Classification of p**-groups via their** 2**-nilpotent multipliers**

PEYMAM NIROOMAND (*) – MOHSEN PARVIZI (**)

ABSTRACT – For a p-group of order p^n , it is known that the order of 2-nilpotent multiplier is equal to $|M^{(2)}(G)| = p^{\frac{1}{2}n(n-1)(n-2)+3-s_2(G)}$, for an integer s₂(G). In this article, we characterize all non-abelian *p*-groups satisfying $s_2(G) \in \{1, 2, 3\}.$

Mathematics Subject Classification (2020) – Primary 20C25; Secondary 20D15.

 K EYWORDS – Nilpotent multiplier, Schur multiplier, non-abelian p -groups, 2-capable groups, capable groups, extra-special groups.

1. Preliminaries

The 2-nilpotent multiplier of a group is a generalization of the well-known notion of Schur multiplier. The latter was introduced by J. Schur in his works on projective representations in [\[15\]](#page-9-0) and plays a considerable role in classifying groups. In fact, 2-nilpotent multiplier is a special case of the more general notion of Baer invariant.

For a group G with a free presentation $G \cong F/R$, the c-nilpotent multiplier of G, $\mathcal{M}^{(c)}(G)$, is defined as

$$
\frac{R \cap \gamma_{c+1}(F)}{[R,cF]},
$$

in which $\gamma_{c+1}(F)$ is the c-th term of the lower central series of F, and $[R, cF] =$ $[[R, c-1]F], F]$ (see [\[4\]](#page-8-0)).

The motivation of studying the 2-nilpotent multiplier comes from [\[4\]](#page-8-0). It is the connection to isologism of groups which is an important tool in classifying groups.

^(*) *Indirizzo dell'A.*: School of Mathematics and Computer Science, Damghan University, Damghan, Iran; [niroomand@du.ac.ir,](mailto:niroomand@du.ac.ir) p_niroomand@yahoo.com

^(**) *Indirizzo dell'A.*: Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran; parvizi@math.um.ac.ir

Recall from [\[6\]](#page-8-1) that a group G which is isomorphic to $H/Z₂(H)$, for some group H, is called 2-capable. Choose a free presentation $G \cong F/R$, and consider the natural epimorphism α : $F/[R, F, f] \to G$. We may define $Z_2^*(G) = \alpha(Z_2(F/[R, F, F]))$. Proposition 1.2 in [\[4\]](#page-8-0) allows us to decide when a group G is 2-capable. More precisely, G is 2-capable if and only if $Z_2^*(G) = 1$. There is a somehow different way for detecting 2-capable groups using the notion of 2-nilpotent multiplier. In more detail, for a group G, the natural epimorphism $\mathcal{M}^{(2)}(G) \to \mathcal{M}^{(2)}(G/N)$ is a monomorphism if and only if N is a subgroup of $Z_2^*(G)$ (see [\[4,](#page-8-0) Lemma 2.1]).

Now, we restrict our study to finite p -groups. A famous result of Green shows that for a given finite 2-group G of order p^n , $|\mathcal{M}(G)| = p^{\frac{1}{2}n(n-1)-t(G)}$ for some integer $t(G) > 0$. Several authors worked on classifying the structure of G in term of $t(G)$ when $0 \le t(G) \le 5$ (see [\[1,](#page-8-2) [12–](#page-9-1)[14,](#page-9-2) [16\]](#page-9-3)). In [\[10\]](#page-9-4), considering only non-abelian finite p -groups, a Green-type inequality was obtained. The first-named author showed that $|\mathcal{M}(G)| \leq p^{\frac{1}{2}(n-1)(n-2)+1}$, where G is a finite p-group of order p^n , and hence there is an integer $s(G)$ such that $|\mathcal{M}(G)| = p^{\frac{1}{2}(n-1)(n-2)+1-s(G)}$. A similar result for the 2-nilpotent multiplier of finite p -groups appeared in [\[14\]](#page-9-2). The authors proved for a non-abelian p-group of order p^n that there exists an integer $s_2(G)$ such that $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{2}n(n-1)(n-2)+3-s_2(G)}$, and the structure of all p-groups are classified when $s_2(G) = 0$. In the present paper, by the same motivation as in [\[1,](#page-8-2) [13,](#page-9-5) [14,](#page-9-2) [16\]](#page-9-3), we are interested in characterizing p-groups up to isomorphisms when $s_2(G) \in \{1, 2, 3\}$.

