesses, empowering educators to adapt instructional strategies and inter-
ventions accordingly.

Certainly, several approaches are available for evaluating a child’s abilities and achievements.
Some of these techniques involve the utilization of observational tools, comprehensive narrative
assessments, and direct evaluations (Li et al., 2020). To assess children’s mathematical learning
and development within the classroom setting, observational methodologies, such as rating scales
and checklists, along with narrative assessments, including storytelling and portfolios, have been
implemented (Rajkumar & Hema, 2019; Öztürk et al., 2020). For example, Charlesworth and
Leali (2012) adopted a combination of observation, informal dialogues, and interviews to
document the problem-solving approaches of preschool, kindergarten, and primary school
children during various educational activities (Charlesworth & Leali, 2012). Similarly, Reikerås
et al., 2012 conducted observations on a significant sample of toddlers engaged in problem-
solving play and routine activities that required the application of mathematical language and
logical reasoning (Reikerås et al., 2012). Presently, available assessment tools are grounded in
either classical test theory (CTT) or item response theory (IRT). These evaluations typically yield
an aggregate test score that reflects a child’s ability or achievement and is often utilized to compare
a child with others or against specific benchmarks (de la Torre et al., 2018). Consequently, children
are classified into distinct groups based on whether they pass or fail, with the passing threshold
(e.g., a score of 70) determining those who meet the criteria for success (Ravand & Robitzsch,
2015). However, it is worth noting that children with the same test scores may possess diverse
knowledge structures. Therefore, relying solely on overall test scores might not be the most
effective approach for mathematics teaching and learning (Ma et al., 2020). It is imperative that
children’s internal knowledge systems serve as the cornerstone for the instruction and acquisition
of mathematical concepts.

Recent research highlights the significance of CDA in understanding students’ distinct
cognitive strengths and weaknesses by examining their individual knowledge structures and
cognitive processing abilities (Chin & Chew, 2023; Ravand & Baghaei, 2020). CDA deconstructs
test tasks into the strategies, processes, and knowledge necessary for successful task performance,
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thus aiding teachers in rectifying students’ ineffective strategies (Embretson, 1984). Contrary
to conventional educational psychometric models like IRT, which rely on the investigator’s
presumptions about the cognitive processes employed by test-takers in problem-solving
during test situations, cognitive diagnostic models (CDMs) are grounded in empirical evi-
dence of the actual processes and strategies utilized by test-takers (Ravand, 2015). CDMs
evaluate test-takers competency across a spectrum of multiple discrete/dichotomous skills,
predicting the likelihood of an observable categorical response from unobservable (i.e., latent)
categorical variables. These discrete latent variables are variably referred to as skill, subskill,
attribute, knowledge, ability, processes, and strategies. The initial step in the CDA process
involves the construction of a cognitive model, which delineates the specific knowledge and
skills essential for students to proficiently solve test problems. Subsequently, a cognitive
diagnostic test is developed based on this cognitive model (Ravand & Baghaei, 2020). A
cognitive diagnostic test yields patterns of attribute mastery and probabilities of attribute
mastery. Patterns of mastery reveal which specific attributes students have acquired, while
mastery probabilities indicate the extent of their proficiency (Leighton & Gierl, 2007). In-
sights garnered from the patterns and probabilities of mastery provide additional context for
understanding students’ academic achievements. This approach has enabled the integration of
learning theories, cognition, and pedagogy with measurement theories, not only for assessing
student learning but also for facilitating it (Leighton & Gierl, 2007; Ravand & Baghaei, 2020).
In essence, the application of CDA in the assessment of FG-M in primary schools helps
educators gain a deeper understanding of each student’s cognitive strengths and weaknesses.
This understanding, in turn, facilitates the implementation of targeted interventions and
personalized learning plans, ultimately leading to improved academic outcomes and a more
engaging and effective learning experience for the students (Ravand & Robitzsch, 2018). The
current study, centered on evaluating the foundational mathematical skills of first-grade
elementary students, employs a cognitive diagnostic approach to identify both their strengths
and weaknesses in mathematical learning.

This study introduces a novel assessment tool, the FG-M checklist. The FG-M checklist is
distinct from typical math tests, which primarily measure students’ ability to solve specific
problems under timed conditions. Instead, the FG-M checklist evaluates a broader range of
mathematical skills and competencies. Unlike conventional tests that often focus on problem-
solving speed and accuracy in a controlled setting, the FG-M checklist is designed to be used as an
observational tool within the natural classroom environment. This allows for a more compre-
hensive assessment of a student’s abilities. By focusing on these diverse aspects of mathematical
understanding, the FG-M checklist provides a detailed profile of each student’s strengths and areas
for improvement. This holistic approach ensures that educators can identify not only whether a
student can solve a particular problem but also understand how they approach mathematical
concepts and processes. This nuanced insight is crucial for developing personalized educational
strategies that address each student’s unique needs.

