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Abstract In this study, we explore the transformation of
Dp-branes to Dp−1-branes under T-duality when the D-
brane is embedded in a spacetime with a boundary. Our goal
is to derive the higher-derivative corrections to the Dirac–
Born–Infeld (DBI) Lagrangian for both the bulk and bound-
ary terms. For the bulk terms, we calculate the α′ corrections
for the massless open string fields, up to the 8th order in
the dimensionless Maxwell field strength. We demonstrate
that the bulk Lagrangian can satisfy the T-duality constraint
without residual total derivative terms in the base space. This
determines the most general independent couplings of the
massless open string fields in the bulk Lagrangian, encom-
passing 145 coupling constants, up to three parameters. Two
of these parameters are physical and are determined by disk-
level S-matrix elements, while the third is unphysical and can
be eliminated by field redefinitions and integration by parts.
The final result for the bulk Lagrangian consists of 49 cou-
plings. For the boundary terms, the application of T-duality
symmetry to massless open and closed string fields enables
us to extend the DBI Lagrangian to include the boundary unit
normal vector field nμ and its first derivative.

1 Introduction

The effective spacetime Lagrangian of string theory on a
background M(D) with a codimension-1 boundary ∂M(D)

exhibits an infinite expansion in powers of the string ten-
sion parameter α′ for both the bulk and boundary Lagrangian
terms. Similarly, the effective world-volume Lagrangian of
the non-perturbative Dp-brane objects in this background
also displays an infinite α′ expansion for their bulk and
boundary world-volume Lagrangian terms. These effective
Lagrangians can be derived by exploring the various space-
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time symmetries inherent to string theory or by using the
world-sheet non-linear sigma model. The resulting expres-
sions must also be consistent with the principle of stationary
action, subject to the appropriate boundary conditions.

One of the most important symmetries that appears in all
string theories, after compactifying them on the torus T d ,
is T-duality [1,2]. It has been argued [3,4] that the dimen-
sional reduction of the classical effective action of string the-
ory on tori are invariant under O(d, d, R) transformations at
all orders of α′. For circular reduction, a non-geometric sub-
group of O(1, 1, R) which is a Z2-group may be used to con-
struct the covariant effective action or effective Lagrangian
at any order of α′ in terms of a few unfixed parameters [5–7].
For the torus reduction, the O(d, d, R) symmetry excludes
some covariant couplings in the base space. This constraint
may also be used in determining the covariant couplings in
the parent theory [8,9]. Furthermore, a non-geometric aspect
of O(D, D, R) symmetry, known as β-transformation, has
been employed in [10–13] to determine the coupling con-
stants without relying on dimensional reduction.

The circular reduction of non-perturbative Dp-brane
objects transforms covariantly under the Z2-group. When
a Dp-brane is along a circle, the world-volume reduction
of its Lagrangian should transform under T-duality to the
transverse reduction of a Dp−1-brane Lagrangian [14]. This
is provided that the circular reduction does not break the
diffeomorphism symmetry of the parent couplings. In other
words, the circular reduction must have aU (1)×U (1) gauge
symmetry, where the first U (1) corresponds to the momen-
tum vector and the second U (1) corresponds to the winding
momentum. This symmetry always exists for the circular
reduction of the covariant spacetime actions, whereas it may
not exist for the circular reduction of covariant Dp-brane
actions in the static gauge for a general base space back-
ground [15,16].

Assuming that the coupling constants in the effective
Lagrangians of string theory at the critical dimension are
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background independent [17,18], we can consider a par-
ticular background with a circle in both the bulk and the
boundary, i.e., M(D) = M(D−1) × S(1) and ∂M(D) =
M(D−2) × S(1). The coupling constants for this background,
which can be found by T-duality, should be the same as
the coupling constants for any other background. The back-
ground independence also dictates that both the bulk and
boundary Lagrangians should separately satisfy the T-duality
constraints. The bulk Lagrangian should be the same for
a spacetime with or without a boundary. Both should be
invariant under T-duality. The T-duality of the Lagrangian
in spacetime with a boundary then dictates that the bound-
ary Lagrangian should also be invariant under T-duality.
This T-duality symmetry can be imposed as a constraint on
the most general independent covariant and gauge-invariant
Lagrangian with arbitrary coupling constants. Requiring the
Lagrangian to be invariant under the Z2 transformation can
fix or determine the arbitrary coupling constants.

When the spacetime has no boundary, the T-duality trans-
formations can be applied to the effective actions, and the
total derivative terms can be safely ignored. In this case, the
T-duality constraint has been used to fix the Neveu–Schwarz–
Neveu–Schwarz (NS-NS) couplings up to order α′3 [5–7] and
to fix the NS-NS and Yang–Mills (YM) couplings in the het-
erotic theory up to order α′2 [19–22]. Building on the above
arguments, for the case where the spacetime has a bound-
ary, one expects that by adding certain total derivative terms
to the effective actions found in [5–7,19–22], one should be
able to extend them to bulk Lagrangians that are invariant
under T-duality without ignoring any total derivative terms
in the base space. Such Lagrangians at order α′ have been
found in [23]. Then, one expects the boundary Lagrangians
at any order of α′ to be also separately invariant under the T-
duality transformation. This constraint may fix the boundary
couplings as well. The final bulk and boundary Lagrangian
should be consistent with the principle of stationary action,
subject to the appropriate boundary conditions.

At the leading order of α′, it has been shown in [24] that
the following Lagrangian is invariant under T-duality:

L(0) = − 2

κ2 e
−2�

√−G

×
(
R − 4∇μ�∇μ� − 1

12
H2 + 4∇μ∇μ�

)
, (1)

which is the leading order effective action of string theory,
up to a total derivative term. At the leading order of α′, it has
been shown in [25] that the following boundary Lagrangian
is also invariant under the T-duality transformation:

∂L(0) = − a

κ2 e−2�
√|g| (−K + 2nμ∇μ�

)
, (2)

wherea is an unfixed parameter,nμ is the unit vector,nμnμ =
1, normal to the boundary, and K is the trace of the extrinsic

curvature of the boundary

Kμν = ∇μnν − nμn
ρ∇ρnν . (3)

The boundary couplings (2) are consistent with the princi-
ple of stationary action under Dirichlet boundary conditions
when a = −4 [26]. The same number a = −4 can also be
found by imposing the condition that the combination of bulk
and boundary actions is invariant under the T-duality [25]. A
similar idea has been used in [27] to find the boundary term
by the world-sheet non-linear sigma model and found one-
half of the Gibbons–Hawking–York term [30,31]. At higher
orders of α′, one should impose appropriate boundary con-
ditions on the massless fields and their derivatives, as well as
appropriate field redefinitions, in order to satisfy the principle
of stationary action [28,29]. However, we are not interested
in exploring these higher-order considerations in the present
work.

In this paper, we aim to study the bulk and boundary world-
volume Lagrangians for Dp-branes. The reason that both the
bulk and boundary world-volume Lagrangians should sepa-
rately satisfy the T-duality constraint is that we may consider
the particular case where the Dp-brane is entirely along the
boundary, i.e., ∂M(D) = M(p+1) ×M(D−p−2) and the Dp-
brane is along the subspace M(p+1). In this case, there is
only a boundary world-volume Lagrangian, which must still
satisfy the T-duality constraint. Hence, for the general case
where the Dp-brane is extended in the bulk and ends on the
boundary, requiring both the bulk and boundary Lagrangians
to separately satisfy T-duality is necessary. In [15,32], the T-
duality constraint has been applied to the combination of
bulk and boundary world-volume actions to determine spe-
cific world-volume boundary couplings.

The bulk Lagrangian at leading order in α′ is given by the
DBI Lagrangian [33,34]

Lp
(0) = −Tp

√
−det(G̃ab + Fab) , (4)

where Tp is the tension of the Dp-brane, Fab is the field
strength of the Maxwell gauge field Aa(σ ), and G̃ab is the
pull-back of the bulk metric onto the world-volume, i.e.,

G̃ab = ∂a X
μ∂bX

νGμν, (5)

where Xμ(σ ) is the spacetime coordinate that specifies the
Dp-brane in the spacetime, and Gμν is the spacetime met-
ric that we assume to be diagonal and constant in this
Lagrangian. We also assume the B-field and dilaton are
zero in this Lagrangian, hence, the circular reduction has no
momentum and winding gauge fields, i.e., its circular reduc-
tion has a U (1) ×U (1) symmetry. Since the gauge field Aa

and the world-volume field Xμ are related to each other by the
T-duality transformation, we have normalized the gauge field
Aa to have the same dimension as the world-volume field
Xμ. With this normalization, the action above is at leading
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order in α′. The world-volume reduction of the above Dp-
brane Lagrangian transforms to the transverse reduction of
the Dp−1-brane Lagrangian under T-duality transformations
(see e.g. [35]).1 The α′ corrections to the above DBI action
have been studied in [36–43].

There is an infinite number of F terms in the α′ correc-
tions to the above Lagrangian. The corrections up to the
8th order in F for the bulk effective action, ignoring total
derivative terms, have been found in [42] by T-duality. In
deriving these results, one first removes the redundant terms
due to Xμ- and Aa-field redefinitions, as well as integration
by parts, from the most general gauge-invariant couplings
to find an independent basis with arbitrary coupling con-
stants. Then, one uses T-duality to fix the coupling constants
up to two unfixed parameters. The two parameters are also
fixed by the disk-level four-point function. It turns out that
by adding some total derivative terms to the effective world-
volume action found in [42], one cannot find the effective
world-volume Lagrangian that would be invariant under the
T-duality. This is unlike the spacetime effective Lagrangians
that can be found by adding some total derivative terms to
the spacetime effective action. However, the world-volume
Lagrangian should also satisfy the T-duality constraint.

