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A B S T R A C T

Perfect channel estimation is a complex task with high power consumption and cost; in addition, requiring
pilot transmission reduces the data rate. So, it is not favourable especially in mobile communication systems.
The aim of this paper is to design (a new, low cost and low complexity) deep learning based channel estimator
for free space optical (FSO) communication. In order to have a better understanding, this paper goes deeper
through the problem, and presents different new deep learning based FSO systems, in which deep learning
is used as detector, joint constellation shaper and detector, channel estimator, joint channel estimator and
detector, joint constellation shaper and channel estimator and detector. For comparison with conventional
systems, the outstanding QAM modulation, perfect channel estimation and maximum likelihood detection is
applied. Considering wide range of atmospheric turbulences, from weak to strong by Gamma–Gamma model,
symbol error rate performance of the proposed structures is investigated. Results indicate that the proposed
deep learning based channel estimation technique, despite its less complexity, cost and power consumption
provides close enough performance to the perfect channel estimation. It should be noted that the proposed
structure does not need pilot sequence, hence, it has higher data rate than perfect channel estimation. The
performance of the proposed deep learning based structures does not change with atmospheric turbulence
variation. Furthermore, they are low cost, low complexity, with favourable performance. Accordingly, they
could be good choices especially for mobile communication systems. Because the transceiver of these systems
is a small mobile phone that should have low cost, complexity, and power consuming.

1. Introduction

Free space optical (FSO) communication system, due to its ad-
vantages over conventional radio frequency systems, is one of the
most promising technologies for far future communication services [1].
FSO is very effective for outdoor communication applications; it is
suitable for long range communication (without any need for sig-
nal amplification or correction) [2]. Despite outdoor radio frequency
communication links, in which eavesdropping is easy, FSO links are
immune to eavesdropping [3]. Aside these advantages, the outdoor
atmospheric turbulence significantly degrades performance of FSO link,
and limits its practical applications [4]. Accordingly, estimating the
atmospheric turbulence channel (and consequently equalizing it) could
really improve performance of FSO link. The outstanding conventional
solution for this problem is perfect channel estimation, which is based
on pilot transmission. However, perfect channel [5] estimation has
high complexity and reduces data rate; in addition, it assumes that the
channel is fixed for the duration between two consequence transmitted
pilots. Blind channel estimation [6,7] requires lower complexity and
does not need pilot transmission, but it assumes that the channel is
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fixed for the duration of some transiting symbols, which in fact is not
a realistic assumption. These problems in conventional systems bring
the question to the mind that is there any solution for obtaining a low
complexity favourable estimation of realistic channel conditions?

Recently, machine learning [8] attracted many considerations in
optical communication investigations. Machine learning is very useful
in situations that the system model is not available (e.g. fibre optic
channel) or is complex (channel with interference). Applying machine
learning algorithms such as support vector machine [9], and neural
network [10], is shown to be really helpful for reducing computational
complexity in various optical communication tasks. In the training
phase, machine learns the structure of the data and finds the relation
between input and output (learns how to do its assigned task). How-
ever, when the relation between input and output is very complex or
when the input is not enough, it is required to learn deeper. Deep learn-
ing [11] by consuming more complexity, could solve complex problems
favourably. It offers powerful statistical signal processing tools that
could learn the received data impairments and generate an accurate
probabilistic model for impairments. Deep learning is an extended
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form of neural network and includes many algorithms such as deep
neural network (DNN) [12], conventional neural network [13]. DNN
first learns the model of the signal/system behaviour from the input
data, and can be used in high-level simulation and design, providing
fast responses. DNN learns the input–output data relationship by using
several layers of connected neurons; each connection has a weight that
represent its importance. DNN is more flexible than other deep learning
algorithms and could be used for various applications, such as mitigat-
ing the fibre effects [14], modulation format identification [15], optical
performance monitoring [16], optical amplifier control [17], as well as
some optical network applications [18,19]. For more information about
the applications of machine/ deep learning on optical communication,
might be useful.