Furthermore, the FG-M checklist is grounded in cognitive diagnostic modeling (CDM), a
cognitive-psychometric modeling approach that provides valid classifications of human per-
formance in specific domains, such as ability, trait, or competency (Rupp & Templin, 2008). By
employing the CDM, the FG-M generates mastery classifications or sub-scores that are highly
informative for diagnostic purposes. These classifications enable teachers to pinpoint specific
areas where students excel or struggle, facilitating targeted instructional interventions. The FG-M
checklist allows educators to recognize such patterns and tailor their teaching methods ac-
cordingly. By providing teachers with an assessment tool based on diagnostic classifications, this
research has the potential to significantly enhance instructional strategies, consequently enriching
students’ mathematical learning experiences. The FG-M checklist not only aids in the early
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detection of learning gaps but also supports the development of individualized learning plans that
promote long-term academic success.

CDMs

CDMs are used to assess learner abilities by pinpointing core operations and creating questions
that require these skills. This allows researchers to identify which operations students can
successfully employ (DiBello et al., 2006; Lee & Sawaki, 2009). CDMs provide detailed di-
agnostic insights, helping educators tailor instructional approaches and enhance learning envi-
ronments (Huff & Goodman, 2007). These models combine cognitive psychology with statistical
techniques to analyze the relationship between cognitive processes, test performance, and re-
sponses (Ravand & Robitzsch, 2015). CDMs classify test-takers into latent classes based on
mastery and non-mastery patterns (Hagenaars &McCutcheon, 2002). They categorize individuals
into 2k latent classes, where k represents the number of attributes necessary for test performance,
each attribute being binary (mastered or not). For example, with nine attributes, examinees are
grouped into 29 = 512 latent classes. CDMs estimate the likelihood of each person belonging to
any one of the latent classes.

CDMs are categorized according to the relationships they assume among the attributes of test.
CDMs can be either specific or general. Specific CDMs, in turn, are either conjunctive or dis-
junctive. In conjunctive models, such as the deterministic-input noisy-and-gate (DINA) model
(Junker & Sijtsma, 2001), all required attributes must be mastered for a correct response. In
disjunctive models, such as the deterministic-input noisy-or-gate (DINO) model (Templin &
Henson, 2006), proficiency in any one attribute can lead to a correct response. General models
such as the generalized DINA (G-DINA) model allow both conjunctive and disjunctive rela-
tionships within the same test. CDMs provide detailed insights into students’ strengths and
weaknesses in specific cognitive skills. Unlike IRT models, which assign a single continuous
score, CDMs categorize individuals into multidimensional skill profiles, identifying them as
masters or non-masters of each skill. This results in a complex loading structure known as within-
item multidimensionality (Ma et al., 2020; Ravand & Baghaei, 2020; Ravand & Robitzsch, 2015,
2018).

A key element in CDMs is a Q-matrix, which clarifies the relationship between test items and
cognitive attributes in a cognitive diagnostic test (Tatsuoka, 1983). Each row in the Q-matrix
represents a test item, and each column represents a cognitive attribute. Entries are binary, with “1”
indicating that an attribute is necessary for correctly answering the item and “0” indicating that it is
not (Li & Suen, 2013). This binary framework ensures a comprehensive evaluation of the
cognitive attributes involved. It is recommended that each attribute is assessed by at least three
items to ensure reliability (de la Torre & Chiu, 2016). See Table 1 for the Q-matrix.

Method

Determination of the FG-M Attribute

Identifying cognitive attributes is essential in CDMs. Rupp and Templin (2008) argue that
misspecifications of Q-matrix would result in misclassification of examinees. Accurate test-taker
classification, the core goal of CDMs, requires meticulous attention to all factors impacting
classification accuracy. Identifying FG-M attributes followed a two-phase approach: theoretical
framework analysis and expert discussions, followed by structured interviews. This process
identified nine key cognitive attributes for FG-M, validated by a panel of five mathematics
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Table 1. The Q-Matrix of the FG-M Checklist.

Items

Attributes

NumberV1 V2 V3 V4 V5 V6 V7 V8 V9

1 1 0 0 0 0 0 0 0 0 1
2 1 0 0 0 0 0 1 1 0 3
3 1 1 0 0 0 0 1 1 1 5
4 1 0 0 0 1 0 0 0 0 2
5 1 0 0 0 0 0 0 1 1 3
6 1 1 0 0 0 0 1 0 0 3
7 1 0 0 0 0 0 0 0 0 1
8 1 0 0 0 0 0 0 0 0 1
9 1 1 0 0 0 0 0 0 0 2
10 1 0 0 0 0 0 1 0 0 2
11 1 0 0 0 0 1 0 0 0 2
12 1 1 0 0 0 0 1 1 0 4
13 1 0 0 0 1 0 0 1 0 3
14 1 0 0 0 1 0 1 0 0 3
15 1 0 0 0 0 0 0 0 0 1
16 1 1 0 0 0 0 0 1 0 3
17 1 1 0 0 0 0 1 0 0 3
18 1 1 1 0 0 0 1 0 0 4
19 1 1 0 0 0 0 1 1 1 5
20 1 1 0 0 0 0 1 0 0 3
21 1 1 0 0 0 0 1 1 0 4
22 1 1 1 0 0 0 1 1 0 5
23 1 1 0 1 0 0 1 0 0 4
24 1 0 1 0 0 0 0 0 0 2
25 1 1 1 0 0 0 0 1 0 4
26 1 0 1 0 0 0 1 1 1 5
27 1 1 1 0 0 0 0 0 0 3
28 1 0 1 0 0 0 1 0 0 3
29 1 0 1 0 0 0 0 1 1 4
30 1 1 1 1 0 0 1 0 0 5
31 1 0 1 0 0 0 1 1 0 4
32 1 1 1 0 1 0 1 0 0 5
33 1 1 1 0 0 0 1 0 0 4
34 1 0 1 0 0 0 1 0 0 3
35 1 0 1 0 0 0 1 1 1 5
36 1 1 1 1 0 0 0 1 1 6
37 1 0 1 0 0 1 1 0 0 4
38 1 1 1 1 0 0 0 0 0 4
39 1 1 0 1 0 0 1 1 0 5
40 1 1 0 1 0 0 0 0 0 3
41 1 1 0 1 0 0 0 1 1 5
42 1 1 0 1 0 0 0 1 1 5
43 1 0 0 0 1 0 0 1 1 4
44 1 1 0 1 1 0 0 0 0 4