Let us start by stating some lemmas which are needed for the present work. In the following lemma, $G_1 \otimes G_2$ denotes the non-abelian tensor product of two arbitrary groups G_1 and G_2 , and $G_1 \wedge G_2$ denotes the non-abelian exterior product. For more information on these two concepts one may see [\[2\]](#page-8-3). It is worth noting that if G_1 and G_2 are two groups acting trivially on each other, then $G_1 \otimes G_2$ coincides with the usual tensor product $G_1/G_1' \otimes G_2/G_2'$ of abelian groups, by [\[3,](#page-8-4) Proposition 2.4].

LEMMA 1.1 ([\[5,](#page-8-5) Proposition 2], [\[7,](#page-9-6) [9\]](#page-9-7)). Let G be a finite group and $B \le G$. Set $A = G/B$.

(i) (a) If $B \subseteq Z_2(G)$ *, then*

 $|\mathcal{M}^{(2)}(G)| |B \cap \gamma_3(G)|$ divides $|\mathcal{M}^{(2)}(A)|$ $\left(B\otimes\frac{G}{G}\right)$ $_{\gamma 3}(G)$ $\alpha \stackrel{G}{\sim}$ $_{\gamma 3}(G)$ $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

(b) *The sequence*

$$
(B \wedge G) \wedge G \to \mathcal{M}^{(2)}(G) \to \mathcal{M}^{(2)}(G/B) \to B \cap \gamma_3(G) \to 1
$$

is exact.

(ii) $|\mathcal{M}^{(2)}(A)|$ *divides* $|\mathcal{M}^{(2)}(G)|$ $|B \cap \gamma_3(G)|/|[[B, G], G]|$.

:

The following result plays an essential role in the rest of the paper.

LEMMA 1.2 ([\[8\]](#page-9-8)). *Let G be a finite group. Put* $G^{ab}=G/G'$ *. Then there is a natural isomorphism*

$$
\mathcal{M}^{(2)}(G \times H) \cong \mathcal{M}^{(2)}(G) \times \mathcal{M}^{(2)}(H)
$$

$$
\times (G^{ab} \otimes G^{ab}) \otimes H^{ab} \times (H^{ab} \otimes H^{ab}) \otimes G^{ab}.
$$

The following two lemmas are from [\[14\]](#page-9-2).

LEMMA 1.3. Let G be an extra-special p-group of order p^{2n+1} .

- (i) If $n > 1$, then $\mathcal{M}^{(2)}(G)$ is an elementary abelian p-group of order $p^{\frac{1}{3}(8n^3-2n)}$.
- (ii) Suppose that $|G| = p^3$ and p is odd. Then $\mathcal{M}^{(2)}(G) = \mathbb{Z}_p^{(5)}$ if G is of exponent p and $\mathcal{M}^{(2)}(G) = \mathbb{Z}_p \times \mathbb{Z}_p$ if G is of exponent p^2 .
- (iii) *The quaternion group of order* 8 *has Klein four-group as the* 2*-nilpotent multiplier, whereas the* 2-nilpotent multiplier of the dihedral group of order 8 is $\mathbb{Z}_2 \oplus \mathbb{Z}_4$.