To find the world-volume Lagrangian using T-duality, we
observe that T-duality is satisfied only by the basis in which
the terms related to each other by Xμ-field redefinition are
not removed. In this paper, among other things, we will find
the effective Lagrangian of massless open string fields up to
8th order in F by first finding the basis in which the redundant
terms from only the gauge field redefinitions are removed,
and then imposing T-duality to determine their correspond-
ing coupling constants. We find that the couplings are fixed
up to three parameters. One of them can be removed by field
redefinition and integration by parts, and the other two param-
eters are physical which can be fixed by disk-level four-point
S-matrix element or by comparing with the effective action
found in [42].

To explore the boundary world-volume Lagrangian, we
examine the case where the Dp-brane is entirely along the
boundary. In this setup, there exists an additional vector field
na = ∂a Xμnμ in addition to the massless fields in the DBI
Lagrangian. Our objective is to incorporate this vector field
and its first derivative in the DBI Lagrangian. We will demon-
strate that the T-duality of the massless open and closed string
fields determines the following boundary Lagrangian:

∂Lp = −Tp e
−�

√
−det(G̃ab+ B̃ab+Fab−2

√
α′∂a Xμ∂bXν(−Kμν +2nμ∂ν�)). (6)

1 To ensure full symmetry, including the brane tension, the correspond-
ing action should be invariant under T-duality. However, in this paper,
we will not employ any integration by parts.

In proving the T-duality of the above Lagrangian, we consider
a particular background for the massless closed string fields,
where the circular reduction respects the U (1) ×U (1) sym-
metry. Some parts of the above Lagrangian have already been
found in [15] through an analysis of the T-duality of massless
closed string fields. The inclusion of higher-derivative terms
of nμ, such as ∇K , presumably involves an infinite number
of F terms that may not be written in a compact form like
the Lagrangian above. We are not interested in such cou-
plings for this paper. However, the higher-order couplings
that do not involve the vector nμ are those that appear in
the bulk world-volume Lagrangian, which we anticipate to
find at order α′. In other words, the boundary world-volume
Lagrangian includes all couplings in the bulk Lagrangian as
well as other couplings involving the vector field nμ.

The outline of the paper is as follows: In Sect. 2, we study
the bulk Lagrangian at order α′ up to 8th order of F . In Sect.
2.1, we contract all contractions of F,∇F,∇∇F , and the
second fundamental form 
 at order α′ and remove from
them the redundant terms from Aa-field redefinition and the
Bianchi identity to find 145 independent terms. In Sect. 2.2,
we impose the T-duality constraint on these couplings and
fix all 145 coupling constants in terms of three parameters.
These couplings should be the same as the effective actions
that have been found in [42] up to some total derivative terms
and Xμ- and Aa-field redefinitions. This fixes two of the three
parameters. The remaining parameter is unphysical and can
be removed by the most general field redefinitions and inte-
gration by parts. The final world-volume Lagrangian has 49
couplings. In Sect. 3, we study the T-duality of the boundary
Lagrangian (6). In Sect. 4, we briefly discuss our results. We
use the Mathematica package xAct [44] for performing the
calculations in this paper.

2 Bulk Lagrangian

It is known that the bulk Lagrangian (4) is consistent
with the T-duality transformations (see e.g. [35]). To pre-
pare our notation for the later sections, we perform a
similar calculation here. We consider a specific back-
ground with a circular dimension. That is, the mani-
fold M (D) has the structure M (D) = M (D−1) × S(1),
where M (D−1) is thesuch structures as non-circular part
and S(1) is the circular dimension. The coordinates of
M (D) are xμ = (x μ̃, y), where x μ̃ are the coordinates of

M (D−1) and y is the coordinate of S(1). All massless fields
are independent of y. There are two reductions of the world-
volume action on the circular dimension:
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1. When the Dp-brane is along the circle, the world-volume
indices split as a = (ã, y), and the spacetime coordinate
field splits as Xμ(σ ) = (X μ̃(σ ), y). The resulting reduc-
tion of the Lagrangian is denoted as Lw

p .
2. When the Dp-brane is orthogonal to the circle, the world-

volume indices do not split, i.e., a = ã, and the spacetime
coordinate field splits as Xμ(σ ) = (X μ̃(σ ), X y(σ )). The
corresponding reduction of the Lagrangian is denoted as
Lt
p.

These two reductions are not identical. However, the trans-
formation of Lw

p under the T-duality transformations

Ay → X y ≡ S,

Aã → Aã,

X μ̃ → X μ̃, (7)

which is called LwT
p−1, should be the same as Lt

p−1. One can
easily find that for the following reduction for the metric:

Gμν =
(
gμ̃ν̃ 0
0 1

)
, (8)

where gμ̃ν̃ is the constant base space metric and 1 is the radius
of the circle, the reductions Lw

p and Lt
p−1 for the Lagrangian

in (4) are

L(0)w
p = −Tp

√
−det(g̃ãb̃ + Fãb̃ + ∂ã Ay∂b̃ Ay),

L(0)t
p−1 = −Tp−1

√
−det(g̃ãb̃ + Fãb̃ + ∂ã S∂b̃ S), (9)

where in the first line we have used the fact that ∂y y = 1 and
∂ã y = 0. The pull-back metric in the base space is

g̃ãb̃ = ∂ã X
μ̃∂b̃ X

ν̃gμ̃ν̃ . (10)

The transformation of the first line under the T-duality trans-
formations (7) becomes identical to the second line above.

The leading-order DBI action (4) has an infinite number
of field strengths F which appear in a compact form under
the square root of the determinant. There are also an infi-
nite number of F terms at each α′ correction to the DBI
action. Presumably, these higher-order terms cannot be writ-
ten in a compact form as in the DBI action, which may be
a consequence of the fact that at higher orders of α′, the T-
duality transformations (7) receive higher-derivative correc-
tions. However, T-duality still helps us to find the α′ correc-
tions to the DBI action (4) and the T-duality transformations
(7). In order to find such corrections, one should first find
all independent gauge-invariant couplings at each order of
α′ with arbitrary coupling constants, and then impose the T-
duality transformations, which involve some arbitrary gauge-
invariant corrections to (7), to determine the coupling con-
stants of the independent terms and the arbitrary parameters
of the T-duality transformations. In fact, one can do the same
calculation for the leading-order couplings as well. That is,

if one considers all couplings involving F with their indices
contracted with the inverse of the pull-back metric G̃ab, and
then requires them to be invariant under the T-duality trans-
formations (7), one finds that all coupling constants are fixed
and produce the expansion of the DBI action (4).

At higher orders of α′, however, it is non-trivial to find
independent couplings in the Lagrangian because there are
freedoms of field redefinitions, and also since the couplings
involve derivatives of F and 
 which satisfy their corre-
sponding Bianchi identities, there are freedoms of using
Bianchi identities. In the next section, we will find such inde-
pendent couplings at order α′.

2.1 Independent basis

In this section, we will find the independent covariant and
gauge-invariant couplings at order α′ which involve at most
eight gauge fields and/or the second fundamental form. We
use the method introduced in [46,47] to find the independent
terms. The independent couplings are all gauge-invariant
couplings, modulo the field redefinitions and the following
Bianchi identities:

∇[a Fbc] = 0,


ab
μ∂cX

νGμν = 0, (11)

where the second fundamental form is defined as in [45]:


ab
μ = ∇a∂bX

μ. (12)

The covariant derivative is constructed from the pull-back
metric given in (5). Using the second identity in (11), one
finds that there is a scheme in which ∂X can appear only
through the pull-back metric (5) and its inverse. For example,
the coupling ∇
∂X can be written as −

, which can easily
be verified by taking the covariant derivative of the above
identity. Hence, we use the scheme in which the couplings
involve only the contractions of F , 
, and their covariant
derivatives. There are 12 such structures as

L′(1)
p = −Tpα

′
√
−det(G̃ab+Fab)

[

2(1 + F2+F4+F6)

+(∇F)2(1 + F2 + F4 + F6)

+∇∇F(F + F3 + F5 + F7)
]
. (13)

If one considers all contractions of each structure with the
inverse of the pull-back metric, one finds there are 332 cou-
plings in the above Lagrangian. We call the coupling con-
stants of these couplings a′

1, a
′
2, . . . , a

′
332. However, they are

not all independent couplings. Since we are going to find
a Lagrangian that is invariant under T-duality without any
residual total derivative terms in the base space, we should not
remove the couplings in the above Lagrangian that are related
by total derivative terms. It turns out that if one removes the
terms in the above Lagrangian that are related by Xμ-field
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redefinition, then the T-duality is satisfied up to some resid-
ual total derivative terms in the base space. Hence, we do not
remove the terms in the above Lagrangian that are related by
the Xμ-field redefinition either.