(continued)
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education experts using a 5-point scale. Each attribute received high ratings, confirming their
significance. For an overview of these attributes, refer to Table 2.

Our theoretical framework for identifying first-grade mathematical concepts is grounded in
cognitive development theory, educational standards, prior research, and expert consultations. We
based our framework on Piaget’s preoperational stage, where first-graders understand symbols and
simple logical operations. We referenced the Common Core State Standards (CCSS) (Kamii,
2015) and National Council of Teachers of Mathematics (NCTM) (Clarke et al., 2014) rec-
ommendations, which outline key mathematical skills such as basic arithmetic and geometry.
Additionally, we reviewed literature from Clements and Sarama (2009) and Ginsburg et al. (2008),
highlighting essential areas of early mathematics education like number sense and counting

Table 1. (continued)

Items

Attributes

NumberV1 V2 V3 V4 V5 V6 V7 V8 V9

45 1 1 0 1 1 0 1 0 0 5
46 1 1 1 1 1 0 0 0 0 5
47 1 0 1 0 1 0 0 0 0 3
48 1 0 1 0 1 0 1 0 0 4
49 1 1 0 1 1 0 0 1 0 5
50 1 0 0 0 0 1 0 0 0 2
51 1 0 0 0 0 1 1 0 0 3
52 1 0 1 0 0 1 0 0 0 3
53 1 1 0 0 0 1 0 0 0 3
54 1 1 1 0 0 1 0 0 0 4
55 1 0 0 0 0 0 1 1 1 4
56 1 0 0 0 0 0 1 0 0 2
57 1 1 0 0 0 0 1 0 0 3
58 1 0 0 0 1 1 1 0 0 4
59 1 0 0 0 0 0 1 1 0 3
60 1 0 0 0 0 0 0 1 0 2
61 1 1 1 0 0 0 0 1 1 5
62 1 0 0 0 0 0 0 1 0 2
63 1 0 1 0 0 0 0 1 0 3
64 1 0 0 0 0 0 0 1 1 3
65 1 1 0 0 0 0 0 1 1 4
66 1 0 0 0 0 0 0 1 1 3
67 1 0 0 0 0 0 1 1 1 4
68 1 0 0 0 0 0 1 1 1 4
69 1 1 0 0 0 0 0 1 1 4
70 1 1 0 0 0 0 0 1 1 4
71 1 1 0 0 0 0 1 1 1 5
72 1 1 1 0 0 0 0 1 1 5
73 1 0 0 0 0 0 0 1 1 3
74 1 1 1 0 0 0 0 1 1 5
Frequency 74 37 26 12 12 8 34 37 23

Notes. Number = the number of attributes measured by an item. Frequency = frequency of cognitive attribute being
measured.
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Table 2. The Cognitive Attributes of the FG-M.

Cognitive attributes Codes Description

Cardinality concept V1 Cardinality refers to the understanding of the quantity or number of objects
in a set. It’s the ability to know how many items are present in a group
without needing to count them one by one. Developing cardinality
involves grasping that the last number counted in a sequence represents
the total amount in the set. For instance, if a child can see a group of four
apples and says “four” without counting each apple, they are
demonstrating an understanding of cardinality.

Addition concept V2 In the context of first-grade elementary school math, addition is the
mathematical operation of combining two or more quantities to find a
total or sum. It involves bringing together separate groups or numbers to
calculate their combined value. In simple terms, it’s understanding how to
add numbers to find out “how many in total.” For example, adding 3 and
2 means combining three items with two items to get a total of five items.
First-graders typically start with basic addition problems using small
numbers to build a foundational understanding of this concept

Subtraction
concept

V3 In first-grade elementary school math, subtraction is a fundamental
mathematical operation. It involves taking away or removing a certain
quantity from a larger group or number. It’s the process of finding the
difference between two quantities. Subtraction helps students
understand concepts like “howmany are left” after some items have been
removed. For instance, if there are 7 candies and 3 are taken away,
subtraction helps determine that 4 candies are remaining. In the context
of early math education, students begin with simple subtraction problems
using small numbers to build their foundational understanding of this
concept.