LEMMA 1.4. Let $G = \mathbb{Z}_{p^{m_1}} \oplus \mathbb{Z}_{p^{m_2}} \oplus \cdots \oplus \mathbb{Z}_{p^{m_k}}$, where $m_1 \geq m_2 \geq \cdots \geq m_k$ and $\sum_{i=1}^{k} m_i = n$. Then

- (i) $|M^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n+1)}$ *if and only if* $m_i = 1$ *for all i*;
- (ii) $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)}$ *if and only if* $m_1 \geq 2$ *.*

2. Main results

As mentioned above, we know that the order of the 2-nilpotent multiplier of a finite non-abelian *p*-group of order p^n is bounded by $p^{\frac{1}{3}n(n-1)(n-2)+3}$, therefore for any group G there exists a non-negative integer $s_2(G)$ for which

$$
|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)+3-s_2(G)}.
$$

In this paper, we characterize the explicit structures of finite non-abelian p -groups when $s_2(G) \in \{1, 2, 3\}.$

First, we state the following theorem from [\[14\]](#page-9-2) to prove that the only groups which may have the desired property are those with small derived subgroups.

THEOREM 2.1. Let G be a p-group of order p^n with $|G'| = p^m$ ($m \ge 1$). Then

$$
|\mathcal{M}^{(2)}(G)| \le p^{\frac{1}{3}(n-m)((n+2m-2)(n-m-1)+3(m-1))+3}
$$

and the equality holds if and only if $G \cong E_1 \times \mathbb{Z}_p^{(n-3)}$.

LEMMA 2.2. Let G be a non-abelian p-group of order p^n with $|G'| \geq p^3$. Then $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)-2}.$

PROOF. Just use Theorem [2.1](#page-2-0) and the fact that *n* is at least 5.

The following lemma has a completely similar proof to that of Lemma [2.2.](#page-3-0)

LEMMA 2.3. Let G be a non-abelian p-group of order p^n with $|G'| = p^2$. Then $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)+1}.$

The following theorem gives an upper bound for the order of the 2-nilpotent multiplier of a finite group G. Since B and G/B act trivially on each other, $B \otimes G/B$ is isomorphic to the usual tensor product $B \otimes (G/G'B)$, by [\[3,](#page-8-4) Proposition 2.4].

Theorem 2.4. *Let* G *be a* p*-group and* B *be a cyclic central subgroup of* G*. Then*

$$
|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/B)| \, |(B \otimes G/G'B) \otimes G/G'|.
$$

PROOF. Let $G = F/R$ and $B = S/R$ be free presentations for G and B, respectively. Since B is central, we have $[S, F] \subseteq R$, and also $R \cap S' = [R, S]$ because B is cyclic. Now $S' \subseteq R$, and so $S' = [R, S]$.

By definition, we have

$$
\mathcal{M}^{(2)}(G) \cong \frac{R \cap \gamma_3(F)}{[R, F, F]} \quad \text{and} \quad \mathcal{M}^{(2)}(G/B) \cong \frac{S \cap \gamma_3(F)}{[S, F, F]},
$$

and so

$$
|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/B)| \left| \frac{[S, F, F]}{[R, F, F]} \right|.
$$

The proof is completed if there exists a well-defined epimorphism

$$
\overline{\psi}: S/R \otimes F/SF' \otimes F/RF' \longrightarrow \frac{[S, F, F]}{[R, F, F]}.
$$

To get this, considering the universal property of the usual tensor product of abelian groups, it is enough to produce a well-defined multi-linear map ψ by the rule

$$
\psi(sR, f_1SF', f_2RF') = [s, f_1, f_2][R, F, F].
$$

First we show that

$$
[sr, f1s' \gamma', f2r' \gamma] \equiv [s, f1, f2] \pmod{[R, F, F]}
$$

where $r, r' \in R$, $s, s' \in S$ and $\gamma, \gamma' \in F'$.