We are allowed to use only Aa-field redefinition, i.e.:

Aa → Aa + √
α′δAa . (14)

There are 4 structures ∇F(1+F2+F4+F6) for constructing
the vector δAa . If one considers all contractions of these
structures with arbitrary parameters, one would find 47 terms
in δAa . On the other hand, the leading order Lagrangian (4)
under the above field redefinitions produces the following
couplings at order α′:

δL(0)
p = −Tpα

′

2

√
−det(G̃ab + Fab)Tr

[
(G̃ + F)(−1)δF

]
,

(15)

where δFab = ∇aδAb−∇bδAa , and the trace is imposed after
expanding (G̃ + F)−1. One should expand the term inside

the bracket, i.e. Tr
[
(G̃ + F)(−1)δF

]
and consider only the

terms up to 8th order of F . Note that since there is a DBI
factor in both the Lagrangian (13) and in the above equation,
we do not expand the DBI factor. Adding these contributions
to the Lagrangian (13), one finds the result is the same as the
Lagrangian (13) but the coupling constants are changed. If
one calls the new coupling constants a1, a2, . . . , a332, then
one finds:

�L(1)
p + δL(0)

p = 0, (16)

where �L(1)
p is the same as (13) with coupling constants

�a1, . . . ,�a332 where �ai = a′
i − ai . Since both terms

above have the DBI factor, one can write it as√
−det(G̃ab + Fab)�L = 0. (17)

The DBI factor is not zero; hence, the solution of the above
equation is the same as the solution of the following equation:

�L = 0. (18)

To solve the above equation, one has to impose the first
Bianchi identity in (11) into it. We impose it by writing the
terms that have a derivative of Fab in terms of the potential
Aa . Then the coefficient of independent terms must be zero,
which produces some algebraic equations between the �ai ’s
and the parameters in the Aa-field redefinitions. We find 145
relations between only �ai ’s, which indicates there are 145
independent couplings in (13). We set the coefficient of all
terms in (13) that have ∇∇F and terms that have ∇a F∇a F
to zero, and find that the algebraic equations still have 145
relations between only �ai ’s, which indicates these terms are
allowed to be zero. We also add some other terms to be zero
such that we find 145 relations �ai = 0. The independent

couplings in the particular scheme that we have chosen are
the following:

L(1)
p = −Tp

√
−det(G̃ab + Fab)