Multiplication
concept

V4 By the conclusion of the first grade, students are expected to develop the
ability to count in regular intervals or increments, such as counting by 10s
(10, 20, 30) or by 5s (5, 10, 15), and even by smaller numbers such as 3s
(3, 6, 9). This skill is important because it introduces the foundational idea
of repeated addition, where students begin to see that numbers can be
grouped and added in a structured way. Mastering this ability helps
students transition smoothly into understanding multiplication as
combining equal groups, which is a critical mathematical skill as they
progress in their education.

Hour concept V5 In the first grade of elementary school math, the concept of “hour” is
introduced. An hour is a unit of time that helps us measure and
understand the passing of time. Students typically learn how there are
24 hours in a day, and the clock’s hour hand moves around the clock face
twice a day. They begin to identify and read the numbers on the clock to
tell the time in terms of hours. While they might not delve into more
complex time concepts, this foundational understanding of hours sets the
stage for further time-related learning in later grades.

(continued)
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principles (Ginsburg et al., 2008; Sarama & Clements, 2009). Expert interviews, involving
doctoral candidates in mathematics education and experienced first-grade teachers, validated the
attributes. These experts assessed the significance and interconnectedness of the attributes, en-
suring their relevance. This two-phase approach ensures our framework is theoretically sound and
the scores are empirically validated, capturing critical mathematical concepts for first-graders.

After pinpointing the cognitive attributes in FG-M, we delved into establishing a hierarchy
among these attributes. To do so, we enlisted the insights of ten experts, including three Ph.D.
candidates specializing in mathematics education and seven seasoned teachers who have excelled
in teaching first-grade math. Their task was to map out the hierarchical relationships among these
attributes. We explored all potential hierarchical models and eventually settled on a model that
gained the approval of 80% of our expert panel (8 individuals). The resulting model, depicted in
Figure 1, visually represents the hierarchical connections among the nine identified attributes.

Table 2. (continued)

Weight concept V6 In the first grade of elementary school math, the concept of “weight” is
introduced as a measure of how heavy or light an object is. Students learn
to compare the weight of objects using terms like “heavier” and “lighter.”
They might use balance scales or their hands to make these comparisons.
While the precise measurements might not be emphasized at this stage,
students begin to develop a basic understanding of weight and how it’s
used to differentiate between the heaviness of various objects. This initial
understanding forms the basis for more detailed weight-related learning
in later grades.

Statistics concept V7 In the first grade of elementary school math, the concept of “statistics” is
introduced in a basic manner. Students begin to gather and organize
simple data, such as counting the number of students with a certain
attribute (like hair color or favorite color) in their class. They learn to
create simple pictographs or bar graphs to visually represent these data.
While the idea of averages and more complex statistical concepts is not
typically covered at this level, this introductory exposure to statistics
helps students understand how information can be collected and
presented visually.

Symmetry concept V8 In the first grade of elementary school math, the concept of “symmetry” is
introduced in a basic manner. Students learn about symmetry in shapes
and objects. They explore how a shape can be divided into two equal
halves that mirror each other. They might practice drawing lines of
symmetry or identifying symmetrical objects in their environment, like
butterflies or simple geometric shapes. While more complex
symmetrical patterns might not be covered, this initial introduction helps
students develop an awareness of balance and symmetry in everyday
objects and shapes.

Geometry concept V9 In the first grade of elementary school math, the concept of “geometry” is
introduced with a focus on basic shapes and their properties. Students
learn to identify and name common shapes like circles, squares, triangles,
and rectangles. They explore characteristics of these shapes, such as the
number of sides and corners. Additionally, they might learn about
concepts like “above,” “below,” “beside,” and “inside” as they relate to
the spatial relationships between objects.While more complex geometry
topics aren’t typically covered, this foundational understanding of shapes
and spatial concepts lays the groundwork for further geometry learning in
later grades.
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Development of a Cognitive Diagnostic Checklist for the FG-M

The Q-matrix was constructed using nine attributes specified in Table 2 (refer to Table 1). The
Q-matrix of the FG-M checklist shows that Attribute V1 is the most frequently measured, ap-
pearing in 56 items, highlighting its foundational importance. Other attributes are measured less
frequently, with V2 and V3 appearing 21 and 18 times, and V4, V5, and V6 only 5 to 7 times each.
Attributes V7, V8, and V9 are measured in 15, 13, and 12 items, respectively. The items vary in the
number of attributes they measure: 20 items measure a single attribute, 17 items assess two
attributes, 13 items evaluate three attributes, and 2 items measure four attributes. This distribution
ensures comprehensive coverage of all cognitive attributes while maintaining alignment with the
hierarchical nature of the skills assessed. The detailed Q-matrix is provided in Table 1.

After developing the Q-matrix, test items were designed to match each pattern. This followed a
top-down approach, starting with conceptualizing measurement patterns and developing corre-
sponding items. The process involved collaboration among three doctoral students in mathematics
education and seven experienced teachers. Together, they created items for the first-grade FG-M
checklist, aligning them with predetermined cognitive attributes. Items were organized sys-
tematically based on the Q-matrix. The kappa coefficient was used to gauge consensus among
experts on item attributes, with a threshold of 0.60 for selection. This rigorous process identified
74 checklist items for the FG-M assessment.

