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Abstract In a dimensionless multi-scalar extension of the
Standard Model, Gildener and Weinberg assumed that along
a flat direction, there is only one classically massless scalar,
known as the scalon, which acquires mass through radiative
corrections à la Coleman–Weinberg, while all other scalars
remain heavy. In this paper, by introducing a toy model with
four scalar degrees of freedom we demonstrate the existence
of two scalons along a specific flat direction that we con-
struct. We present the effective potential for the model and
provide the masses of the heavy scalars and two radiatively
light pseudo-Goldstone bosons.

1 Introduction

Gildener and Weinberg (GW) [7] came up with a generic
dimensionless multi-scalar model as an extension to the Stan-
dard Model Higgs potential for which the theory undergoes
a dynamical electroweak symmetry breaking through the
radiative corrections à la Coleman–Weinberg [2].

In the approach of GW, a quartic multi-scalar potential
V = λi jklφiφ jφkφl can be represented in radial form as
V = φ4λi jkl Ni N j Nk Nl , if we replace the scalar fields φi by
φi = φNi with φ ∈ (0,∞) and Ni being respectively the
radial field, and a unit vector as a ray in the field space from
origin to a point on the surface of the unit sphere. Then at a
given mass scale �, a flat direction N = n for which n.n =
1, is found such that the potential and its minimum vanish;
i.e. λi jklni n j nknl = 0 and λi jkln j nknl = 0. According to
Coleman–Weinberg mechanism, loop quantum corrections
to the effective potential lead to the generation of non-zero
vacuum expectation value (VEV) for the radial field φ giving
VEV to all scalars through 〈φi 〉 = 〈φ〉ni . Whether or not a
scalar field in the model takes a VEV, depends on the choice
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of the flat direction. This non-zero 〈φ〉 breaks symmetries of
the underlying theory.

In their seminal paper [7], Gildener and Weinberg assume,
without providing any proof, that at tree level there is only
one massless scalar (regardless of the total number of scalars)
due to the scale symmetry breaking. They name this scalar
the “scalon” which gains a slight mass due to radiative cor-
rections. All other scalars remain massive. Note that any
other spontaneously broken symmetry which is space-time
independent, would result in additional massless Goldstone
bosons. Subsequently, the mass matrix Pi j = 1/2λi jklnknl
(see Eq. (3.8) in [7]), will have more than one zero eigenval-
ues.1 Here, we are not considering any global symmetry of
this type.

In this paper we question the uniqueness of the scalon
in scale invariant multi-scalar potentials. Note that applying
the Goldstone theorem for spontaneously broken space-time
dependent symmetries including the scale invariance, is not
straightforward [3]. The counting rule,nGB = dimG−dimH
with nGB , dim G and dim H being respectively, the num-
ber of Goldstone bosons, the number of generators before
symmetry breaking, and the number of generators of unbro-
ken symmetry, does not always hold [3,11,12]. As discussed
in [12], the number of Goldston bosons in a spontaneous
symmetry breaking is equal to or greater than the number
of generators in broken symmetry. In this work, we are not
going to provide a formal proof of the number of Goldstone
bosons for spontaneous scale symmetry breaking. Instead,
we aim to show that in the absence of any space-time indepen-
dent global symmetry in the model we will provide in four-
dimensional space-time, there exist two Goldstone bosons.
We emphasize that these massless modes are not related to
any space-time independent global symmetry such as global
U (1) symmetry.

1 An example is the global U (1) symmetry in complex singlet scalar
extension of the SM, see e.g. [1].
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We will argue that despite the GW approach, it is not nec-
essary to be restricted to only one radial field or flat direc-
tion. In fact, instead of having a single flat direction ni with
nini = 1, we will identify two flat directions, n j and lk , such
that n jn j + lklk = 1. Essentially, this implies that instead of
replacing φi by φNi for all scalar fields in the potential, we
choose two radial fields, say ρ and η. For a subset of scalars,
we have φ j = ρN j , and for the remaining ones, φk = ηLk ,
where N j and Lk represent two arbitrary directions in the
field space. Having defined two flat direction in terms of the
radial fields ρ and η, the potential takes the general form as
follows

V = ρ4λi jkl Ni N j Nk Nl + η4λ′
i jkl Li L j Lk Ll

+ ρ2η2λ′′
i jkl Ni N j Lk Ll .