 \blacksquare

Expanding the commutator on the left hand side we have $[sr, f_1s' \gamma', f_2r' \gamma] =$ $[sr, f_1s'\gamma', r'\gamma][sr, f_1s'\gamma', f_2][sr, f_1s'\gamma', f_2, r'\gamma]$. Trivially, $[sr, f_1s'\gamma', f_2, r'\gamma] \in$ $[S, F, F, F]$, but $[S, F] \subseteq R$, hence $[S, F, F, F] \subseteq [R, F, F]$. On the other hand, $[sr, f_1s'\gamma', r'\gamma] = [sr, f_1s'\gamma', \gamma][sr, f_1s'\gamma', r'][sr, f_1s'\gamma', r', \gamma]$, which is contained in $[S, F, F'] [S, F, R]$. A simple use of the three subgroup lemma shows that the latter is contained in [R, F, F]. We claim that $[sr, f_1s'\gamma', f_2r'\gamma] \equiv [sr, f_1s'\gamma', f_2]$ (mod $[R, F, F]$). Using commutator calculus again, we get

$$
[sr, f_1s'\gamma', f_2] = [sr, s'\gamma', f_2][sr, s'\gamma', f_2, [sr, f_1]^{s'\gamma'}][[sr, f_1]^{s'\gamma'}, f_2].
$$

It is easy to see that

$$
[sr, s'\gamma', f_2][sr, s'\gamma', f_2, [sr, f_1]^{s'\gamma'}] \in [S, SF', F] = [S, S, F][S, F', F]
$$

but we have

$$
[S, S, F] = [S', F] = [R, S, F] \subseteq [R, F, F]
$$

and

$$
[S, F', F] \subseteq [S, F, F, F] = [R, F, F].
$$

Finally, $[[sr, f_1]^{s'p'}, f_2] = [sr, f_1, f_2][sr, f_1, f_2, [sr, f_1, s'p']][sr, f_1, s'p', f_2]$, and for the last two we have $[sr, f_1, f_2, [sr, f_1, s'\gamma']][sr, f_1, s'\gamma', f_2] \in [S, F, F, F] \subseteq [R, F, F]$. The first one can be decomposed as

$$
[sr, f_1, f_2] = [s, f_1, f_2] [s, f_1, f_2, [s, f_1, r]]
$$

$$
\cdot [s, f_1, r, f_2] [[s, f_1]^r, f_2, [r, f_1]] [r, f_1, f_2],
$$

and we have

$$
[s, f_1, f_2, [s, f_1, r]][s, f_1, r, f_2] \cdot [[s, f_1]^r, f_2, [r, f_1]][r, f_1, f_2]
$$

$$
\in [S, F, F, F][R, F, F] \subseteq [R, F, F].
$$

The multi-linearity of this mapping follows by a straightforward application of commutator calculus.

Considering Lemmas [2.2](#page-3-0) and [2.3,](#page-3-1) in order to characterize all p-groups with $s_2(G) \in$ $\{1, 2, 3\}$, it is enough to work with p-groups with $|G'| \leq p^2$. First we deal with those groups having commutator subgroup of order p. If G/G' is not elementary abelian, we have:

LEMMA 2.5. Let G be a p-group of order $pⁿ$ with G' of order p. If G/G' is not *elementary abelian, then*

$$
|\mathcal{M}^{(2)}(G)| \le p^{\frac{1}{3}n(n-1)(n-2)-2}.
$$

PROOF. We use Theorem [2.4](#page-3-2) with $B = G'$, to get

$$
|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/G')| |G' \otimes G/G' \otimes G/G'|.
$$

Since G/G' is not elementary abelian, by using Lemma [1.4](#page-2-1) we have

$$
|\mathcal{M}^{(2)}(G/G')| \le p^{\frac{1}{3}(n-1)(n-2)(n-3)}.
$$

Since $|G' \otimes G/G' \otimes G/G'| \leq p^{(n-2)^2}$, we get the result.

Now we may assume that G/G' is elementary abelian. In [\[10,](#page-9-4) Lemma 2.1] p-groups with $G' = \phi(G)$ (the Frattini subgroup) of order p are classified as the central product of an extra-special p-group H by the center $Z(G)$ of G; that is, $G = H \cdot Z(G)$. Now, depending on how G' embeds into $Z(G)$, we have the following lemma which has a straightforward proof.