[
a1
abμ
abμ

+a2F
abFcd
ac

μ
bdμ + a3

a
a
μ
b

bμ

+a4Fa
cFab
b

dμ
cdμ

+a5Fa
cFabFd

f Fde
be
μ
c f μ

+a6FabF
ab
cdμ
cdμ

+a7Fa
cFabFb

d Fef 
ce
μ
d f μ

+a8FabF
abFcd Fef 
ce

μ
d f μ

+a9Fa
cFabFb

d Fe
h Fef F f

i
ch
μ
diμ

+a10Fa
cFab
bc

μ
d
dμ

+a11FabF
ab
c

c
μ
d

dμ

+a12Fa
cFabFb

d Fc
e
d

f μ
e f μ

+a13FabF
abFc

eFcd
d
f μ
e f μ

+a14Fa
cFabFb

d Fc
eF f

i F f h
dh
μ
eiμ

+a15FabF
abFc

eFcd F f
i F f h
dh

μ
eiμ

+a16Fa
cFabFb

d Fcd
e f μ
e f μ

+a17FabF
abFcd F

cd
e f μ
e f μ

+a18Fa
cFabFb

d Fc
eFd

f Fhi
eh
μ
 f iμ

+a19FabF
abFc

eFcd Fd
f Fhi
eh

μ
 f iμ

+a20Fa
cFabFb

d Fcd F
ef Fhi
eh

μ
 f iμ

+a21FabF
abFcd F

cd Fef Fhi
eh
μ
 f iμ

+a22Fa
cFabFb

d Fc
e
de

μ
 f
f μ

+a23FabF
abFc

eFcd
de
μ
 f

f μ

+a24Fa
cFabFb

d Fcd

e
e
μ
 f

f μ

+a25FabF
abFcd F

cd
e
e
μ
 f

f μ

+a26Fa
cFabFb

d Fc
eF f

i F f h
de
μ
hiμ

+a27FabF
abFc

eFcd F f
i F f h
de

μ
hiμ

+a28Fa
cFabFb

d Fc
eFd

f Fe
h
 f

iμ
hiμ

+a29FabF
abFc

eFcd Fd
f Fe

h
 f
iμ
hiμ

+a30Fa
cFabFb

d Fcd Fe
h Fef 
 f

iμ
hiμ

+a31FabF
abFcd F

cd Fe
h Fef 
 f

iμ
hiμ

+a32Fa
cFabFb

d Fc
eFd

f Fef 
hiμ
hiμ

+a33FabF
abFc

eFcd Fd
f Fef 
hiμ
hiμ

+a34FabF
abFcd F

cd Fef F
ef 
hiμ
hiμ

+a35Fa
cFabFb

d Fc
eFd

f Fe
h
 f h

μ
i
iμ

+a36FabF
abFc

eFcd Fd
f Fe

h
 f h
μ
i

iμ

+a37Fa
cFabFb

d Fcd Fe
h Fef 
 f h

μ
i
iμ

+a38FabF
abFcd F

cd Fe
h Fef 
 f h

μ
i
iμ

+a39Fa
cFabFb

d Fc
eFd

f Fef 

h
h
μ
i

iμ

+a40FabF
abFc

eFcd Fd
f Fef 


h
h
μ
i

iμ

+a41FabF
abFcd F

cd Fef F
ef 
h

h
μ
i

iμ
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+a42∇a F
ab∇cFb

c

+a43∇bFac∇cFab

+a44F
abFcd∇cFa

e∇d Fbe + a45Fa
cFab∇d Fb

d∇eFc
e

+a46F
abFcd∇cFab∇eFd

e

+a47Fa
cFab∇cFb

d∇eFd
e

+a48FabF
ab∇cF

cd∇eFd
e

+a49F
abFcd∇d Fce∇eFab

+a50F
abFcd∇d Fbe∇eFac + a51Fa

cFab∇cFde∇eFb
d

+a52Fa
cFab∇d Fce∇eFb

d

+a53FabF
ab∇d Fce∇eFcd

+a54Fa
cFabFb

d Fef ∇eFc
h∇ f Fdh

+a55Fa
cFabFd

f Fde∇cFb
h∇ f Feh

+a56Fa
cFabFdeF f h∇ f Fbd∇h Fce

+a57Fa
cFabFdeF f h∇eFbd∇h Fcf

+a58Fa
cFabFb

d Fef ∇ f Fce∇h Fd
h

+a59Fa
cFabFdeF f h∇cFbd∇h Fef

+a60Fa
cFabFb

d Fc
e∇ f Fd

f ∇h Fe
h

+a61FabF
abFc

eFcd∇ f Fd
f ∇h Fe

h

+a62Fa
cFabFd

f Fde∇cFbe∇h F f
h

+a63Fa
cFabFb

d Fef ∇eFcd∇h F f
h

+a64FabF
abFcd Fef ∇eFcd∇h F f

h

+a65Fa
cFabFb

d Fc
e∇eFd

f ∇h F f
h

+a66FabF
abFc

eFcd∇eFd
f ∇h F f

h

+a67Fa
cFabFb

d Fcd∇eF
ef ∇h F f

h

+a68FabF
abFcd F

cd∇eF
ef ∇h F f

h

+a69Fa
cFabFd

f Fde∇ f Fch∇h Fbe

+a70Fa
cFabFb

d Fef ∇ f Feh∇h Fcd

+a71FabF
abFcd Fef ∇ f Feh∇h Fcd

+a72Fa
cFabFb

d Fef ∇d F f h∇h Fce

+a73Fa
cFabFb

d Fef ∇ f Fdh∇h Fce

+a74FabF
abFcd Fef ∇ f Fdh∇h Fce

+a75Fa
cFabFb

d Fc
e∇eF f h∇h Fd

f

+a76FabF
abFc

eFcd∇eF f h∇h Fd
f

+a77Fa
cFabFb

d Fc
e∇ f Feh∇h Fd

f

+a78FabF
abFc

eFcd∇ f Feh∇h Fd
f

+a79Fa
cFabFb

d Fcd∇ f Feh∇h Fef

+a80FabF
abFcd F

cd∇ f Feh∇h Fef

+a81Fa
cFabFb

d Fe
h Fef F f

i∇h Fc
j∇i Fd j

+a82Fa
cFabFb

d Fc
eF f

i F f h∇h Fd
j∇i Fej

+a83Fa
cFabFb

d Fc
eFd

f Fhi∇h Fe
j∇i F f j

+a84FabF
abFc

eFcd Fd
f Fhi∇h Fe

j∇i F f j

+a85Fa
cFabFb

d Fcd F
ef Fhi∇h Fe

j∇i F f j

+a86Fa
cFabFb

d Fc
eF f

i F f h∇eFd
j∇i Fhj

+a87FabF
abFc

eFcd F f
i F f h∇eFd

j∇i Fhj

+a88Fa
cFabFd

f FdeFh
j Fhi∇i Fbe∇ j Fc f

+a89Fa
cFabFb

d Fe
h Fef Fi j∇i Fc f ∇ j Fdh

+a90Fa
cFabFb

d Fe
h Fef Fi j∇h Fcf ∇ j Fdi

+a91Fa
cFabFb

d Fc
eF f h Fi j∇i Fd f ∇ j Feh

+a92FabF
abFc

eFcd F f h Fi j∇i Fd f ∇ j Feh

+a93Fa
cFabFb

d Fc
eF f h Fi j∇h Fd f ∇ j Fei

+a94FabF
abFc

eFcd F f h Fi j∇h Fd f ∇ j Fei

+a95Fa
cFabFb

d Fc
eF f

i F f h∇i Fdh∇ j Fe
j

+a96Fa
cFabFd

f FdeFh
j Fhi∇cFbe∇ j F f i

+a97Fa
cFabFb

d Fc
eFd

f Fhi∇i Feh∇ j F f
j

+a98FabF
abFc

eFcd Fd
f Fhi∇i Feh∇ j F f

j

+a99Fa
cFabFb

d Fc
eF f h Fi j∇eFd f ∇ j Fhi

+a100FabF
abFc

eFcd F f h Fi j∇eFd f ∇ j Fhi

+a101Fa
cFabFb

d Fe
h Fef Fi j∇ f Fcd∇ j Fhi

+a102Fa
cFabFb

d Fc
eFd

f Fe
h∇i F f

i∇ j Fh
j

+a103FabF
abFc

eFcd Fd
f Fe

h∇i F f
i∇ j Fh

j

+a104Fa
cFabFb

d Fcd Fe
h Fef ∇i F f

i∇ j Fh
j

+a105FabF
abFcd F

cd Fe
h Fef ∇i F f

i∇ j Fh
j

+a106Fa
cFabFb

d Fc
eF f

i F f h∇eFdh∇ j Fi
j

+a107FabF
abFc

eFcd F f
i F f h∇eFdh∇ j Fi

j

+a108Fa
cFabFb

d Fe
h Fef F f

i∇h Fcd∇ j Fi
j

+a109Fa
cFabFb

d Fc
eFd

f Fhi∇h Fef ∇ j Fi
j

+a110FabF
abFc

eFcd Fd
f Fhi∇h Fef ∇ j Fi

j

+a111Fa
cFabFb

d Fcd F
ef Fhi∇h Fef ∇ j Fi

j

+a112FabF
abFcd F

cd Fef Fhi∇h Fef ∇ j Fi
j

+a113Fa
cFabFb

d Fc
eFd

f Fe
h∇h F f

i∇ j Fi
j

+a114FabF
abFc

eFcd Fd
f Fe

h∇h F f
i∇ j Fi

j

+a115Fa
cFabFb

d Fcd Fe
h Fef ∇h F f

i∇ j Fi
j

+a116FabF
abFcd F

cd Fe
h Fef ∇h F f

i∇ j Fi
j

+a117Fa
cFabFb

d Fc
eFd

f Fef ∇h F
hi∇ j Fi

j

+a118FabF
abFc

eFcd Fd
f Fef ∇h F

hi∇ j Fi
j

+a119FabF
abFcd F

cd Fef F
ef ∇h F

hi∇ j Fi
j

+a120Fa
cFabFb

d Fe
h Fef F f

i∇i Fhj∇ j Fcd

+a121Fa
cFabFb

d Fe
h Fef F f

i∇i Fd j∇ j Fch

+a122Fa
cFabFb

d Fc
eF f

i F f h∇eFi j∇ j Fdh

+a123Fa
cFabFb

d Fc
eF f

i F f h∇i Fej∇ j Fdh

+a124FabF
abFc

eFcd F f
i F f h∇i Fej∇ j Fdh

+a125Fa
cFabFb

d Fc
eFd

f Fhi∇i Fhj∇ j Fe f

+a126FabF
abFc

eFcd Fd
f Fhi∇i Fhj∇ j Fe f

+a127Fa
cFabFb

d Fcd F
ef Fhi∇i Fhj∇ j Fe f

+a128FabF
abFcd F

cd Fef Fhi∇i Fhj∇ j Fe f

+a129Fa
cFabFb

d Fc
eFd

f Fhi∇ f Fi j∇ j Feh

123
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+a130FabF
abFc

eFcd Fd
f Fhi∇ f Fi j∇ j Feh

+a131Fa
cFabFb

d Fc
eFd

f Fhi∇i F f j∇ j Feh

+a132FabF
abFc

eFcd Fd
f Fhi∇i F f j∇ j Feh

+a133Fa
cFabFb

d Fcd F
ef Fhi∇i F f j∇ j Feh

+a134FabF
abFcd F

cd Fef Fhi∇i F f j∇ j Feh

+a135Fa
cFabFb

d Fc
eFd

f Fe
h∇h Fi j∇ j F f

i

+a136FabF
abFc

eFcd Fd
f Fe

h∇h Fi j∇ j F f
i

+a137Fa
cFabFb

d Fcd Fe
h Fef ∇h Fi j∇ j F f

i

+a138FabF
abFcd F

cd Fe
h Fef ∇h Fi j∇ j F f

i

+a139Fa
cFabFb

d Fc
eFd

f Fe
h∇i Fhj∇ j F f

i

+a140FabF
abFc

eFcd Fd
f Fe

h∇i Fhj∇ j F f
i

+a141Fa
cFabFb

d Fcd Fe
h Fef ∇i Fhj∇ j F f

i

+a142FabF
abFcd F

cd Fe
h Fef ∇i Fhj∇ j F f

i

+a143Fa
cFabFb

d Fc
eFd

f Fef ∇i Fhj∇ j Fhi

+a144FabF
abFc

eFcd Fd
f Fef ∇i Fhj∇ j Fhi

+a145FabF
abFcd F

cd Fef F
ef ∇i Fhj∇ j Fhi

]
, (19)

where a1, . . . , a145 are 145 background-independent cou-
pling constants that should be fixed by the T-duality sym-
metry when the spacetime has one circle or by the S-matrix
method when the spacetime background is flat.

If one removes the terms in (13) that are related by total
derivative terms and by Xμ-field redefinitions, 81 indepen-
dent terms are obtained, as found in [42]. The T-duality is
satisfied for these 81 couplings up to some anomalous total
derivative terms in the base space. The T-duality would fix
these 81 couplings up to two parameters, and the two parame-
ters are also fixed in [42] by comparing the resulting four-field
couplings with the disk-level four-point S-matrix element.
These results appear in Appendix A. In the next subsection,
we will impose T-duality on the basis in (19) to fix its cou-
pling constants.

2.2 T-duality constraint on the basis

To study the T-duality constraint on the coupling constants
in (19), one should first perform the circular reduction in the
two cases as in (9). In the first case, the reduction of pull-back
metric and F are

G̃ab =
(
g̃ãb̃ 0
0 1

)
, Fab =

(
Fãb̃ ∂ã Ay

−∂b̃ Ay 0

)
. (20)

Then, the reduction of the DBI factor in (19) is the same as
the first term in (9). Using the fact that in the dimensional
reduction, one assumes fields are independent of the y coor-
dinate, and using the above reduction of the pull-back metric,
one finds that the covariant derivative constructed from the
pull-back metric G̃ab reduces as follows:

∇y(· · · ) = 0, ∇ã(· · · ) = ∇̃ã(· · · ), (21)

where ∇̃ is covariant derivative constructed from the base
space pull-back metric g̃ãb̃. In particular, the only non-zero
component of the second fundamental form is 
ãb̃

μ̃ =
∇̃ã∂b̃ X

μ̃ ≡ 
̃ãb̃
μ̃. In this way, one can easily calculateL(1)w

p .

Then using the transformation (7), one can calculate L(1)wT
p .

In the second case where Dp-brane is orthogonal to the
circle, there is no world-volume index y. So the F and pull-
back metric has only world-volume indices. The pull-back
metric is

G̃ãb̃ = g̃ãb̃ + ∂ã S∂b̃ S. (22)

Then the reduction of the DBI factor in (19) is the same as
the second term in (9). The above reduction of the pull-back
metric allows the covariant derivative ∇ã constructed from
the pull-back metric G̃ãb̃, which involves the inverse of this
metric in the Christoffel connection, to have an expansion in
terms of ∂σ S∂σ S. This allows the reduction of 
 and ∇F to
be


ãb̃
y = 
̃ãb̃

y
[
1 + g̃c̃d̃∂c̃ S∂d̃ S

]−1
,


ãb̃
μ̃ = 
̃ãb̃

μ̃ − 
̃ãb̃
y∂c̃ S∂d̃ X

μ̃G̃c̃d̃ ,

∇ã Fb̃c̃ = ∇̃ã Fb̃c̃ + 
̃ãb̃
y∂d̃ SFc̃ẽG̃

d̃ẽ − 
̃ãc̃
y∂d̃ SFb̃ẽG̃

d̃ẽ,

(23)

where 
̃ãb̃
y = ∇̃ã∂b̃ S, and G̃ãb̃ is inverse of the pull-back

metric (22). Note that the second fundamental form in the
base space satisfy the same identity as in (11), i.e.,


̃ãb̃
μ̃∂c̃ X

ν̃gμ̃ν̃ = 0. (24)

However, there is no such relation for 
̃ãb̃
y , i.e., 
̃ãb̃

y∂c̃ S �=
0. Using the above steps, one can calculate L(1)t

p .

If one imposes the constraint that L(1)wT
p is the same as

L(1)t
p , then one would find the wrong result that all cou-

pling constants in (19) are zero. This indicates that the T-
duality transformation (7) must recieve higher-derivative cor-
rections. Since we did not use Xμ-field redefinition to find
the independent couplings in (19), the T-duality also hase
no correction to the last line in (7). For the other fields, we
consider the following corrections:

Ay → S + √
α′δS,

Aã → Aã + √
α′δAã,

X μ̃ → X μ̃. (25)

There are the following 16 structures for constructing δAã :


̃y
[
F(∂S+∂S3 + ∂S5) + F3(∂S+∂S3)+F5∂S

]

+∇̃F
[
1 + ∂S2 + ∂S4 + ∂S6 + F2(1 + ∂S2 + ∂S4)

+F4(1 + ∂S2) + F6
]
. (26)

123
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If one considers all contractions of these structures with arbi-
trary parameters, one would find 253 terms in δAã . There are
the following 16 structures for constructing δS:


̃y
[
1+∂S2+∂S4 + ∂S6+F2(1 + ∂S2 + ∂S4)

+F4(1 + ∂S2) + F6
]

+∇̃F
[
F(∂S + ∂S3 + ∂S5 + F3(∂S + ∂S3) + F5∂S

]
.