(1)

Note that the original GW conditions must still be satisfied;
that is along both flat directions one must have

Vtr(N,L)

∣
∣
∣
∣N = n
L = l

= 0

∂Vtr(N,L)

∂Ni

∣
∣
∣
∣N = n
L = l

= ∂Vtr(N,L)

∂Li

∣
∣
∣
∣N = n
L = l

= 0.

(2)

where N = n and L = l indicate two flat directions.

2 Gildener–Weinberg approach

To employ the GW approach with one scalon, let us examine
a straightforward Z2 symmetric potential featuring two real
scalars. The tree-level potential is given by

V (h1, h2) = 1

4
λ1h

4
1 + 1

2
λ12h

2
1h

2
2 + 1

4
λ2h

4
2 . (3)

This structure could represent a scale-invariant real singlet
scalar extension to the Higgs potential

V (H1, h2) = λ1

(

H†
1 H1

)2 +λ12

(

H†
1 H1

)

h2
2 + 1

4
λ2h

4
2 , (4)

where H†
1 = (0, h1)/

√
2 denotes the Higgs doublet in the

unitary gauge. However, our intention is not to complicate
the model with internal symmetries that are broken after the
fields acquire VEV. Instead, we focus solely on the potential
presented in Eq. (3) involving two singlet scalars. The flat
direction (n1, n2) is determined by the conditions

λ2
12 = λ1λ2,

〈h1〉2

〈h2〉2 ≡ n2
1

n2
2

= −λ12

λ1
, λ12 < 0. (5)

with n2
1 + n2

2 = 1. This is equivalent to having

λ1 = −λ12
〈h2〉2

〈h1〉2 , (6a)

λ2 = −λ12
〈h1〉2

〈h2〉2 . (6b)

with λ12 < 0. Note that the condition λ12 < 0 is needed,
along with λ1 > 0 and λ2 > 0, for the potential to be bounded
from below along the flat direction. The potential in terms of
a single radial field is

Vtr(N) = ρ4
(

1

4
λ1N

4
1 + 1

4
λ2N

4
2 + 1

2
λ12N

2
1 N

2
2

)

. (7)

where N = (N1, N2) is an arbitrary direction in the field
space. Along the flat direction given by Eq. (5) or Eq. (6),
the tree-level potential in Eq. (7) satisfies the conditions

Vtr(N)

∣
∣
∣
∣
N=n

= ∂Vtr(N)

∂Ni

∣
∣
∣
∣
N=n

= 0 . (8)

The mass matrix from the tree level potential is not diagonal;
the scalar masses are the eigenvalues of the mass matrix as

m2
1 = 0, m2

2 = −2λ12

(

〈h1〉2 + 〈h2〉2
)

. (9)

As anticipated by the GW scheme, there exists one massless
scalar or scalon at tree level, while the other state is mas-
sive. The corresponding one-loop effective potential, using
dimensional regularization in the MS scheme, is given by
[1,6],

Veff(n) ≡ Vtr(n) + V1-loop(n) = B(n)ρ4
(

log
ρ2

〈ρ〉2 − 1

2

)

,

(10)

with

B(n) = m4
2

64π2〈ρ〉4 . (11)

This leads to radiative correction to the scalon mass as

δm2
1 = m4

2

8π2〈ρ〉2 , (12)

where m2
2 is known from Eq. (9).

3 Two-scalon approach

Finding the flat direction with one scalon is simple for a
potential with two real scalars, but it becomes increasingly
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complicated as the number of scalars grows [8]. A relevant
question is whether we can discover two flat directions corre-
sponding to two scalons, giving rise to two pseudo-Goldstone
bosons due to quantum corrections. To address this question,
we examine a toy model featuring four real singlet scalar
degrees of freedom,

Vtr = λ0h1h2h3h4 + 1
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4
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4
3 + 1

4
λ4h

4
4

+ 1

4
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4 + 1

4
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2
3h

2
4,

(13)

with the discrete Z2 × Z2 × Z2 symmetry under which the
scalar fields transform as

Z2 : h1 → −h1, h2 → h2, h3 → −h3, h4 → h4,

Z2 : h1 → −h1, h2 → −h2, h3 → h3, h4 → h4,

Z2 : h1 → h1, h2 → h2, h3 → −h3, h4 → −h4.