Despite huge amount of investigations in machine learning for op-
tical communication, few works are done in machine learning for FSO
communication. These works applied machine learning algorithms for
detection [20], distortion correction for sensor-less adaptive optics [21,
22], and demodulator for orbital angular momentum beams [23–26].
So, FSO is a free field for machine learning investigation, and ac-
cording to the increasing rate of machine learning for optical/wireless
communication instigations, it is expected that machine learning for
FSO communication becomes a hot topic in the next few years. The
purpose of this paper is to present a new channel estimation technique
for FSO communication system. The proposed deep learning based
channel estimator is cheap and low complexity; it does not need pilot
sequence (so it has higher speed than perfect channel estimation);
(despite perfect/blind channel estimation) it does not need to be used
only for channels that are fixed for the duration of some symbols. In
order to have a comprehensive investigation, this paper presents five
new FSO communication systems, in which deep learning is used as
channel estimator, detector, joint constellation shaper and detector,
joint channel estimator and detector, joint constellation shaper, chan-
nel estimator and detector. To the best of the author’s knowledge,
novelties of this paper include: Presenting several new deep learning
based FSO communication systems, and presenting several new ap-
plications of deep learning in FSO communication system, including
constellation shaping, channel estimation, and detection. Considering
Gamma–Gamma atmospheric turbulence (weak to strong regimes),
symbol error rate of the proposed structures is compared with each
other and with the outstanding conventional system, which is com-
posed of QAM modulator, perfect channel estimator and maximum
likelihood detector. The reason for using DNN in the proposed struc-
tures is that the DNN is the only machine learning algorithm that
could be applied anywhere (constellation shaper, channel estimator,
and detector), in any type (supervised, and unsupervised). For example,
even support vector machine (which is a supervised binary classifier),
despite its favourable performance in detection, could not be applied in
other parts such as constipation shaper or channel estimator (because
these two parts are unsupervised). So, for reasonable comparison be-
tween DNN and support vector machine, they should be applied as a
supervised detector. In the results section this comparison is also done.
DNN is the most widely used deep learning technique in optical com-
munication, and is an appropriate alternative to conventional methods.
DNN has low complexity and its response is fast; it can model complex
multi-dimensional nonlinear relationships. Due to these advantages,
applying DNN in FSO for constellation shaping, channel estimation,
and detection, could significantly reduce complexity, cost, latency, and
processing, while maintaining performance of the system.

The rest of this paper is organized as follows; in Section 2 the
proposed system models are presented in details, Section 3 is the results
and discussions of comparison between the proposed structures, and
Section 4 is conclusion of this work.

2. System model

Each subsection of this section is devoted to one of the proposed
structures (of Fig. 1). For the sake of simplicity and understandability,
the name of each subsection is composed of three parts, the first part
indicates the constellation shaper (QAM or DNN), the second part
indicates the channel estimator (perfect channel estimation or DNN),
and the last part indicates the detector (maximum likelihood or DNN).

2.1. QAM-perfect channel estimation-maximum likelihood

The first structure (see Fig. 1a) is a pure conventional structure,
which is composed of QAM modulation, perfect channel estimation,
and maximum likelihood detection. This system is considered in order
to be compared with the proposed deep learning based structures. As
is depicted in Fig. 1, the information signal is transmitted by an optical
transmitter and received by a coherent optical receiver. Considering
𝑥, as the transmitted FSO signal, the received signal at the receiver
aperture can be expressed as:

𝑦 = 𝑅𝐼𝑥 + 𝑛, (1)

where 𝑛 is the receive aperture input additive white Gaussian noise
(AWGN) with zero mean and 𝜎2 variance; 𝐼 is the atmospheric turbu-
lence intensity, which is assumed to be Gamma–Gamma; 𝑅 is photo de-
tector responsibility. The background noise limited receivers in which
the shot noise created by background radiation is dominant compared
to other noise components such as thermal noise, dark noise, and
signal-dependent shot noise. Therefore, the noise term is modelled as
signal-independent AWGN [27]. Assuming perfect channel estimation,
the maximum likelihood receiver becomes as follows:

�̂�𝑢 =
𝑚𝑖𝑛
�̃�𝑢

|

|

𝑦 − 𝑅𝐼�̃�𝑢||
2 , (2)

where �̃�𝑢 is a symbol of the transmitted constellation map.

