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In this paper, we defne the exterior degree for a fnite-dimensional Lie algebra over the feld Fq and give upper and lower bounds.
Also, we give some relations between this concept and commutativity degree, capability, and Schur multiplier.

1. Introduction

One of the interesting concepts in algebra is Lie algebras.
Some classical results correspond to a p-group with a spe-
cifc Lie algebra. It means that we may obtain some results
for Lie algebras similar to them in groups. It is worth to note
that they are not analogous in general and exact distinctions
should be done. In the last decades, the relation between
probability theory and group theory has been considered.
Te probability that two elements of a group commute is
called the commutativity degree of a group. Similarly, the
commutativity degree of a Lie algebra L can be defned as
follows:

d(L) �
(x, y) ∈ L × L ∣ [x, y] � 0􏼈 􏼉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
2 . (1)

In this paper, we defne the concept of the exterior degree
of Lie algebras by following the same line in [1] for groups.
Furthermore, we obtain some bounds for this notion.

In the following, we recall some concepts and termi-
nologies which will be used in the rest.

From [2], the nonabelian tensor square of L denoted by
L ⊗ L is defned as the Lie algebra generated by symbols
l ⊗ k subject to the relations:

c(l ⊗ k) � cl ⊗ k � l ⊗ ck, l + l′( 􏼁 ⊗ k � l ⊗ k + l′ ⊗ k,

l ⊗ k + k′( 􏼁 � l ⊗ k + l ⊗ k′, l, l′􏼂 􏼃 ⊗ k � l ⊗ l′, k􏼂 􏼃 − l′ ⊗ [l, k],

l ⊗ k, k′􏼂 􏼃 � k′, l􏼂 􏼃 ⊗ k − [k, l] ⊗ k′, l ⊗ k, l′ ⊗ k′􏼂 􏼃 � − [k, l] ⊗ l′, k′􏼂 􏼃,

(2)

where c ∈ F and l, l′, k, k′ ∈ L.
Defne L ⊗ L to be the subalgebra of L ⊗ L generated by

all elements of the form l ⊗ l, where l ∈ L. Now, the exterior
square of L, L∧L, defned to be the quotient L ⊗ L/LL and
the coset l ⊗ l′ + LL is denoted by l∧ l′ for all l, l′ ∈ L. It is an
easy matter to see that

κ′: L∧ L↦ L
2
, (3)

given by l∧ l′ ↦ [l, l′] is an epimorphism. Te kernel of κ′ is
isomorphic to the well-known Schurmultiplier of L,which is
denoted by M(L). Also, M(L) can be considered on the
second member of a maximal defning pair (see [3, 4] for
more details).
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Te set C∧L(x) � y ∈ L ∣ y∧x � 0L∧L􏼈 􏼉 is called the ex-
terior centralizer and the exterior center of L is the in-
tersection of all exterior centralizers of elements in L and
denoted by Z∧(L).

We may assume that the reader is familiar to the notion
of abelian and Heisenberg Lie algebras. An abelian Lie al-
gebra of dimension n and a Heisenberg Lie algebra of di-
mension 2m + 1 are denoted by A(n) and H(m),

respectively.

2. The Exterior Degree of A(n) and H(m)

In this section, the exterior degree of a Lie algebra is defned,
and we compute it for abelian and Heisenberg Lie algebras.
First of all, we need to remind the following fact.

Te presentation of Heisenberg Lie algebras is
H(m) � 〈xi, yi, z ∣ [xi, yi] � z, 1≤ i≤m〉, where m≥ 1 ob-
tained in ([1], Example 3).

From now on, all Lie algebras are considered to be fnite-
dimensional over the fnite feld Fq.