LEMMA 2.6. Let G be a p-group with $G' = \phi(G)$ of order p. Then:

- (i) If G' is a direct summand of $Z(G)$, then $G = H \times K$ for some finite abelian group K*.*
- (ii) If G' is not a direct summand of $Z(G)$, then $G = (H \cdot \mathbb{Z}_{p^2}) \times K$ where K is a *finite abelian* p*-group.*

Proof. As G is a p-group and $|G'| = p$, we have $G' \subseteq Z(G)$. Consider G/G' as a vector space over \mathbb{Z}_p and let H/G' be a complement to $Z(G)/G'$ in it. It is easy to see that $G = H \cdot Z(G)$ and $H \cap Z(G) = G'$. Now, if G' is a direct summand of $Z(G)$, then we have $Z(G) = G' \times K$ for some abelian subgroup K of $Z(G)$ and hence $G = H \times K$. If G' is not a direct summand of $Z(G)$, we have $exp(Z(G)) = p^2$, because G/G' is an elementary abelian p-group and $G' \subseteq Z(G)$. Now it is easy to see that $Z(G) = \mathbb{Z}_{p^2} \times K$ and $G' \subseteq \mathbb{Z}_{p^2}$, so we can write $G = (H \cdot \mathbb{Z}_{p^2}) \times K$.

As we consider the groups for which G/G' is elementary abelian, we have only the following two cases:

$$
(1) G = H \times T,
$$

(2) $G = H \cdot \mathbb{Z}_{p^2} \times T$,

where T is an elementary abelian p -group. By Lemma [1.2,](#page-2-2) without loss of generality we can assume that $Z(G) = \mathbb{Z}_{p^2}$. For the groups of type (1) we have the following theorem.

П

THEOREM 2.7. Let $G = H \times T$, where H *is an extra-special p-group and* T *is an elementary abelian* p*-group. Then:*

- (i) If $H = E_1$ then $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)+3}$.
- (ii) If $H = D_8$ then $|\mathcal{M}^{(2)}(G)| = 2^{\frac{1}{3}n(n-1)(n-2)+1}$.
- (iii) *In all other cases,* $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}$.

Proof. It is just straightforward computations using Lemmas [1.2](#page-2-2) and [1.3.](#page-2-3)

For the groups of type (2), first we compute the order of the 2-nilpotent multiplier of $H \cdot \mathbb{Z}_{n^2}$. It should be noted that, as mentioned before Theorem [2.7,](#page-6-0) we may assume that $Z(G) = \mathbb{Z}_{p^2}$.

THEOREM 2.8. *With the above notation and assumptions, let* $G = H \cdot \mathbb{Z}_{p^2}$ *be of order* p^n *. Then* $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}$ *.*

PROOF. Using Theorem [2.4](#page-3-2) with $B = \mathbb{Z}_{p^2}$, we get

$$
|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/\mathbb{Z}_{p^2})| |\mathbb{Z}_{p^2} \otimes G/\mathbb{Z}_{p^2} \otimes G/G'|.
$$

In order to compute $|\mathcal{M}^{(2)}(G/\mathbb{Z}_{n^2})|$, we have

$$
\frac{G}{\mathbb{Z}_{p^2}} = \frac{H \cdot \mathbb{Z}_{p^2}}{\mathbb{Z}_{p^2}} \cong \frac{H}{H \cap \mathbb{Z}_{p^2}}.
$$

But as we had in the proof of Lemma [2.6,](#page-5-0) $H \cap \mathbb{Z}_{p^2} = G'$. Therefore, $G/\mathbb{Z}_{p^2} \cong H/G'$. By assumption, $|H| = p^{2m+1}$, so H/G' is an elementary abelian p-group of order p^{2m} , hence using Lemma [1.2](#page-2-2) and the multi-linearity of the tensor product of abelian groups, we have

$$
|\mathcal{M}^{(2)}(G/\mathbb{Z}_{p^2})| = p^{\frac{1}{3}2m(2m+1)(2m-1)} \quad \text{and} \quad |\mathbb{Z}_{p^2} \otimes G/\mathbb{Z}_{p^2} \otimes G/G'| = p^{(2m+1)^2}.
$$

After some computations, one gets $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)}$. Now, Lemma [1.1\(](#page-1-0)a) with $B = G'$ shows that $|\mathcal{M}^{(2)}(G/G')| \leq |\mathcal{M}^{(2)}(G)|$. The result now follows by using Lemma [1.4.](#page-2-1) \blacksquare

Now the following theorem, whose proof is completely similar to the last two ones, completes the groups of type (2).