(27)

If one considers all contractions of these structures with arbi-
trary parameters, one would find 105 terms in δS.

On the other hand, the transformation of L(0)w
p under the

above T-duality transformation producesL(0)t
p−1 on the second

line of (9) and the following couplings at order α′:

δL(0)t
p−1 = −Tp−1α

′

2

√
−det(g̃ãb̃ + Fãb̃ + ∂ã S∂b̃ S)Tr

×
[
(g̃ + F + ∂S∂S)(−1)(δF + δ(∂S∂S)

]
, (28)

where δFãb̃ = ∇̃ãδAb̃ − ∇̃b̃δAã and δ(∂ã S∂b̃ S) = ∇̃ãδS∂b̃ S

+ ∂ã S∇̃b̃δS. One should expand the term inside the bracket,

i.e. Tr
[
(g̃+F+∂S∂S)(−1)(δF+δ(∂S∂S)

]
and consider only

the terms up to 8th order of F , ∂S and 
̃y . The above non-
zero term should be added to the T-duality transformation of
the Lagrangian at O(α′).

The T-duality constraint at order α′ then is the following:

L(1)wT
p − L(1)t

p−1 + δL(0)t
p−1 = 0. (29)

Since all the above three terms have the DBI factor, we can
rewrite the above constraint as

√
−det(g̃ãb̃ + Fãb̃ + ∂ã S∂b̃ S)�L = 0.

The overall DBI factor is non-zero, hence the T-duality con-
straint is

�L = 0. (30)

After imposing the Bianchi identities, we solve the above
equation to find the coupling constants in (19) and the param-
eters of the T-duality corrections in δAã and δS.

To impose the Bianchi identities corresponding to the field
X μ̃, we work in the local inertial frame where the Christoffel
connection made from the base space pullback is zero, but
its derivative is not. Since there is no covariant derivative of

̃ãb̃

μ̃ in our calculations at O(α′), we write it as 
̃ãb̃
μ̃ =

∂ã∂c̃ X μ̃. However, there is ∇̃ã
̃b̃c̃
y , so we write 
̃b̃c̃

y =
∇̃b̃∂c̃ S, and then express all covariant derivatives in terms
of partial derivatives and Christoffel connections. The first

partial derivative of the Christoffel connection is:

∂ã
̃
b̃
c̃d̃ = ∂ã∂

b̃ X μ̃∂d̃∂c̃ Xμ̃ + ∂ã∂c̃∂d̃ X
μ̃∂ b̃ Xμ̃ , (31)

where we have used the fact that in the local frame, the
first partial derivative of the pullback metric is zero, i.e.
∂ã g̃b̃c̃ = 0. To impose the Bianchi identities corresponding to
the Aa-field, we express F in terms of the potential A wher-
ever its partial derivative appears. This ensures all Bianchi
identities are satisfied, and the Eq. (30) can be written in an
independent but non-gauge invariant form. The coefficient
of each independent term up to 8th order in A, S, X must
vanish, producing algebraic equations involving the above
parameters.

We find the algebraic equations fix all 145 coupling con-
stants in (19) in terms of three parameters. However, since we
did not use Xμ-field redefinitions and did not perform inte-
gration by parts in our calculations, these three parameters
may not all be physically significant. In fact, the parameters
that can be removed from the couplings by field redefinitions
and integration by parts are not physical parameters. So one
can safely remove those parameters. In fact, using the same
calculations as in the previous subsection but including the
Xμ-field redefinitions as well as integration by parts, we find
that one of the remaining three parameters can be removed
by field redefinitions and integration by parts. The other two
parameters, however, cannot be removed by field redefini-
tions and integration by parts. Therefore, they are the physi-
cal parameters. To fix these two parameters, we compare the
couplings we have found with the couplings that are reported
in [42] using T-duality and S-matrix methods, which appear
in Appendix A. The two actions must be identical up to field
redefinitions and integration by parts. This process allows us
to determine the two physical parameters as well. We obtain
the following results for the Lagrangian:

L(1)
p = −Tp

√
−det(G̃ab + Fab)

[
− 
abμ
abμ

+2Fa
cFab
b

dμ
cdμ

−Fa
cFabFd

f Fde
be
μ
c f μ

−2Fa
cFabFb

d Fc
e
d

f μ
e f μ

+1

2
Fa

cFabFb
d Fc

eF f
i F f h
dh

μ
eiμ

+2Fa
cFabFb

d Fc
eFd

f Fe
h
 f

iμ
hiμ

+2FabFcd
ac
μ
bdμ

−10

3
Fa

cFabFb
d Fef 
ce

μ
d f μ

+1

3
Fa

cFabFb
d Fe

h Fef F f
i
ch

μ
diμ

+27

10
Fa

cFabFb
d Fc

eFd
f Fhi
eh

μ
 f iμ

123
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+3

2
Fa

cFabFb
d Fc

eF f
i F f h
de

μ
hiμ

−∇bFac∇cFab + 2

3
FabFcd∇cFa

e∇d Fbe

−2Fa
cFab∇cFde∇eFb

d + Fa
cFab∇d Fce∇eFb

d

+ 1

30
Fa

cFabFb
d Fef ∇eFc

h∇ f Fdh

−Fa
cFabFd

f Fde∇cFb
h∇ f Feh

+ 1

10
Fa

cFabFdeF f h∇ f Fbd∇h Fce

+1

2
Fa

cFabFdeF f h∇eFbd∇h Fcf

−1

2
Fa

cFabFdeF f h∇cFbd∇h Fef

−Fa
cFabFd

f Fde∇ f Fch∇h Fbe

+3

4
Fa

cFabFb
d Fef ∇ f Feh∇h Fcd

+5

3
Fa

cFabFb
d Fef ∇d F f h∇h Fce

−4

3
Fa

cFabFb
d Fef ∇ f Fdh∇h Fce

+3

2
Fa

cFabFb
d Fc

e∇eF f h∇h Fd
f

−Fa
cFabFb

d Fc
e∇ f Feh∇h Fd

f

− 8

105
Fa

cFabFb
d Fc

eFd
f Fhi∇h Fe

j∇i F f j

+ 7

40
Fa

cFabFb
d Fcd F

ef Fhi∇h Fe
j∇i F f j

+3

2
Fa

cFabFb
d Fc

eF f
i F f h∇eFd

j∇i Fhj

− 1

10
Fa

cFabFd
f FdeFh

j Fhi∇i Fbe∇ j Fc f

− 8

35
Fa

cFabFb
d Fe

h Fef Fi j∇i Fc f ∇ j Fdh

− 3

10
Fa

cFabFb
d Fe

h Fef Fi j∇h Fcf ∇ j Fdi

− 4

35
Fa

cFabFb
d Fc

eF f h Fi j∇i Fd f ∇ j Feh

+ 1

10
Fa

cFabFb
d Fc

eF f h Fi j∇h Fd f ∇ j Fei

−1

5
Fa

cFabFd
f FdeFh

j Fhi∇cFbe∇ j F f i

− 1

10
Fa

cFabFb
d Fc

eF f h Fi j∇eFd f ∇ j Fhi

−3

5
Fa

cFabFb
d Fe

h Fef Fi j∇ f Fcd∇ j Fhi

−2

5
Fa

cFabFb
d Fe

h Fef F f
i∇i Fhj∇ j Fcd

+8

5
Fa

cFabFb
d Fe

h Fef F f
i∇i Fd j∇ j Fch

−6

5
Fa

cFabFb
d Fc

eF f
i F f h∇eFi j∇ j Fdh

+4

5
Fa

cFabFb
d Fc

eF f
i F f h∇i Fej∇ j Fdh

−4

5
Fa

cFabFb
d Fc

eFd
f Fhi∇i Fhj∇ j Fe f

+ 7

80
Fa

cFabFb
d Fcd F

ef Fhi∇i Fhj∇ j Fe f

−28

15
Fa

cFabFb
d Fc

eFd
f Fhi∇ f Fi j∇ j Feh

+4

3
Fa

cFabFb
d Fc

eFd
f Fhi∇i F f j∇ j Feh

− 7

20
Fa

cFabFb
d Fcd F

ef Fhi∇i F f j∇ j Feh

−8

5
Fa

cFabFb
d Fc

eFd
f Fe

h∇h Fi j∇ j F f
i

− 7

40
Fa

cFabFb
d Fcd Fe

h Fef ∇h Fi j∇ j F f
i

+Fa
cFabFb

d Fc
eFd

f Fe
h∇i Fhj∇ j F f

i
]
. (32)

The above Lagrangian is invariant under the T-duality
(25). The corresponding corrections δAã and δS appear in
Appendix B.

It is important to note that all independent terms in (19)
where the F-fields contract with themselves, like the term
with coefficient a145, are zero. All such couplings are pro-
duced solely by expanding the DBI factor in the above
Lagrangian. Interestingly, if one replaces the DBI factor in

(19) with
√

−det(G̃), the basis remains covariant and con-
tains the same 145 terms. However, the corresponding fixed
couplings after performing T-duality and comparing with the
effective action [42] would result in 104 couplings, instead
of the 49 couplings in (32). This suggests that the choice of
the DBI factor can have a significant impact on the structure
and number of the resulting couplings. We will discuss this
point in more detail in the discussion section.