Defnition 1. Let L be a Lie algebra.Ten, the exterior degree
of L is defned by

d
∧
(L) �

(x, y) ∈ L × L ∣ x∧y � 0􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

L| |
2 . (4)

We are going to give two equivalent formulas for d∧(L)

to simplify computations. To do this, we need the following
notations and terminologies. Assume that B∧(L) �

(x, y) ∈ L × L ∣ x∧y � 0􏼈 􏼉. It is easy to see that
B∧(L) � 􏽐x∈L 􏽐 C∧L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

􏼌􏼌􏼌􏼌 So, d∧(L) � 1/ L| |2􏽐x∈L|C∧L(x)|.

For each x ∈ L, the map φx: L⟶ L∧L defned by
y↦x∧y is linear. Now, it is clear that kerφx � C∧L(x).

In the following lemma, we rewrite d∧(L) by the above
notations.

Lemma 2. Let L be a Lie algebra. Ten, d∧(L) � 1/ L| |

􏽐x∈L1/ Imφx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

Proof. By rank-nullity theorem, we have dim L

� dimImφx + dimkerφx, but kerφx � C∧L(x). So, dim L �

dimImφx + dimC∧L(x). Hence,

L| | � q
dim L

� q
dimImφx+dimC∧L(x)

� Imφx

����C
∧
L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (5)

Considering d∧(L) � 1/ L| |2􏽐x∈L|C∧L(x)| and (1), the
result follows.

Te concept of capability is a useful tool in computing
the exterior degree of some Lie algebras. Recall that a Lie
algebra L is capable provided that L � H/Z(H) for some Lie
algebra H. Te epicentre of a Lie algebra L, which is denoted
Z∗(L), is introduced in ([5], Defnition 1.4). Te importance
of Z∗(L) is due to the fact that L is capable if and only if
Z∗(L) � 0. In ([6], Lemma 3.1), it is showed that Z∗(L) �

Z∧(L). So, L is capable if and only if Z∧(L) � 0. It is well
known ([6], Teorems 3.3 and 3.4) that the only capable Lie
algebras in the class of abelian and Heisenberg Lie algebras
are A(n), where n≥ 2 and H(1).

In the following proposition, we give the exterior degree
of all abelian algebras. □

Proposition 3. Te exterior degree of abelian Lie algebras
can be computed as follows:

(i) d∧(A(1)) � 1,

(ii) d∧(A(n)) � qn + qn− 1 − 1/q2n− 1, where n≥ 2.

Proof. (i) It is obvious that d∧(A(1)) � 1. (ii) Let A(n) �

〈x1, . . . , xn〉 be a basis of A(n). Ten, A(n)∧A

(n) � M(A(n)) by ([6], Corollary 2.5), hence dimA

(n)∧A(n) � n(n − 1)/2 by ([7], Lemma 23). So,
A(n)∧A(n) � 〈xi ∧xj ∣ 1≤ i< j≤ n〉. Assume that a ∈ A

(n). Tus, a � α1x1 + . . . + αnxn such that αi ∈ Fq and
1≤ i≤ n. If α1 ≠ 0, then a∧xj ≠ 0 for all 2≤ j≤ n. We show
that a∧xi 2≤ i≤ n| }􏼈 is linearly independent. Let

c2 a∧x2( 􏼁 + c3 a∧x3( 􏼁 + c4 a∧x2( 􏼁 + . . . + cn a∧x2( 􏼁 � 0,

(6)

for all 2≤ ck ≤ n. Ten,

c2 α1x1 ∧x2( 􏼁 + α2x2 ∧ x2( 􏼁 + . . . + αnxn ∧x2( 􏼁( 􏼁 +

c3 α1x1 ∧x3( 􏼁 + α2x2 ∧ x3( 􏼁 + . . . + αnxn ∧x3( 􏼁( 􏼁 + . . . +

cn− 1 α1x1 ∧ xn− 1( 􏼁 + α2x2 ∧ xn− 1( 􏼁 + . . . + αnxn ∧ xn− 1( 􏼁( 􏼁 +

cn α1x1 ∧ xn( 􏼁 + α2x2 ∧xn( 􏼁 + . . . + αnxn ∧ xn( 􏼁( 􏼁 � 0,

(7)