The Pilot Experiment of the FG-M Checklist

A group of twenty first-grade teachers were requested to assess a minimum of five students using
the initial FG-M checklist and provide feedback on its items for the pilot phase. During this
evaluation, it was observed that three of the items led to confusion among the teachers. Con-
sequently, these items were revised to enhance clarity.

Testing the Quality of the Initial FG-M Checklist

Participants. The study encompassed 1018 first-grade students enrolled in elementary schools
located in Mashhad, Iran. The educational system in Mashhad is divided into eight well-defined
educational districts, ranging from District 1 to District 7, alongside an additional area known as

Figure 1. Hierarchical model of cognitive attributes of FG-M.
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Tabadkan. To ensure comprehensive coverage, five classrooms were randomly selected from each
district, resulting in the incorporation of a total of 41 classrooms in the study. A systematic
sampling approach was used to ensure equitable representation across all districts. Once the
specific classes were identified, teachers were requested to assess their respective students’
mathematical competencies using the FG-M checklist. Detailed information about the descriptive
statistics for these 1018 students is provided in Table 3.

Instruments

FG-M Checklist

The initial FG-M checklist was utilized to evaluate the mathematical proficiency of first-grade
students. This checklist encompassed a total of 74 items, each with a scoring system of 0 to 1. As a
result, by the conclusion of the 2022–2023 academic year, the teacher conducted an assessment of
their students’ mathematical skills using the FG-M checklist criteria. A score of 1 indicated that a
student had exhibited full competence across all attributes measured by the item, whereas a score
of 0 indicated that mastery was lacking in at least one attribute. These evaluations were conducted
through individualized interviews, with an average duration of approximately 20 minutes per
student. The collected data from the checklist encompassed the cumulative test score, the pro-
ficiency levels displayed across 9 cognitive attributes, and the corresponding probabilities of
mastery for each of these attributes. The arrangement of mastery across attributes was depicted in a
binary vector format, with a “1” denoting successful mastery by the first-grade students and a “0”
indicating non-mastery. The average likelihood of mastery was computed through a model-data
fitting analysis, utilizing the chosen CDM, which accurately represented the mastery status of the
9 cognitive attributes.

The Arithmetic Subtest of the WISC-IV

The Arithmetic Subtest of the WISC-IV is a key component of this cognitive assessment tool,
designed for children aged 6 to 16. The WISC-IV consists of 15 scales: 10 primary scales and
5 supplementary scales. Each subscale is standardized with a mean score of 10 and a standard
deviation of 3. The overall evaluation yields a general intelligence score, along with four specific
indexes: verbal comprehension, conceptual reasoning, processing speed, and working memory.
The full-scale IQ for the WISC-IV is 100, with a standard deviation of 15. The validity of the

Table 3. The Descriptive Statistics of the 1018 First-Graders.

Educational districts Total N Girl N Boy N Age M Age SD ANSC

Districts 1 134 65 69 88.89 5.61 26.83
Districts 2 132 69 63 86.02 4.34 26.51
Districts 3 119 59 60 81.68 3.67 24.01
Districts 4 117 61 56 80.98 2.01 23.41
Districts 5 129 63 66 89.06 2.80 25.83
Districts 6 123 65 58 79.98 2.04 24.61
Districts 7 120 58 62 84.27 4.09 24.01
Tabadkan districts 144 69 75 88.91 5.83 28.89

N: number, M: mean, SD: standard deviation, ANSC: Average Number of Students in each Class. The age mean is based on
the months.
Note. Age is reported in months. All students were between 6.5 and 7.5 years of age.
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WISC-IV’s scores is well-established, with factor analyses consistently supporting its four-factor
model. Furthermore, the WISC-IV scores demonstrate strong correlations with the scores of other
intelligence tests (e.g., Kaufman Assessment Battery for Children, Second Edition (KABC-II) and
Differential Ability Scales), highlighting its robust convergent validity (Baron, 2005; Watkins &
Canivez, 2022). In this study, the Arithmetic Subtest of the WISC-IV was specifically used to
assess the convergent validity of the scores from the FG-M checklist. This subtest, which
contributes to the Working Memory domain, plays a key role in evaluating children’s cognitive
abilities. In the present study, the Persian version of the WISC-IV was used. This version was
adapted and validated by Hassanpur and Minaei (2018) at the request of the Iranian Ministry of
Education for Persian-speaking children. The adaptation process involved translating the test
items from English to Persian and making necessary cultural adjustments to ensure the items were
contextually appropriate for Iranian students. The translated version underwent pilot testing with a
sample of Persian-speaking children to assess its reliability and validity. The results confirmed that
the adapted version preserved the psychometric integrity of the original WISC-IV.