THEOREM 2.9. Let $G = H \cdot \mathbb{Z}_{p^2} \times T$ be of order p^n , where T is an elementary abelian p-group and H is an extra-special p-groups. Then $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}.$

In the rest we concentrate on the groups with the derived subgroup of order p^2 .

LEMMA 2.10. Let G be a p-group of order $pⁿ$ with G' of order $p²$. If $Z(G)$ is not *elementary abelian, then* $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)-2}$.

Proof. Choose $B \subseteq Z(G)$ cyclic of order p^2 and use Theorem [2.4](#page-3-2) to obtain

$$
|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/B)| \, |B \otimes G/B \otimes G/G'|.
$$

Since

$$
|\mathcal{M}^{(2)}(G/B)| \le p^{\frac{1}{3}(n-1)(n-2)(n-3)} \quad \text{and} \quad |B \otimes G/B \otimes G/G'| \le p^{(n-2)^2},
$$

we have $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)-2}$, and the result follows.

In the class of groups with an elementary abelian center we must consider the following two lemmas.

 L ЕММА 2.11. Let G be a p-group of order p^n with G' of order p^2 . Let $Z(G)$ be ele*mentary abelian.* If $|Z(G)| \ge p^3$ or $|Z(G)| = p^2$, and $G' \ne Z(G)$, then $|\mathcal{M}^{(2)}(G)| \le$ $p^{\frac{1}{3}n(n-1)(n-2)-2}.$

PROOF. Let K be a central subgroup of order p with $K \cap G' = 1$. By Lemma [1.1\(](#page-1-0)a), we have $|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/K)| |K \otimes G/\gamma_3(G) \otimes G/\gamma_3(G)|$. But G/K is a nonabelian p-group with $|(G/K)'| = p^2$, thus $|\mathcal{M}^{(2)}(G/K)| \leq p^{\frac{1}{3}(n-1)(n-2)(n-3)+1}$ by Lemma [2.9.](#page-6-1) Since $|K \otimes G/\gamma_3(G) \otimes G/\gamma_3(G)| \leq p^{(n-2)^2}$, the result follows.

LEMMA 2.12. Let G be a p-group of order p^n with G' of order p^2 . If G/G' is not *elementary, then* $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)-2}$.

PROOF. The result is obtained by a similar argument used in the proof of Lemma [2.5](#page-4-0) and Theorems [2.7](#page-6-0) and [2.8.](#page-6-2)

The next lemma shows that the same upper bound in Lemma [2.11](#page-7-0) works when $Z(G)$ is of order p.

LEMMA 2.13. Let G be a p-group of order p^n with G' of order p^2 . If $|Z(G)| = p$, *then* $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}n(n-1)(n-2)-2}$.

Proof. By using Lemma [1.1\(](#page-1-0)a) when $B = Z(G)$, and Theorems [2.7](#page-6-0) and [2.8,](#page-6-2) the result follows.

The last case is the one for which $G' = Z(G) \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$.

 \blacksquare

THEOREM 2.14. *There is no finite p-group of order* p^n with $G' = Z(G) \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$ such that $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}$.