or equality

c2α1 x1 ∧x2( 􏼁 + c3α1 x1 ∧x3( 􏼁 + . . . + cnα1 x1 ∧xn( 􏼁 + 􏽘
1≤i<j≤n

cjαi − ciαj􏼐 􏼑 xi ∧xj􏼐 􏼑 � 0, (8)
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Since xi ∧ xj ∣ 1≤ i< j≤ n􏽮 􏽯 is a basis of A(n)∧A(n),

then

c2α1 � 0, c3α1 � 0, . . . , cnα1 � 0, cjαi − ciαj � 0 for all 2≤ i< j≤n. (9)

On the other hand, α1 ≠ 0, thus c2 � c3 � . . . � cn � 0.

Terefore, a∧xi 2≤ i≤ n| }􏼈 is linearly independent when
α1 ≠ 0. Hence, a∧x1 ∈ 〈a∧xj ∣ 2≤ j≤ n〉 and dimImφa �

n − 1. By a similar way, one can see dimImφa � n − 1 for all

nonzero elements a in A(n). On the other hand, A(n) is
capable for all n≥ 2 by ([6], Teorem 3.3) and consequently
Z∧(A(n)) � 0. Terefore, by Lemma 2,

d
∧
(A(n)) �

1
A(n)| |

􏽘
a∈A(n)

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1

A(n)| |
+

1
A(n)| |

􏽘
a∉Z∧(A(n))

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1

A(n)| |
+

1
A(n)| |

A(n)| | − 1
q

n− 1 �
q

n
+ q

n− 1
− 1

q
2n− 1 .

(10)

In order to compute the exterior degree of Heisenberg
Lie algebras, the following proposition is useful. □

Proposition 4. Let L be a noncapable Lie algebra and
N⊆Z∧(L). Ten, d∧(L) � d∧(L/N).

Proof. We know that L∧ L � L/N∧ L/N if and only if
N⊆Z∧(L) by ([6], Corollary 2.3). Hence, N| |2 B∧(L/N)| | �

B∧(L)| |, which implies that d∧(L) � d∧(L/N).
Now, we are ready to compute the exterior degree of all

Heisenberg Lie algebras. □

Proposition 5. Te exterior degree of Heisenberg Lie algebras
is as follows.

(i) d∧(H(1)) � q3 + q2 − 1/q5,
(ii) d∧(H(m)) � q2m + q2m− 1 − 1/q4m− 1, where m≥ 2.

Proof. (i) We have H(1) � 〈x, y ∣ [x, y] � z〉. Since
H(1)∧H(1) � A(3) by ([6], Lemma 3.2), we have L∧ L �

〈x∧y, x∧ z, y∧ z〉 � A(3). We know that L is capable by
([6], Teorem 3.4), so Z∧(L) � 0. Assume that a ∈ L and
a≠ 0, thus a � α1x + α2y + α3z for some α1, α2, α3 ∈ Fq and

a∧ x � α2(y∧x) + α3(z∧x),

a∧y � α1(x∧y) + α3(z∧y),

a∧ z � α1(x∧ z) + α2(y∧ z).

(11)

One can see that a∧x, a∧y, a∧ z􏼈 􏼉 is linearly de-
pendent. So, 1≤ dim Imφa ≤ 2. If α1 ≠ 0, then a∧y and
a∧ z are linearly independent. Tus, dimImφa � 2. Simi-
larly, dimImφa � 2 for other nonzero elements a in L.
Hence, by Lemma 2,

d
∧
(L) �

1
L| |

􏽘
a∈L

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
L| |

+
1
L| |

􏽘
a∉Z∧(L)

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
L| |

+
1
L| |

L| | − 1
q
2

�
q
3

+ q
2

− 1
q
5 .