(14)

Note the presence of an ad-hoc quad-linear term in the poten-
tial. The linear and cubic terms, as well as terms of the
form hi h3

j for any i, j = 1, 2, 3, 4 are absent because of
the Z2 × Z2 × Z2 symmetry.

Again, it should be noted that our focus here is not on
internal symmetries of the underlying theory. However, in
order to relate this model to a more phenomenological one
beyond the Standard Model framework, consider a potential
consisting of two Higgs doublets and two real singlet scalars
(For scale-invariant scenarios of 2HDM, refer to [9,10,13])
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†
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†
2 H1)
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†
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(15)

where all the couplings are real. In this context, where H1

and H2 represent the doublets, and h3 and h4 denote the
singlets, the discrete symmetry outlined in Eq. (14) manifests
as a mechanism to prevent Flavor-Changing Neutral Currents
(FCNCs).

If we were to follow the GW prescription in search of a
flat direction (n1, n2, n3, n4) that satisfies the conditions in
Eq. (8), the solution would be extremely challenging, if not
unattainable. Instead, following the approach outlined above,
at a given scale � we define two flat directions (n1, n2) and
(l1, l2) that satisfy Eq. (2). The result is the conditions

λ23 = −λ0
〈h1〉〈h4〉
〈h2〉〈h3〉 (16a)

λ13 = −λ0
〈h2〉〈h4〉
〈h1〉〈h3〉 (16b)

λ14 = −λ0
〈h2〉〈h3〉
〈h1〉〈h4〉 (16c)

λ24 = −λ0
〈h1〉〈h3〉
〈h2〉〈h4〉 (16d)

λ1 = −λ12

2

〈h2〉2

〈h1〉2 (16e)

λ2 = −λ12

2

〈h1〉2

〈h2〉2 (16f)

λ3 = −λ34

2

〈h4〉2

〈h3〉2 (16g)

λ4 = −λ34

2

〈h3〉2

〈h4〉2 (16h)

Here, 〈hi 〉 is defined in terms of the radial field ρ (η) and the
flat directions n (l) as follows

〈h1〉 = 〈ρ〉n1,

〈h2〉 = 〈ρ〉n2,

〈h3〉 = 〈η〉l1,
〈h4〉 = 〈η〉l2.

(17)

The tree-level potential, expressed in terms of the radial fields
along the arbitrary directions N and L as explained above, is
given by

Vtr = ρ4
(

1

4
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4
1 + 1

4
λ2N

4
2 + 1

4
λ12N

2
1 N

2
2
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+ η4
(

1

4
λ3L

4
1 + 1

4
λ4L

4
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4
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2
1L

2
2

)

+ ρ2η2
(
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4
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2
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2
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4
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2
1 L

2
2

+ 1

4
λ23N

2
2 L

2
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4
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2
2 L

2
2

)

.

(18)
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The solutions for the flat directions n and l 2 that satisfy
Eq. (16) which itself meets the conditions of Eq. (2) for the
tree-level potential in Eq. (18), are

n2
1 = λ12

λ12 − 2λ1
, n2

2 = 2λ1

2λ1 − λ12
,

l21 = λ34

λ34 − 2λ3
, l22 = 2λ3

2λ3 − λ34
.

(19)

Considering the aforementioned flatness conditions, the
requirement for the potential to be bounded from below is
simplified to λ0 < 0, λ12 < 0 and λ34 < 0. Alternatively,
the flatness condition can be expressed as

λ2
12 = 4λ1λ2,

λ2
34 = 4λ3λ4,

λ13λ24 = λ14λ23.