Proof. By contradiction, assume that there is a finite p -group G of order p^n such that $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}$ and $G' = Z(G) \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$. Let K be a central subgroup of order p in G' ; by Lemma [1.1\(](#page-1-0)a), we have $|\mathcal{M}^{(2)}(G)| \leq |\mathcal{M}^{(2)}(G/K)| \, |K \otimes$ $G/G' \otimes G/G'$. Now Theorems [2.7](#page-6-0) and [2.8](#page-6-2) show that

$$
|\mathcal{M}^{(2)}(G/K)| \le p^{\frac{1}{3}(n-1)(n-2)(n-3)+3},
$$

whereas G/G' is elementary abelian by Lemma [2.12.](#page-7-1) Therefore, $p^{\frac{1}{3}n(n-1)(n-2)}$ $|\mathcal{M}^{(2)}(G)| \leq p^{\frac{1}{3}(n-1)(n-2)(n-3)+3} p^{(n-2)^2}$, whence $n \leq 5$. Since $n \neq 4$, we have $n = 5$. Now [\[11,](#page-9-9) page 345] shows that $G \cong \mathbb{Z}_p^{(4)} \rtimes \mathbb{Z}_p$. By a similar argument used in the proof of [\[14,](#page-9-2) Theorem 3.5], we have $|\mathcal{M}^{(2)}(G)| = p^{18}$, which is a contradiction. Hence, the assumption is false and the result follows.

We conclude summarizing the achieved results.

Theorem 2.15. *Let* G *be a non-abelian* p*-group of order* p n *. Then:*

- (i) *There is no group* G with $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)+2}$.
- (ii) $|\mathcal{M}^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)+1}$ *if and only if* $p = 2$ *and* $G \cong D_8 \times \mathbb{Z}_2^{(n-3)}$ $\frac{(n-3)}{2}$.
- (iii) $|M^{(2)}(G)| = p^{\frac{1}{3}n(n-1)(n-2)}$ *if and only if* $G \cong H_m \times \mathbb{Z}_p^{(n-2m-1)}$ *, where* H_m *is an extra-special p-group of order* p^{2m+1} *and* $m \geq 2$ *or* $G \cong H_m \cdot \mathbb{Z}_{p^2} \times \mathbb{Z}_p^{(n-2m-2)}$.