(12)

(ii) We know that L is noncapable by ([6], Teorem 3.4),
and so Z∧(L)≠ 0. Since Z∧(L)≤Z(L) and dimZ(L) � 1, we
have Z∧(L) � Z(L) � 〈z〉. On the other hand, L/Z∧(L) �

A(2m), where m≥ 2. Tus,

d
∧
(L) � d

∧
L/Z∧(L)( 􏼁 �

q
2m

+ q
2m− 1

− 1
q
4m− 1 , (13)

by Propositions 3 and 4.

At the end of his section, we compute the commutativity
degree of some Lie algebras that play an important role in the
rest of the paper. □

Example 1

(i) Let L � 〈x, y ∣ [x, y] � x〉 is a Lie algebra over the
feld. Ten, Z(L) � 0 and so Z(L)| | � 1. Consider

Journal of Mathematics 3



adx: L⟶ L such that y↦ [x, y]. If x≠ 0, then
dimkeradx � dimCL(x) � 1 and so CL(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � q.

d(L) �
(x, y) ∈ L × L ∣ [x, y] � 0􏼈 􏼉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
2 �

1
L| |

2 􏽘
x∈L

CL(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

�
1
L| |

+
1
L| |

2 ( L| | − Z(L)| |)q �
q
2

+ q − 1
q
3 .

(14)

(ii) Let m be a positive integer and L � H(m) �

〈xi, yi, z ∣ [xi, yi] � z, 1≤ i≤m〉 be a Lie algebra

over the feld Fq. By a similar method in part (i), one
can see that d(L) � q2m + q − 1/q2m+1.

3. Upper and Lower Bounds for d∧(L)

In this section, we give some bounds for the exterior degree
of Lie algebras. In addition, the structure of Lie algebras with
d∧(L) � q2 + q − 1/q3 is obtained.

We start with the following theorem, which gives lower
and upper bounds for d∧(L).

Theorem  . Let L be an arbitrary Lie algebra. Ten,

d(L)

M(L)| |
+

Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
1 −

1
M(L)| |

􏼠 􏼡≤d
∧
(L)≤d(L) −

q − 1
q

􏼠 􏼡
Z(L)| | − Z

∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
􏼠 􏼡. (15)

Proof. Since the map fx: CL(x)⟶M(L) with rule
y↦x∧y is a linear map and kerfx � C∧L(x), we have

C∧L(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/ CL(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ 1/ M(L)| |. Moreover, C∧L(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � CL(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

L| | for all x ∈ Z∧(L). Hence,

d
∧
(L) �

Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
+

1
L| |

2 􏽘
x∈L/Z∧(L)

C
∧
L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
+

L| |d(L) − Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

M(L)| |‖ L| |

�
d(L)

M(L)| |
+

Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
1 −

1
M(L)| |

􏼠 􏼡.

(16)

Since C∧L(x)≤CL(x), Imφx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ q for all x ∉ Z∧(L) and

C∧L(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � L| |/ Imφx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, we have

d
∧
(L) �

Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
+

1
L| |

2 􏽘
x∈Z(L)/Z∧(L)

C
∧
L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
L| |

2 􏽘
x∈L/Z(L)

C
∧
L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
+

1
L| |

􏽘
x∈Z(L)/Z∧(L)

1
Imφx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
+

1
L| |

2 􏽘
x∈L/Z(L)

C
∧
L(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤
Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
+

Z(L)| | − Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

q L| |
+

1
L| |

2 􏽘
x∈L/Z(L)

CL

􏼌􏼌􏼌􏼌 (x)|

� d(L) −
q − 1

q
􏼠 􏼡

Z(L)| | − Z
∧
(L)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

L| |
.

(17)

By Teorem 6, it is obvious that d∧(L)≤ d(L) for every
Lie algebra L. If we have the equality d∧(L) � d(L), then L

is called unidegree. Lie algebras with the trivial Schur
multiplier are a known example of unidegree Lie algebra.
Also, a Lie algebra is called unicentral if Z∧(L) � Z(L).