(20)

Now, It can be shown that the eigenvalues of the mass matrix
are

m2
1 = 0,

m2
2 = 0,

m2
3 = −

(

〈h1〉2 + 〈h2〉2
) ( 〈h3〉〈h4〉

〈h1〉〈h2〉λ0 + λ12

)

,

m2
4 = −

(

〈h3〉2 + 〈h4〉2
) ( 〈h1〉〈h2〉

〈h3〉〈h4〉λ0 + λ34

)

.

(21)

As we asserted earlier, it is clear that there exist two clas-
sically massless states along the flat directions, while two
other scalars are heavy. Radiative corrections should give
small mass corrections to both scalons.

4 Effective potential

In general, the radial fields acquire non-zero VEVs, 〈ρ〉 and
〈φ〉, introducing two distinct scales into the theory. The cal-
culation of the effective potential, therefore, differs from the
GW approach, which involves only one radial field, and con-
sequently, only one scale. When dealing with the renormal-
ization of a theory with different scales, caution is neces-
sary concerning perturbativity, as these scales may be signif-
icantly separated. The intricacies of multi-scale renormaliza-
tion were elucidated by Einhorn and Jones in [4] (refer also to
[5] for multi-scale renormalization involving two fields). To
streamline the computations, we assume that the two scales
in our model consistently remain within the perturbativity
regime. Therefore, we can express the one-loop effective
potential in terms of only one scale �

2 Two flat directions n and l may be interpreted as a flat plane.

V 1-loop
eff (ρn, ηl) = A(n)ρ4 + B(n)ρ4 log

ρ2

�2

+A′(l)η4 + B ′(l)η4 log
η2

�2 . (22)

where the coefficients are given by

A(n) = 1

64π2〈ρ4〉
∑

i=3,4

m4
i

(

−3

2
+ log

m2
i

〈ρ〉2

)

B(n) = 1

64π2〈ρ4〉
∑

i=3,4

m4
i

A′(l) = 1

64π2〈η4〉
∑

i=3,4

m4
i

(

−3

2
+ log

m2
i

〈η〉2

)

B ′(l) = 1

64π2〈η4〉
∑

i=3,4

m4
i

(23)

The one-loop effective potential needs to fulfill the tadpole
conditions along two directions,

∂V 1-loop
eff

∂ρ

∣
∣
∣
∣
ρ=〈ρ〉

= ∂V 1-loop
eff

∂η

∣
∣
∣
∣
η=〈η〉

= 0. (24)

These conditions determine the scale � as

� = 〈ρ〉 exp

(
A

2B
+ 1

4

)

= 〈η〉 exp

(
A′

2B ′ + 1

4

)

, (25)

leading to the following effective potential

V 1-loop
eff = B(n)ρ4

(

log
ρ2

〈ρ〉2 − 1

2

)

+B ′(l)η4
(

log
η2

〈η〉2 − 1

2

)

. (26)

Following the procedures outlined in [1,6], one can deter-
mine the masses of the two scalons resulting from the above
effective potential,

δm2
1 = 1

8π2〈ρ〉2

∑

i=3,4

m4
i , δm2

2 = 1

8π2〈η〉2

∑

i=3,4

m4
i , (27)

where m2
3 and m2

4 are given by Eq. (21).

5 Conclusion

It has been well-accepted that in scale invariant multi-scalar
theories, according to Gildener–Weinberg assumption [7],
along a flat direction there exist only one classically mass-
less scalar due to scale symmetry breaking dubbed as scalon,
while all other scalars are massive. In this paper, we have pro-
posed a toy model with four real singlet scalars that possesses
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two classically massless states. This model can be extracted
from more phenomenological models such as two Higgs dou-
blet model in addition to two real singlet scalars, but our
staring point is a hypothetical potential with no internal or
additional global symmetries. Different from the Gildener–
Weinberg scheme, we have constructed two flat directions
which leads to two classically massless states or two scalons.
Note that none of the massless states are due to space-time
independent symmetries like globalU (1) symmetry. The key
point is that one is not obliged to define only one flat direc-
tion as in GW approach. We have also calculated the masses
of massive states at tree level, and presented the one-loop
effective potential and radiative corrections to the masses of
two scalons. Incorporating more than two scalons in a renor-
malizable theory within the framework of the generic GW
potential seems not feasible.
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