REFERENCES

- [1] Y. G. BERKOVICH, [On the order of the commutator subgroup and the Schur multiplier of a](https://doi.org/10.1016/0021-8693(91)90106-I) finite p[-group.](https://doi.org/10.1016/0021-8693(91)90106-I) *J. Algebra* **144** (1991), no. 2, 269–272. Zbl [0739.20005](https://zbmath.org/?q=an:0739.20005) MR [1140606](https://mathscinet.ams.org/mathscinet-getitem?mr=1140606)
- [2] R. Brown – D. L. Johnson – E. F. Robertson, [Some computations of nonabelian tensor](https://doi.org/10.1016/0021-8693(87)90248-1) [products of groups.](https://doi.org/10.1016/0021-8693(87)90248-1) *J. Algebra* **111** (1987), no. 1, 177–202. Zbl [0626.20038](https://zbmath.org/?q=an:0626.20038) MR [913203](https://mathscinet.ams.org/mathscinet-getitem?mr=913203)
- [3] R. Brown – J.-L. Loday, [Van Kampen theorems for diagrams of spaces.](https://doi.org/10.1016/0040-9383(87)90004-8) *Topology* **26** (1987), no. 3, 311–335. Zbl [0622.55009](https://zbmath.org/?q=an:0622.55009) MR [899052](https://mathscinet.ams.org/mathscinet-getitem?mr=899052)
- [4] J. Burns – G. Ellis, [On the nilpotent multipliers of a group.](https://doi.org/10.1007/PL00004348) *Math. Z.* **226** (1997), no. 3, 405–428. Zbl [0892.20024](https://zbmath.org/?q=an:0892.20024) MR [1483540](https://mathscinet.ams.org/mathscinet-getitem?mr=1483540)
- [5] J. Burns – G. Ellis, [Inequalities for Baer invariants of finite groups.](https://doi.org/10.4153/CMB-1998-051-3) *Canad. Math. Bull.* **41** (1998), no. 4, 385–391. Zbl [0943.20029](https://zbmath.org/?q=an:0943.20029) MR [1658215](https://mathscinet.ams.org/mathscinet-getitem?mr=1658215)
- [6] M. HALL, Jr. – J. K. SENIOR, *The groups of order* 2^n ($n \le 6$). The Macmillan Company, New York; Collier Macmillan Ltd., London, 1964. MR [0168631](https://mathscinet.ams.org/mathscinet-getitem?mr=0168631)
- [7] A. S.-T. Lue, [The Ganea map for nilpotent groups.](https://doi.org/10.1112/jlms/s2-14.2.309) *J. London Math. Soc. (2)* **14** (1976), no. 2, 309–312. Zbl [0357.20030](https://zbmath.org/?q=an:0357.20030) MR [430103](https://mathscinet.ams.org/mathscinet-getitem?mr=430103)
- [8] M. R. R. Moghaddam, [The Baer-invariant of a direct product.](https://doi.org/10.1007/BF01222793) *Arch. Math. (Basel)* **33** (1979/80), no. 6, 504–511. Zbl [0413.20025](https://zbmath.org/?q=an:0413.20025) MR [570485](https://mathscinet.ams.org/mathscinet-getitem?mr=570485)
- [9] M. R. R. Moghaddam, Some inequalities for the Baer-invariant of a finite group. *Bull. Iranian Math. Soc.* **9** (1981/82), no. 1, 5–10. MR [660335](https://mathscinet.ams.org/mathscinet-getitem?mr=660335)
- [10] P. Niroomand, [On the order of Schur multiplier of non-abelian](https://doi.org/10.1016/j.jalgebra.2009.09.030) p-groups. *J. Algebra* **322** (2009), no. 12, 4479–4482. Zbl [1186.20013](https://zbmath.org/?q=an:1186.20013) MR [2558872](https://mathscinet.ams.org/mathscinet-getitem?mr=2558872)
- [11] P. Niroomand, [A note on the Schur multiplier of groups of prime power order.](https://doi.org/10.1007/s11587-012-0134-4) *Ric. Mat.* **61** (2012), no. 2, 341–346. Zbl [1305.20021](https://zbmath.org/?q=an:1305.20021) MR [3000665](https://mathscinet.ams.org/mathscinet-getitem?mr=3000665)
- [12] P. NIROOMAND, Characterizing finite p-groups by their Schur multipliers, $t(G) = 5$. *Math. Rep. (Bucur.)* **17(67)** (2015), no. 2, 249–254. Zbl [1374.20017](https://zbmath.org/?q=an:1374.20017) MR [3375732](https://mathscinet.ams.org/mathscinet-getitem?mr=3375732)
- [13] P. Niroomand, Classifying p-groups by their Schur multipliers. *Math. Rep. (Bucur.)* **20(70)** (2018), no. 3, 279–284. Zbl [1424.20006](https://zbmath.org/?q=an:1424.20006) MR [3873102](https://mathscinet.ams.org/mathscinet-getitem?mr=3873102)
- [14] P. Niroomand – M. Parvizi, [On the 2-nilpotent multiplier of finite](https://doi.org/10.1017/S0017089514000263) p-groups. *Glasg. Math. J.* **57** (2015), no. 1, 201–210. Zbl [1311.20010](https://zbmath.org/?q=an:1311.20010) MR [3292687](https://mathscinet.ams.org/mathscinet-getitem?mr=3292687)
- [15] J. Schur, [Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene](https://doi.org/10.1515/crll.1907.132.85) [lineare Substitutionen.](https://doi.org/10.1515/crll.1907.132.85) *J. Reine Angew. Math.* **132** (1907), 85–137. Zbl [38.0174.02](https://zbmath.org/?q=an:38.0174.02) MR [1580715](https://mathscinet.ams.org/mathscinet-getitem?mr=1580715)
- [16] X. M. Zhou, [On the order of Schur multipliers of finite](https://doi.org/10.1080/00927879408824827) p-groups. *Comm. Algebra* **22** (1994), no. 1, 1–8. Zbl [0832.20038](https://zbmath.org/?q=an:0832.20038) MR [1255666](https://mathscinet.ams.org/mathscinet-getitem?mr=1255666)

Manoscritto pervenuto in redazione il 3 ottobre 2020.