3 Boundary Lagrangian

When a Dp-brane is entirely embedded in the boundary, the
world-volume theory should include all the massless fields
as well as the unit vector field orthogonal to the boundary.
The pull-back of the massless closed string fields as well as
the first derivative of the massless open string fields appear
nonlinearly in the DBI action. This raises the question of
whether it is possible to include the normal vector and its
first derivative, which is the extrinsic curvature, into the DBI
action. To find the answer to this question, one may con-
sider T-duality on massless closed string fields or T-duality
on massless open and closed string fields.

This question has been addressed in [15] by consider-
ing the massless closed string fields. It has been argued in
[15] that T-duality does not allow terms such as nB̃∇ B̃,
nB̃ B̃ B̃∇ B̃, and so on, in the boundary action. The terms

123
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that include the trace of the pull-back of the extrinsic curva-
ture seem to arise from incorporating the extrinsic curvature
under the square root in the DBI action and subsequently
expanding it. Additionally, due to a restriction on selecting
the base space background such that the circular reduction
should have the symmetry U (1) ×U (1) [15], the couplings
in which the indices of the extrinsic curvature are contracted
with B̃’s cannot be fixed by T-duality. By examining the
T-duality of massless open and closed string fields in this
section, we find that such couplings can also be derived by
expanding the following extension of the DBI action:

∂Lp

= −Tp e
−�

√
−det(G̃ab+ B̃ab+Fab+2

√
α′∂a Xμ∂bXνK ′

μν),

(33)

where K ′
μν ≡ Kμν − 2nμ∂ν�.

To demonstrate that the above boundary Lagrangian is
invariant under T-duality, we consider the following circular
reduction for the closed string fields:

Gμν =
(
ḡμ̃ν̃ 0
0 eϕ

)
, Bμν =

(
b̄μ̃ν̃ 0
0 0

)
, � = φ̄ + ϕ/4, (34)

where ḡμ̃ν̃ , b̄μ̃ν̃ , and φ̄ are the base space fields that are invari-
ant under T-duality. The base space scalar field ϕ transforms
under T-duality as

ϕ → −ϕ. (35)

Since there is no vector field in these reductions, the corre-
sponding reduction of the Lagrangian in (33) has the symme-
tryU (1)×U (1). The above reduction produces the following
reduction for K ′

μν :

K ′
μν =

(
K̄ ′

μ̃ν̃
0

0 0

)
, (36)

where K̄ ′
μ̃ν̃

= K̄μ̃ν̃−2nμ̃∂ν̃ φ̄ and K̄μ̃ν̃ = ∇̃μ̃nν̃−nμ̃nρ̃∇̃ρ̃nν̃

is the extrinsic curvature in the base space. K̄ ′
μ̃ν̃

is invariant
under T-duality.

The world-volume reduction of the Lagrangian in (33)
then becomes

∂Lw
p = −Tp e

−φ̄+ϕ/4

√
−det

[
∂ã X μ̃∂b̃ X

ν̃ (ḡμ̃ν̃ + b̄μ̃ν̃ + 2
√

α′ K̄ ′
μ̃ν̃

) + Fãb̃ + e−ϕ∂ã Ay∂b̃ Ay

]
. (37)

And the transverse reduction of the Lagrangian in (33)
becomes

∂Lt
p−1 = −Tp−1 e

−φ̄−ϕ/4

√
−det

[
∂ã X μ̃∂b̃ X

ν̃ (ḡμ̃ν̃ + b̄μ̃ν̃ + 2
√

α′ K̄ ′
μ̃ν̃

) + Fãb̃ + eϕ∂ã S∂b̃ S
]
. (38)

The transformation of ∂Lw
p under T-duality (7) becomes iden-

tical to ∂Lt
p−1.

The above T-duality symmetry does not fix the coefficient
of K ′

μν in the modified DBI action in (33). This coefficient
is fixed in [15] by imposing T-duality on the combination of
bulk and boundary actions when the Dp-brane extends in the
bulk of spacetime and ends on the boundary. In this case, the
bulk of the D-brane is T-dual up to some total derivative term
in the base space. These anomalous total derivative terms
then transfer to the boundary by using the Stokes theorem.
Then, the boundary couplings should be such that their T-
duality transformation cancels the anomalous term. In this
way, the boundary coupling produces the extrinsic curvature
that is in harmony with the bulk action. The coefficient of the
extrinsic curvature in (33) is the one fixed in [15].

4 Discussion

When a Dp-brane is in a spacetime with boundary and the
Dp-brane extends in the bulk and ends on the boundary, the
world-volume Lagrangian has two parts: the bulk Lagrangian
and the boundary Lagrangian. Each of these Lagrangians
has an α′ expansion that may be found by imposing the
T-duality constraint on the Lagrangians. The T-duality of
the world-volume reduction of each Dp-brane Lagrangian
must be the same as the transverse reduction of the Dp−1-
brane Lagrangian. We have done this calculation for the bulk
Lagrangian at order α′ and found an expansion for the cou-
plings up to 8th order of the Maxwell field strength F and
the second fundamental form 
. This Lagrangian is given in
(32) and is invariant under T-duality, as shown in (25) with
the corrections that appear in Appendix B.

To find the boundary Lagrangian, we considered the case
where the Dp-brane is entirely along the boundary of space-
time and showed that the modified DBI action in (6) is invari-
ant under the standard leading-order T-duality transforma-
tion. The higher derivative corrections to this Lagrangian
can be divided into two parts. One part involves exactly
the same higher derivative corrections as in the DBI action,
some of which have been found in (32). The other part

includes couplings in which the vector nμ or its derivatives
appear in each coupling. In other words, when a Dp-brane
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extends in the bulk and ends on the boundary, the effective
actions should be

SD
p + ∂ SD

p

= −Tp

∫
d p+1σ e−�

√
−det(G̃ab + B̃ab + Fab)

×[1 + Obulk(α
′)] − Tp

√
α′

×
∫

d pτ e−�
√

−det(G̃āb̄ + B̃āb̄ + Fāb̄ + 2
√

α′ K̃ ′
āb̄

)

×[1 + Obulk(α
′) + On(α

′)], (39)

where K ′
μν ≡ Kμν −2nμ∂ν�. The corrections Obulk(α

′) for
the bulk and boundary are the same. In the pull-back of the
spacetime fields in the bulk, Xμ = Xμ(σ ), and in the bound-
ary, Xμ = Xμ(τ). The bulk world-volume coordinates are
σ 0, . . . , σ p, and the boundary world-volume coordinates are
τ 0, . . . , τ p. Each term in the α′-corrections On(α

′) should
involve the unit vector nμ.

For the Op-plane, there is no B̃ and no open string fields.
So the Op-plane effective action is:

SO
p + ∂ SO

p

= −Tp

∫
d p+1σ e−�

√
−det(G̃ab)[1 + Obulk(α

′)]

−Tp

√
α′

∫
d pτ e−�

√
−det(G̃āb̄ + 2

√
α′ K̃ ′

āb̄
)

[1 + Obulk(α
′) + On(α

′)]. (40)

Using the same steps as in Section 3, one can easily observe
that the leading order term in Op-plane boundary Lagrangian
is invariant under T-duality.

We have observed that the bulk Dp-brane Lagrangian at
order α′ is invariant under T-duality without any residual total
derivative terms in the base space, provided that one does not
use the Xμ-field redefinition in producing the independent
basis. This may be a consequence of the fact that, while the
effective action is invariant under coordinate transformations,
there is no such symmetry for the effective Lagrangian. That
is∫

d p+1σ

√
−det(G̃ab) →

∫
d p+1σ

√
−det(G̃ab),√

−det(G̃ab) �

√
−det(G̃ab). (41)

This indicates that T-duality of the Lagrangian is satisfied
in specific schemes. A similar observation has been recently
found in studying the T-duality of the effective action of the
heterotic theory, which includes both NS-NS and YM fields.
The T-duality is not satisfied for any specific scheme. In fact,
it has been observed that T-duality is not satisfied by the
minimal basis in which all redundant couplings related by
all field redefinitions are removed. However, the T-duality is
satisfied by the maximal basis in which redundant terms due
to the field redefinitions are not removed [20,22].

The T-duality invariant Lagrangian in (32) can be
expressed in several other T-duality invariant forms by
employing Aa-field redefinitions. On the other hand, it is
known that the pull-back of the B-field, denoted as B̃ , appears
in the D-brane Lagrangian by replacing F → F + B̃. This
suggests that there should be a B̃-field redefinition in the
world-volume action in addition to the B-field redefinition
in the spacetime action. In fact, B̃ satisfies the following
Bianchi identity [15]:

∇̃[a B̃bc] = 0. (42)

This indicates that one is free to add ∂[aAb] to B̃, where Aa

is an arbitrary vector. Hence, B̃ab, like Fab, has the following
field redefinition at order α′:

B̃ab → B̃ab + α′∂[aA(1)
b] , (43)

where A(1)
a is an arbitrary vector constructed from the mass-

less fields at order
√

α′. Such a field redefinition has no effect
on the B-field strength H that appears in the spacetime action,
as the exterior derivative of the exterior derivative is zero, i.e.,
d2 = 0.