One can easily see that every unidegree Lie algebra is
unicentral, by Teorem 6, but the converse is not true. For
example, if L � H(m), where m≥ 2, then L is unicentral,
but it is not unidegree as d(L)≠d∧(L) by Proposition 5
and Example 1.
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Te following example shows that the previous theorem
makes some computations easier. □

Example 2. Let L be the Lie algebra 〈x, y ∣ [x, y] � x〉. We
show that M(L) is trivial and d∧(L) � q2 + q − 1/q3 for all
q≥ 2. First, we compute the Schur multiplier of L by the used
method of Hardy and Stitzinger in [3]. Using the notation of
[3], we have [x, y] � x + s1, where M(L) � 〈s1〉. By
changing the variable as x′ � x + s1, we have s1 � 0, and
consequently, M(L) is trivial. So, d∧(L) � d(L) � q2 + q −

1/q3 by Example 1 and Teorem 6.

We are going to give the precise structure of Lie algebras
when d∧(L) � q2 + q − 1/q3.

First, we need to state the following lemma.

Lemma 7. Let L1 and L2 be two Lie algebras. Ten,
d∧(L1 ⊕L2)≤ d∧(L1)d

∧(L2).

Proof. We show that C∧L1 ⊕ L2
((x, y))⊆C∧L1

(x)⊕C∧L2
(y).

Assume that (x1, y1) ∈ C∧L1 ⊕ L2
((x, y)). Ten, (x1, y1)

∧ (x, y) � (0, 0). Te isomorphism

L1 ⊕ L2( 􏼁∧ L1 ⊕L2( 􏼁 � L1 ∧ L1( 􏼁⊕ L1 ⊗ L2( 􏼁⊕ L2 ∧L2( 􏼁,

(18)

in ([2], Page 107) implies x1 ∧x � 0 and y1 ∧y � 0. Hence,
x1 ∈ C∧L1

(x) and y1 ∈ C∧L2
(y). So, (x1, y1) ∈ C∧L1

(x)⊕C∧L2
(y). Hence,

d
∧

L1 ⊕L2( 􏼁 � 􏽘
(x,y)∈L1⊕L2

C
∧
L1⊕L2

((x, y))
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

L1 ⊕L2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ 􏽘

x∈L1

􏽘
y∈L2

C
∧
L1

(x)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 C
∧
L2

(y)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

L2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

� 􏽘
x∈L1
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(19)

Te next lemma and proposition are necessary to prove
Teorem 10. □

Lemma 8. Let L be isomorphic to either
〈x, y ∣ [x, y] � x〉⊕A(n) or H(1)⊕A(n), where n≥ 0.

Ten,

(i) d∧(〈x, y ∣ [x, y] � x〉⊕A(n))≤ d∧(〈x, y ∣ [x, y] �

x〉⊕A(1)) such that n≥ 2,

(ii) d∧(H(1)⊕A(n)) ≤d∧(H(1)) such that n≥ 1.

Proof. (i)Wemay proceed by induction on n. First, let n � 2.

Since d∧(A(1)) � 1 by part (i) of Proposition 3, we have

d
∧
(〈x, y ∣ [x, y] � x〉⊕A(2)) � d

∧
((〈x, y ∣ [x, y] � x〉⊕A(1))⊕A(1))

≤d
∧
(〈x, y ∣ [x, y] � x 〉⊕A(1))d

∧
(A(1)) � d

∧
(〈x, y ∣ [x, y] � x 〉⊕A(1)),

(20)

by Lemma 7. Te result follows by induction hypnotises and
part (i) of Proposition 3. (ii) Te proof of this part is similar
to part (i). □

Proposition 9. Let L be isomorphic to 〈x, y ∣ [x,

y] � x〉⊕ 〈z〉. Ten,

(i) M(L) � A(1) and L∧L � 〈x∧y, y∧ z〉 � A(2),

(ii) L is capable,
(iii) d∧(L) � 2q2 − 1/q4.