Data Analysis

In our research, selecting the appropriate model in the CDA process is critical yet complex,
particularly due to the debate over whether fundamental mathematical skills at the elementary
level are conjunctive or disjunctive. This study assessed the fit of three models—GDINA, DINA,
and DINO—to determine the best alignment with our data, focusing on identifying the most
suitable CDMs for evaluating first-grade students’ mathematical abilities. Parameters were es-
timated using the GDINA R package (Ma et al., 2016). We utilized both absolute and relative fit
indices to assess model suitability. Absolute fit indices, including the mean absolute difference for
item-pair correlations (MADcor), the mean residual covariance (MADRES), standardized root
mean square residual (SRMSR), and Max χ2, measure how well a model fits the data inde-
pendently, with lower values indicating a better fit. If the null hypothesis is rejected (p < .05), the
reduced model is rejected. If multiple reduced models are retained and DINA or DINO is among
them, the model with the largest p-value is selected. If neither DINA nor DINO is retained, the
reduced model with the largest p-value is chosen. Notably, when several reduced CDMs have
p-values larger than .05, DINA or DINO are preferred due to their statistical simplicity (Rupp &
Templin, 2008). Relative fit indices, including �2 log-likelihood, Akaike information criterion
(AIC), and Bayesian information criterion (BIC), compare the fit of different models. Model
selection criteria focused on lower AIC, BIC, and �2 log-likelihood values, better absolute fit
indices, and higher p-values for Max χ2. Following model selection, root mean square error of
approximation (RMSEA) indices were used to assess item alignment with the selected model.
Items with an RMSEA value above 0.1 indicate a poor fit, those with values between 0.05 and
0.1 suggest a moderate fit, and items with a value below 0.05 are considered to have a good fit with
the model (Kunina-Habenicht et al., 2009).

Classification consistency is an important measure that indicates whether a person would be
assigned to the same category if they were to retake the same test or its parallel form. To evaluate
classification accuracy and consistency, this study used a cut-off of 0.60, based on established
guidelines for CDAs to ensure a balance between reliability and practical applicability (Rupp &
Templin, 2008). The rationale for selecting the 0.60 cut-off is grounded in the need to ensure that
the classifications are both reliable and interpretable, reflecting a reasonable threshold for ac-
ceptable levels of accuracy and consistency in educational assessments. This threshold helps to
ensure that the classifications provide meaningful insights into students’ cognitive strengths and
weaknesses without being overly stringent, which could exclude potentially useful items. The
algorithms did not explicitly account for chance in computing classification consistency and
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accuracy. For convergent validity evidence, the correlation between the checklist’s scores and the
scores from the Arithmetic Subtest of the WISC-IV was calculated. In pursuit of another research
objective, the study utilized the expected a posteriori (EAP) method to gauge the likelihood of
each participant’s proficiency in various skills. Individuals exceeding a mastery probability of
0.6 were classified as “mastered,” while those falling below this threshold were deemed “non-
mastered” (Embretson & Reise, 2013). Eventually, to illustrate the utility of CDMs, we presented
a few student profiles as examples of individual-level learning profiles.

Missing data were handled using the expectation-maximization (EM) algorithm, which es-
timated missing values based on observed data, reducing bias and preserving dataset integrity.
Sensitivity analyses compared results with and without imputed values, ensuring robustness. An
expert panel reviewed the imputed data and analyses, validating the methods. This comprehensive
approach ensured the accuracy and reliability of the FG-M checklist findings.

Results

Model Selection

Detailed results, including absolute fit indices for assessing model-data fit and relative fit indices
for model comparisons, can be found in Tables 4 and 5, respectively.

In this study, the GDINA model demonstrates a superior fit compared to both the DINA and
DINO models. Notably, the DINA conjunctive model, as indicated by the significant p-value for
the Max χ2 index, exhibits a poor fit. Furthermore, the�2 log-likelihood for the GDINA model is
lower than that of the DINA and DINO models. However, the values for the DINO are acceptable
and closer to those of the GDINA. Theoretically, general CDMs invariably exhibit superior data fit
compared to reduced CDMs due to their more intricate parameterization. However, the preference
for saturated models is not unequivocal. One reason is that general CDMs necessitate larger
sample sizes for precise estimation. Another reason is that reduced CDMs are more straight-
forward and easier to interpret, provided that their fit is not significantly inferior. Consequently, the
DINOmodel which had a comparable fit to the GDINA is the simplest model fitting the data in the
present study.

Item Fit

Table 6 displays the RMSEA indexes, which are used to assess how well the items align with the
DINO model.

Referring to Tables 6, it was observed that six items, 6, 21, 30, 50, 51, and 56, had RMSEA
values greater than 0.05. As a result, the research team decided to exclude these items from the FG-
M checklist. All other items demonstrated a strong alignment with the DINO model. The removal
of the six items, due to their poor RMSEA values, has not adversely affected the desired rep-
resentation between items and attributes in the FG-M checklist. Each attribute remains sufficiently

Table 4. The Absolute Fit Indices for the FG-M.

MADcor MADRES SRMSR Max χ2 P

GDINA 0.0056 0.0051 0.0079 4.6035 0.99
DINA 0.0753 0.0526 0.0931 702.085 0.000
DINO 0.0143 0.0262 0.0286 38.428 0.513
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measured by at least three items, allowing the checklist to continue offering valuable diagnostic
insights for targeted instructional interventions.