We have found the T-duality invariant couplings (32)
at order α′ up to the 8th order of the dimensionless field
strength F for the particular basis (19) in which the covari-
ant derivatives are constructed from the pull-back metric G̃ab

and indices are also contracted with inverse of this met-
ric. In principle, one may extend this G̃-covariant basis to
include all orders of F and impose T-duality to find the cor-
responding coupling constants. This raises the question of
whether it is possible to find a particular scheme in which
all orders of F can be written in a closed-form expression.
One approach to finding such a scheme might involve con-
sidering the Lagrangian (32), which features an overall DBI
factor. This factor is given by the square root of the inverse
of the following matrix:

(
1

G̃ + F

)ab

= G̃ab − �ab, (44)

where the symmetric and antisymmetric parts are, respec-
tively,

G̃ab =
(

1

G̃ + F
G̃

1

G̃ − F

)ab

, �ab =
(

1

G̃ + F
F

1

G̃ − F

)ab

.

The symmetric part is the inverse of the following metric:

G̃ab = G̃ab − FacF
c
b. (45)

On the other hand, if one chooses another scheme for the
basis (19), it is possible to change the coefficient of the last
term in the second line to be 2, and remove the first term
in the fifth line of (32). Then all terms in (32) with the
structure 
ab

μ
cdμ whose world-volume indices are con-

123



 1106 Page 12 of 17 Eur. Phys. J. C          (2024) 84:1106 

tracted with an even number of F , i.e., all terms in the first
and second lines and the first term in the third line, can be
written as −G̃acG̃bd
ab

μ
cdμ. Therefore, one may expect
that the world-volume covariant derivative constructed from
the above metric, i.e., ∇G̃ , may be the appropriate covariant
derivative to consider for constructing the second fundamen-
tal form and constructing the independent basis in which
all indices are contracted with G̃ab and �ab. Then T-duality
can fix the coupling constants of such a G̃-covariant basis. It
would be interesting to perform the appropriate calculation
to determine the coupling constants of the G̃-covariant basis.
It may be possible that the infinite number of couplings at
order α′ can be expressed as a few couplings constructed
from the G̃-metric and �ab.
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Appendix A: Effective Action

In this Appendix, we write the effective action of Dp-brane
at order α′ and up to 8th order of F in the closed space-
time manifold that has been found in [42]. The basis which
includes all gauge-invariant couplings modulo the most gen-
eral field redefinition, integration by parts, and the use of
Bianchi identities has 81 couplings. T-duality fixes them
up to two parameters, and the two remaining parameters
are also fixed by comparing the four-point function of the
resulting effective action with the corresponding disk-level S-
matrix elements. This action has the following 79 couplings
[42]:

S(1)
p = −Tpα

′
∫

d p+1σ

√
−det(G̃ab)

×
[
−
abμ
abμ+FabFcd
ac

μ
bdμ + 
a
a
μ
b

bμ

+Fa
cFab
b

dμ
cdμ−1

3
Fa

cFabFd
f Fde
be

μ
c f μ

−1

4
FabF

ab
cdμ
cdμ

−4

3
Fa

cFabFb
d Fef 
ce

μ
d f μ

+1

3
FabF

abFcd Fef 
ce
μ
d f μ

+14

15
Fa

cFabFb
d Fe

h Fef F f
i
ch

μ
diμ

−2

3
Fa

cFabFd
f Fde
bc

μ
e f μ

−2

3
Fa

cFabFb
d Fc

e
d
f μ
e f μ

+1

3
FabF

abFc
eFcd
d

f μ
e f μ

+3

5
Fa

cFabFb
d Fc

eF f
i F f h
dh

μ
eiμ

+1

8
Fa

cFabFb
d Fcd
e f μ
e f μ

− 1

32
FabF

abFcd F
cd
e f μ
e f μ

+6

5
Fa

cFabFb
d Fc

eFd
f Fhi
eh

μ
 f iμ

−1

3
FabF

abFc
eFcd Fd

f Fhi
eh
μ
 f iμ

−1

8
Fa

cFabFb
d Fcd F

ef Fhi
eh
μ
 f iμ

+ 1

32
FabF

abFcd F
cd Fef Fhi
eh

μ
 f iμ

+16

15
Fa

cFabFb
d Fc

eF f
i F f h
de

μ
hiμ

− 1

12
FabF

abFc
eFcd F f

i F f h
de
μ
hiμ

+Fa
cFabFb

d Fc
eFd

f Fe
i
 f

hμ
hiμ

−1

4
FabF

abFc
eFcd Fd

f Fe
i
 f

hμ
hiμ

−1

8
Fa

cFabFb
d Fcd Fe

i Fef 
 f
hμ
hiμ

+ 1

32
FabF

abFcd F
cd Fe

i Fef 
 f
hμ
hiμ

− 1

12
Fa

cFabFb
d Fc

eFd
f Fef 
hiμ
hiμ

+ 1

32
FabF

abFc
eFcd Fd

f Fef 
hiμ
hiμ

− 1

384
FabF

abFcd F
cd Fef F

ef 
hiμ
hiμ

+1

6
Fa

cFab∇bF
de∇cFde
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− 1

15
Fa

cFabFb
d Fef ∇cFe

i∇d F f i

−4

5
Fa

cFabFb
d Fe

i Fef Fhj∇cF f h∇d Fi j

−3

5
Fa

cFabFd
f Fde∇cF f i∇eFb

i

− 1

12
FabF

abFcd Fef ∇d F f i∇eFc
i

−1

3
Fa

cFab∇eFcd∇eFb
d

− 1

24
FabF

ab∇eFcd∇eFcd

+Fa
cFabFdeF f i∇cFei∇ f Fbd

+3

5
Fa

cFabFdeF f i∇eFci∇ f Fbd

+3

5
Fa

cFabFd
f Fde∇cFb

i∇ f Fei

−6

5
Fa

cFabFb
d Fc

eF f
i F f h∇eFd

j∇h Fi j

+ 2

15
FabF

abFc
eFcd F f

i F f h∇eFd
j∇h Fi j

+Fa
cFabFb

d Fe
h Fef F f

i∇h Fc
j∇i Fd j

+8

5
Fa

cFabFdeF f i∇cFbd∇i Fe f

−13

5
Fa

cFabFb
d Fc

eF f i Fhj∇h Fd f ∇i Fej

+ 2

15
FabF

abFc
eFcd F f i Fhj∇h Fd f ∇i Fej

+6

5
Fa

cFabFb
d Fc

eF f
i F f h∇h Fd

j∇i Fej

− 1

20
FabF

abFc
eFcd F f

i F f h∇h Fd
j∇i Fej

+ 7

10
Fa

cFabFb
d Fe

i Fef Fhj∇h Fcd∇i F f j

− 71

105
Fa

cFabFb
d Fc

eFd
f Fhi∇h Fe

j∇i F f j

− 7

120
Fa

cFabFb
d Fcd F

ef Fhi∇h Fe
j∇i F f j

− 7

480
FabF

abFcd F
cd Fef Fhi∇h Fe

j∇i F f j

−3

5
Fa

cFabFd
f Fde∇ f Fci∇ i Fbe

−4

5
Fa

cFabFb
d Fef ∇ f Fdi∇ i Fce

+1

6
FabF

abFcd Fef ∇ f Fdi∇ i Fce

− 3

10
Fa

cFabFb
d Fef ∇d Fci∇ i Fe f

+27

35
Fa

cFabFb
d Fe

i Fef Fhj∇h Fcf ∇ j Fdi

− 8

15
Fa

cFabFb
d Fc

eF f i Fhj∇i Fd f ∇ j Feh

− 7

60
FabF

abFc
eFcd F f i Fhj∇i Fd f ∇ j Feh

+59

35
Fa

cFabFb
d Fc

eF f i Fhj∇h Fd f ∇ j Fei

− 1

15
FabF

abFc
eFcd F f i Fhj∇h Fd f ∇ j Fei

−12

5
Fa

cFabFb
d Fc

eF f
i F f h∇h Fd

j∇ j Fei

+14

15
Fa

cFabFd
f FdeFhi Fi

j∇cFbe∇ j F f h

+16

15
Fa

cFabFb
d Fc

eFd
f Fhi∇h Fe

j∇ j F f i

+31

15
Fa

cFabFb
d Fc

eF f i Fhj∇eFd f ∇ j Fhi

−1

8
FabF

abFc
eFcd Fd

f Fhi∇ f Fe
j∇ j Fhi

−13

10
Fa

cFabFb
d Fe

h Fef F f
i∇ j Fdi∇ j Fch

+ 7

120
FabF

abFc
eFcd F f

i F f h∇ j Fei∇ j Fdh

− 8

15
Fa

cFabFb
d Fc

eFd
f Fhi∇ j F f i∇ j Feh

− 3

80
Fa

cFabFb
d Fcd F

ef Fhi∇ j F f i∇ j Feh

+1

5
Fa

cFabFb
d Fc

eFd
f Fe

i∇h Fi j∇ j F f
h

+ 1

12
FabF

abFc
eFcd Fd

f Fe
i∇h Fi j∇ j F f

h

+ 1

10
Fa

cFabFb
d Fcd Fe

i Fef ∇h Fi j∇ j F f
h

+ 1

240
FabF

abFcd F
cd Fe

i Fef ∇h Fi j∇ j F f
h

+7

5
Fa

cFabFb
d Fc

eFd
f Fe

i∇ j Fhi∇ j F f
h

− 1

30
FabF

abFc
eFcd Fd

f Fe
i∇ j Fhi∇ j F f

h

+1

4
Fa

cFabFb
d Fcd Fe

i Fef ∇ j Fhi∇ j F f
h

+ 7

160
FabF

abFcd F
cd Fe

i Fef ∇ j Fhi∇ j F f
h

+ 1

45
Fa

cFabFb
d Fc

eFd
f Fef ∇h Fi j∇ j Fhi

− 1

40
FabF

abFc
eFcd Fd

f Fef ∇h Fi j∇ j Fhi

− 1

2880
FabF

abFcd F
cd Fef F

ef ∇h Fi j∇ j Fhi
]
. (46)

The above action is invariant under T-duality transformations
that have some corrections at order α′ for δAã , δS, and δXμ.
There are also some anomalous total derivative terms in the
base space that are not invariant under T-duality. However,
for a closed spacetime manifold that has no boundary, these
anomalous total derivative terms become zero.
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Note that in the above scheme, the leading-order propaga-
tors of massless open string fields do not receive α′ correc-
tions. This makes the comparison of the four-point function
of the above effective action with the corresponding disk-
level S-matrix element straightforward. However, the basis
that we have chosen in (19) corrects the leading-order propa-
gators. So instead of comparing our result with the S-matrix
elements, we compare the effective Lagrangian that we have
found in this paper with the above effective action. The two
must be the same up to Xμ-, Aa-field redefinitions, integra-
tion by parts, and Bianchi identities.