Proof. (i) We know that M(〈x, y ∣ [x, y] � x〉) and
M(〈z〉) are trivial by Proposition 3.2 and ([7], Lemma 23),
respectively. On the other hand,

dimM(L) � dimM(〈x, y ∣ [x, y] � x〉) + dimM(〈z〉) + dim(A(1) ⊗ A(1)), (21)
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by ([3], Teorem 1) and consequently M(L) � A(1). By
([2], Teorem 35 (iii)), we have dim L∧L � dim L2

+ dimM(L) � 2. Also,

x∧ z � [x, y]∧ z � x∧ [y, z] + y∧ [z, x]) � 0,

[x∧y, y∧ z] � [x, y]∧ [y, z] � 0,

(22)

imply that L∧ L � 〈x∧y, y∧ z〉 � A(2), as required. (ii)
Since L/Z(L) � 〈x, y ∣ [x, y] � x〉, we have M(L/Z(L)) �

0 by Proposition 3.2. Te ρ: M(L)⟶M(L/Z(L)) is not
a monomorphism and so L is capable by ([5], Teorem 4.4).
(iii) Assume that a ∈ L/Z∧(L). Tus, a � α1x + α2y + α3z
for all αi ∈ Fq such that 1≤ i≤ 3. Let α1 ≠ 0. Ten, Imφa �

〈α2(y∧x), α1(x∧y) + α3(z∧y), α2(y∧ z)〉. If α2 � 0, then
dimImφa � 1 and the number of such elements is (q − 1)q. If
α2 ≠ 0 and α2 is nonzero, then dimImφa � 2 and the number
of these elements is equal to (q − 1)2q. If a � α2y + α3z with
α2 ≠ 0, then Imφa � 〈α2(y∧x), α3(z∧y), α2(y∧ z)〉.

Again, dimImφa � 2 and the number of elements in this case
is equal to (q − 1)q. By a similar method, if a � α3z with
α3 ≠ 0, then dimImφa � 1 and the number of such elements
is equal to q − 1. Also, by part (ii), L is capable, which implies
that Z∧(L) � 0. Terefore, by Lemma 2,

d
∧
(L) �

1
L| |

􏽘
a∈L

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
L| |

+
1
L| |

􏽘
a≠0

1
Imφa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
q
3 +

1
q
3

q
2

− 1
q

+
q
3

− q
2

q
2􏼠 􏼡 �

2q
2

− 1
q
4 .

(23)

Now, we are ready to give the structure of Lie algebras
when d∧(L) � q2 + q − 1/q3. □

Theorem 10. Let L be a Lie algebra. Ten, d∧(L) � q2 + q −

1/q3 if and only if L is isomorphic to 〈x, y ∣ [x, y] � x〉.

Proof. Assume that d∧(L) � q2 + q − 1/q3 thus
d∧(L)≤ d(L)≤ q2 + q − 1/q3, by Teorem 6. It implies that
d(L) � q2 + q − 1/q3. On the other hand, d(L) � q2 + q −

1/q3 if and only if L is isomorphic to 〈x, y, z ∣ [x, y] � z〉 �

H(1)⊕A(n) or 〈x, y ∣ [x, y] � x〉⊕A(n), where n≥ 0, by
using Example 1 and [[8], Page 20]. Since d∧(L) �

q2 + q − 1/q3, then L is isomorphic to 〈x, y ∣ [x, y] � x〉 by
Lemma 8 and Propositions 5 and 9, as required. Te con-
verse follows from Example 2 directly. □

For future research studies, we may pose the following
problem.

Problem. Which rational number can be the exterior
degree of some Lie algebras? For such rational numbers, we
describe the structure of Lie algebras with the exterior
degree.
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