Classification Consistency and Accuracy

In this study, all skills demonstrated consistency and accuracy indices exceeding 0.60 (Table 7).
This suggests that the classifications are quite reliable and dependable. Notably, the “Cardinality

Table 5. The Relative Fit Indices.

�2 log-likelihood BIC AIC

GDINA �22439.47 43732.29 41702.95
DINA �26068.67 55701.30 51455.34
DINO �22980.67 51725.31 48479.34

Table 6. Item Fit Indices for FG-M Items.

ITEM RMSEA ITEM RMSEA ITEM RMSEA ITEM RMSEA ITEM RMSEA

1 0.0423 16 0.0236 31 0.0441 46 0.0446 61 0.0254
2 0.0264 17 0.0422 32 0.0445 47 0.0432 62 0.0234
3 0.0436 18 0.0421 33 0.0420 48 0.0442 63 0.0306
4 0.0326 19 0.0324 34 0.0432 49 0.0382 64 0.0333
5 0.0342 20 0.0343 35 0.0421 50 0.0953 65 0.0126
6 0.1495 21 0.0644 36 0.0421 51 0.0945 66 0.0345
7 0.0421 22 0.0406 37 0.0424 52 0.0431 67 0.0353
8 0.0255 23 0.0334 38 0.0443 53 0.0413 68 0.0412
9 0.0255 24 0.0433 39 0.0436 54 0.0241 69 0.0424
10 0.0414 25 0.0431 40 0.0320 55 0.0351 70 0.0426
11 0.0345 26 0.0403 41 0.0443 56 0.0944 71 0.0435
12 0.0343 27 0.0302 42 0.0330 57 0.0441 72 0.0424
13 0.0343 28 0.0426 43 0.0364 58 0.0403 73 0.0431
14 0.0404 29 0.0341 44 0.0445 59 0.0434 74 0.0405
15 0.0245 30 0.0744 45 0.0413 60 0.0265

Table 7. Classification Consistency and Accuracy Indices.

Cognitive attributes Consistency Accuracy

Cardinality concept 0.933 0.921
Addition concept 0.872 0.798
Subtraction concept 0.743 0.731
Multiplication concept 0.821 0.797
Hour concept 0.691 0.684
Weight concept 0.716 0.701
Statistics concept 0.814 0.805
Symmetry concept 0.748 0.737
Geometry concept 0.731 0.713
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Concept” feature exhibited the highest accuracy, while the “Concept of Weight” feature had the
lowest accuracy among the skills assessed.

Regarding convergent validity evidence, the scores from the FG-M checklist displayed a strong
correlation of .78 with the Arithmetic Subtest of the WISC-IV.

The Strengths and Weaknesses of the Participants

The classification divided participants into two distinct groups: “mastered” and “non-mastered.”
The study then determined the frequency and percentage of individuals in each group, along with
their corresponding skill sets. These results are compiled and presented in Table 8.

According to the data presented in Table 8, the mastery levels of participants were evaluated
using the FG-M checklist. The percentages of participants who demonstrated mastery across nine
attributes, namely, Concepts of Cardinality, Addition, Subtraction, Multiplication, Hour, Weight,
Statistics, Symmetry, and Geometry, were 72.79, 68.17, 57.66, 46.45, 18.70, 61.00, 62.57, 40.1,
and 35.26, respectively. Based on the provided data, it can be inferred that the participants’ notable
strength lies in their grasp of the cardinality concept. Conversely, their relative weakness is evident
in their understanding of the hour concept.

Individual-Level Learning Profiles

One of the key advantages of the CDM is its ability to generate detailed individual-level learning
profiles. These profiles provide insights into each student’s specific cognitive strengths and
weaknesses, enabling targeted feedback and personalized interventions. Below are graphical
representations of the learning profiles of three students, showcasing their mastery of various
cognitive attributes. Each profile is depicted in a radar chart, where each axis represents a different
cognitive attribute, and the value indicates the level of mastery (ranging from 0 to 1).

Referring to Figure 2, Student A demonstrates high mastery in most cognitive attributes,
particularly in the Cardinality and Addition Concepts. However, there is room for improvement in
the Hour Concept and Weight Concept. This profile suggests that while Student A excels in
numerical operations, targeted interventions could be beneficial in enhancing their understanding
of time and measurement concepts. Student B shows moderate mastery across various attributes,
with notable strengths in the Hour Concept and Multiplication Concept. The lower scores in
Addition and Subtraction Concepts indicate a need for focused practice and instruction in basic

Table 8. The Frequency and Percentage of the “Master” and “Non-Master” Persons in Each Skill.

Skills

Master Non-master

Frequency Percentage Frequency Percentage

Cardinality concept 741 72.79 277 27.21
Addition concept 694 68.17 324 31.83
Subtraction concept 587 57.66 431 42.34
Multiplication concept 473 46.45 545 53.54
Hour concept 394 18.70 624 61.29
Weight concept 621 61.00 397 39.00
Statistics concept 637 62.57 381 37.43
Symmetry concept 409 40.17 609 59.82
Geometry concept 359 35.26 659 64.73
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arithmetic operations. By identifying these specific areas, educators can tailor their teaching
strategies to address Student B’s weaknesses more effectively. Student C’s profile reveals a
balanced but lower overall mastery across the cognitive attributes compared to Students A and
B. The highest mastery is observed in the Statistics Concept, whereas other areas such as
Multiplication and Geometry Concepts are relatively weak. This balanced yet lower mastery
profile suggests a need for comprehensive support across multiple areas, potentially through a
more individualized learning plan that addresses multiple concepts simultaneously.