Appendix B: T-duality transformations atO(α′)

The T-duality constraint (30) fixes the 145 parameters in (19)
up to three parameters. The corresponding T-duality transfor-
mations are also fixed in terms of these three parameters. The
T-duality transformations corresponding to the Lagrangian
(32) are as follows:

δS = 1

2
dSadSbFa

cFc
d
̃bd

+ 3

10
dSadSbFa

cFc
d Fd

eFe
f 
̃b f

−1

2
dSadSbFa

cFb
d
̃cd

+1

2
dSadSbdScdSd Fa

eFbe
̃cd

+dSadS
a Fb

d Fbc
̃cd

+ 7

10
dSadS

adSbdScFb
d Fd

e
̃ce

−1

5
dSadS

adSbdScFb
d Fc

e
̃de+ 1

2
Fa

cFabFb
d Fc

e
̃de

+ 3

20
dSadS

adSbdS
bFc

eFcd
̃de

+ 3

10
dSadSbFa

cFb
d Fc

eFe
f 
̃d f

−3

5
dSadSbFa

cFb
d Fc

eFd
f 
̃e f

− 3

10
dSadS

a Fb
d FbcFc

eFd
f 
̃e f

+1

2
dSadSbFa

cFbcFd
f Fde
̃e f

−2

5
Fa

cFabFb
d Fc

eFd
f Fe

h
̃ f h

+ 7

40
Fa

cFabFb
d Fcd Fe

h Fef 
̃ f h

−dSadSbdScFa
d Fd

eFe
f ∇cFbf

+ 1

10
dSaFa

bFb
cFd

f FdeFe
h∇cF f h

+1

2
dSadS

adSbFcd∇d Fbc

+1

2
dSadS

adSbdScdSd Fb
e∇d Fce

+dSa Fb
d FbcFc

e∇eFad

−dSa Fa
bFc

eFcd∇eFbd

+ 9

20
dSadS

adSbdS
bdScFde∇eFcd

−1

2
dSa Fa

bFb
cFde∇eFcd

+ 9

10
dSadSbdScFa

d Fb
eFd

f ∇eFcf

− 1

20
dSaFa

bFb
cFc

d Fd
eF f h∇eF f h

+1

5
dSadS

adSbFc
eFcd Fd

f ∇ f Fbe

−2

5
dSadSbdScFa

d Fb
eFd

f ∇ f Fce

+1

5
dSadS

adSbFb
cFd

f Fde∇ f Fce

+4

5
dSadSbdScFa

d Fbd F
ef ∇ f Fce

− 1

10
dSadS

adSbFb
cFc

d Fef ∇ f Fde

−6

5
dSaFb

d FbcFc
eFd

f Fe
h∇h Fa f

+ 7

40
dSaFb

d FbcFc
eFdeF

f h∇h Fa f

+ 3

10
dSaFa

bFc
eFcd Fd

f Fe
h∇h Fbf

−1

5
dSaFa

bFb
cFc

d Fe
h Fef ∇h Fd f , (47)

δAa = 4

3
dSbFb

c
̃a
c − 7

40
dSbFb

cFd
f FdeFe

h F f h
̃
a
c

−21

10
dSbdS

bdScFc
d
̃a

d

+247

140
dSbdS

bdScdS
cdSd Fd

e
̃a
e

+31

30
dSbFb

cFc
d Fd

e
̃a
e

+ 17

210
dSbdScdSd Fb

eFceFd
f 
̃a

f

−122

105
dSbdS

bdScFc
d Fd

eFe
f 
̃a

f

+17

70
dSbFb

cFc
d Fd

eFe
f F f

h
̃a
h

+ 7

40
dSbFacFd

f FdeFe
h F f h
̃bc

−1

2
dSbFacFc

d Fd
e
̃be

+ 1
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dSbFacFc

d Fd
eFe

f F f
h
̃bh

−1

2
dSbdScdSd Fa

b
̃cd

123



Eur. Phys. J. C          (2024) 84:1106 Page 15 of 17  1106 

+dSbdS
bdScFad
̃cd − 1

2
dSadSbdScFb

d
̃cd

+ 3

10
dSbdScdSd FaeFb

f Fef 
̃cd

−dSbFacFb
d Fd

e
̃ce

−1

5
dSbdS

bdScFad Fd
eFe

f 
̃c f

−2

5
dSadSbdScFb

d Fd
eFe

f 
̃c f

−1

5
dSbFacFb

d Fd
eFe

f F f
h
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+4

5
dSbdS

bdScdSddSeFa
c
̃de

−17
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dSbdS

bdScdS
cdSd Fae
̃de

+4

5
dSadSbdS

bdScdSd Fc
e
̃de+dSbFacFb

d Fc
e
̃de

−1

2
dSbdScdSd FaeFb

f Fcf 
̃de

−dSbFa
bFc

eFcd
̃de

+ 3

10
dSbdScdSd FaeFbeFc

f 
̃d f

− 9

10
dSbdScdSd Fa

bFc
eFe

f 
̃d f

+6

5
dSbdS

bdScFad Fc
eFe

f 
̃d f

+1

5
dSbFacFb

d Fc
eFe

f F f
h
̃dh

+ 1
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dSbdScdSd Fa
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eFd

f 
̃e f

− 3
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bdScFad Fc
eFd

f 
̃e f

−2

5
dSadSbdScFb
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eFd

f 
̃e f
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5
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cFd

f Fde
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− 7
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d Fc
eFd

f F f
h
̃eh

+ 7
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eFd
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h
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−1

5
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h
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−4

5
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d Fcd Fe
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− 7
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b

+ 7
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d Fd
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a
e

−23
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dSbdScFb

d Fd
eFe

f F f
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a
h

−dSbdScFad Fd
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−1

5
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eFe
f F f
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−1

2
dSbdS

bdScdSd∇d F
a
c

− 2
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dSbdS

bdScdSd Fc
eFe

f ∇d F
a
f +

dSbdScFad Fb
e∇d Fce

+ 3
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dSbdS

bdScdSd FaeFe
f ∇d Fcf

− 1

10
dSadSbdScdSd Fb

eFe
f ∇d Fcf

+1

5
dSbdScFad Fb

eFe
f F f

h∇d Fch

+23
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d Fd
e∇eF

a
c
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a
d

−1

2
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a
d

− 3
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f Fcf ∇eF
a
d
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14
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eFd

f F f
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a
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cFde∇eFcd

+2
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f ∇eFd f

−6

5
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f ∇ f F
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d

+2

5
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eFd
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− 7
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a
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f Fe
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cF
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− 7
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d Fef ∇ f Fde

−1

5
dSbdScFad Fb
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h∇ f Fdh

− 7
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f Fd

h∇ f Feh

+ 9
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d Fd
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f F f
h∇h F

a
c

− 1
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eFd
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a
e
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− 1

10
dSbdScFb

d Fc
eFd

f Fe
h∇h F

a
f

− 7

10
dSbdScFb

d Fcd Fe
h Fef ∇h F

a
f

+ 3
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dSadSbFc

eFcd Fd
f Fe

h∇h Fbf

− 7
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dSbdScFad Fb

eFd
f F f

h∇h Fce

+7

5
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−6

5
dSbdScFa
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f FdeFe

h∇h Fcf

−1

5
dSadSbFb

cFd
f FdeFe

h∇h Fcf

−4

5
dSbdScFad Fbd Fe

h Fef ∇h Fcf

−3

5
dSbdScFad Fb

eFdeF
f h∇h Fcf

+1

5
dSbdScFad Fb

eFc
f Fe

h∇h Fd f

+4

5
dSbdScFa

bFc
d Fe

h Fef ∇h Fd f

−1

5
dSadSbFb

cFc
d Fe

h Fef ∇h Fd f

− 7
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dSbdScFad Fb

eFceF
f h∇h Fd f

−3

5
dSbdScFad Fbd Fc

eF f h∇h Fef

+3

5
dSbdScFa

bFc
d Fd

eF f h∇h Fef

+ 1

10
dSadSbFb

cFc
d Fd

eF f h∇h Fef , (48)

where all world-volume indices are the indices in the base
space, e.g. a = ã, b = ã, and so on. In the above equations,

̃ãb̃ = 
̃ãb̃

y .
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