Discussion

The primary objective of this study was to develop an instrument for evaluating the mathematical
abilities of first-graders using the CDA approach. By leveraging CDA, the study aimed to offer
more precise and comprehensive insights into the mathematical capabilities of children, providing
valuable information for future studies in early childhood education.

In developing the FG-M checklist, we identified nine cognitive attributes related to the
mathematical abilities of first-graders through educational content, research findings, and expert
insights in early mathematics. These attributes are documented in Table 2. Establishing hier-
archical relationships among these attributes to form the Q-matrix was a crucial step.

In this study, the GDINA model fits the data better than both the DINA and DINO models.
However, the DINO model’s fit is acceptable and closely aligns with the GDINA. General CDMs
typically offer better data fit due to their complex parameterization, but they require larger sample
sizes for accurate estimation and are more difficult to interpret. Reduced CDMs, like the DINO,
are easier to interpret if their fit is close to that of the more complex models. Therefore, in this

Figure 2. Learning profiles of three example students.
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study, the DINO model, which fits comparably to the GDINA, is the simplest model that ade-
quately fits the data. The fitting of first-graders’ mathematics abilities with the DINO model
highlights the disjunctive nature of mathematical skill acquisition at this early stage of education.
The DINO model assumes that mastering a single requisite skill can compensate for the lack of
others in successfully solving a problem. This aligns well with the developmental characteristics
of first-graders, who often demonstrate uneven mastery across different mathematical domains.
Previous studies have shown that young children frequently leverage various intuitive strategies
and partial knowledge to arrive at correct answers (Carpenter et al., 1999; Hoffman & Grialou,
2005), which supports the appropriateness of the DINO model for this age group. For instance,
research has documented similar findings, showing that elementary students often succeed in
problem-solving using partial skill sets rather than complete mastery of all required skills (Hiebert
& Grouws, 2007; Siegler & Opfer, 2003). The congruence of our findings with these studies
suggests that the DINO model effectively captures the cognitive processes underpinning FG-M,
thereby providing a robust framework for diagnosing and supporting early mathematical
development.

The RMSEA indexes were used to evaluate item conformity with the model. Six items were
removed due to poor RMSEA values exceeding 0.05 to improve the overall fit and ensure the
reliability and validity of the scores produced by the assessment tool. Despite this reduction, the
integrity of the FG-M checklist was maintained, with each attribute measured by at least three
items. This approach enhances the precision and effectiveness of the FG-M checklist, ensuring
that only items with strong psychometric properties are included. Classification consistency and
accuracy were thoroughly examined, confirming the reliability of all identified skills. The findings
highlighted participants excelled in cardinality, addition, subtraction, weight, and statistics
concepts, while showing weaknesses in multiplication, hour, symmetry, and geometry concepts.
Consequently, it is imperative for the FG-M curriculum to capitalize on students’ strengths while
addressing and reinforcing weaker areas.

The individual learning profiles generated by the CDM offer several advantages. They enable
educators to provide targeted feedback based on each student’s unique strengths and weaknesses,
rather than relying on generalized test scores. This allows for the design of personalized inter-
ventions tailored to specific needs, leading to more effective learning experiences. The CDM also
enhances instructional planning by identifying common areas of difficulty, guiding resource
allocation and teaching strategies. Additionally, these profiles facilitate monitoring of student
progress, providing clear insights into learning trajectories and intervention effectiveness.

This study’s primary contribution lies in its detailed breakdown of specific knowledge, skills,
and abilities inherent in the mathematical proficiency of first-graders. Unlike existing assessment
tools, such as the Early Numeracy Test-Revised (ENT-R) (Wright et al., 2006), Woodcock-
Johnson IV (Woodcock et al., 2014), and WISC-IV (Wechsler, 2003), which often lack clarity in
pinpointing specific dimensions of mathematics being assessed, the FG-M checklist provides a
comprehensive evaluation of each student’s mathematical abilities. This two-fold reporting
strategy offers a fundamental building block for children’s future advancement in mathematics.

While the scores produced by the FG-M checklist demonstrated strong reliability and validity,
there are limitations to this study. The use of a cognitive checklist rather than a comprehensive
cognitive test may limit the depth of assessment. Although the checklist covers the entire FG-M
curriculum, using a cognitive test to cover all educational content is impractical for young children
due to potential fatigue. Therefore, it is advisable to assess the reliability of the checklist through
the integration of alternative measurement methods.

In summary, the FG-M checklist is a robust tool for assessing first-graders’ mathematical
skills, offering detailed insights that facilitate targeted feedback and personalized interventions.
Future research should focus on further validating the scores generated by this instrument and

16 Journal of Psychoeducational Assessment 0(0)



exploring additional methods to enhance their reliability and applicability in various educational
settings.
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