2.2. QAM-perfect channel estimation-DNN

In the second structure (Fig. 1b), deep learning is used for detection,
and is composed of QAM modulation, perfect channel estimation and
DNN based detection. Consider 𝑥 as the transmitted symbol, this symbol
is first converted to a one-hot vector (because at the end, the output of
the DNN would be a vector with size 𝑀 , which is wanted to be the
same as this one-hot vector). Then the one-hot vector is mapped on
an M-QAM constellation and transmitted from FSO transmitter, passed
though the atmospheric turbulence, and received at a FSO receiver. The
received signal is complex, but DNN does not accept complex numbers;
so, its real and imaginary parts are separated and entered a DNN with
2 input neurons, 𝑀 output neurons, 𝑁ℎ𝑖𝑑 hidden layers, 𝑁𝑛𝑒𝑢 per layer
neurons, 𝛼(.) activation function, 𝑾 weight matrix, and 𝒃 bias vector.
The purpose is to adjust DNN parameters (weight and bias) such that
the receiver could better recover the original transmitted M-ary symbol.
in other words, the DNN output be the same as the one-hot vector at
the transmitter.

In order to solve this problem efficiently, the DNN should be trained.
The first step in training a DNN is selecting and tuning its hyperparam-
eters. The DNN hyperparameters include sample size to batch size ratio,
layer type, number of layers, number of neurons, activation function,
loss function, optimizer, learning rate, and number of iterations. Sample
size to batch size ratio is important because entering the whole data at
once into the DNN leads to underfitting while dividing it into several
batches helps DNN to better understand the data structure. The number
of layers, as well as neurons, should be adjusted by trial and test,
and there is no specific rule for tuning them. There is a complexity-
accuracy tradeoff between different activation functions, however some
of them such as tanh, sigmoid, relu are shown to be proper for deep
learning for optical communication tasks. For more information about
hyperparameter tuning, is recommended.

2



M.A. Amirabadi, M.H. Kahaei, S.A. Nezamalhosseini et al. Optics Communications 459 (2020) 124989

Fig. 1. a. the outstanding conventional FSO communication system, and the proposed FSO communication systems in which DNN is used as b. channel estimator, c. detector, d.
joint constellation shaper and detector, e. joint channel estimator and detector, f. joint constellation shaper, channel estimator and detector.

The inputs of each layer of DNN are multiplied by weights, added

by biases, summed, and entered an activation function. The outputs

of each activation function are the inputs of the next layer, and the

same procedure continues until the end of the DNN. Considering the

one-hot vector (at the transmitter) as 𝒔 and the output vector of

the DNN as �̂�, the aim is to reduce the difference between 𝒔 and �̂�.

Therefore, a loss function should be defined and calculated for each

individual transmitted symbol and expected over the whole batch size.

The proposed loss function could be defined as [28]:

𝐿 (𝜽) = 1
𝐾

𝐾
∑

𝑘=1

[

𝑙(𝑘) (𝒔, �̂�)
]

(3)

where 𝜽 is the DNN parameters (including weight and bias vectors), 𝐾
is the batch size, 𝑙 (., .) is loss function. The considered loss function is
the cross-entropy, defined as [28]:

𝑙 (𝒔, �̂�) = −
∑

𝑖
𝑠𝑖𝑙𝑜𝑔(�̂�𝑖). (4)
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Several algorithms have been proposed for minimizing the loss func-
tion by adjusting 𝜽. One of the most popular algorithms is stochastic
gradient descent (SGD) which adjusts 𝜽 iteratively in the following
manner [28];

𝜽(𝑚+1) = 𝜽(𝑚) − 𝜂∇θ�̃�
(

𝜽(𝑚)
)

(5)

where 𝜂 > 0 is the learning rate, 𝑚 is the iteration number, and ∇𝜃�̃� (.) is
the gradient of the loss function estimate (which is fed back to the DNN
as an updating guide). Optimization is a tricky subject, which depends
on the input data quality and quantity, model size, and the contents
of the weight matrix. Stochastic Gradient Descent methods could be
used for determining update direction and solving (5) [28]. As the state
of-the-art algorithm with enhanced convergence, the Adam algorithm
is used for optimization during the training process in this work. All
numerical results in the manuscript have been generated using the deep
learning library TensorFlow.

2.3. DNN- perfect channel estimation-DNN

The purpose of the third structure (Fig. 1c) is to investigate the ef-
fect of using DNN as joint detector and constellation shaper; therefore,
it is composed of DNN based constellation shaping, perfect channel
estimation, and DNN based detection. Consider 𝑥 as the generated M-
ary symbol, it is first converted to a one-hot vector, then entered a DNN
with 𝑀 input and 2 output neurons. For simplicity, and without loss
of generality, other DNN structure is exactly the same as the DNN in
Section 2.1. Complex summation of the DNN output results in a com-
plex number which stands for the location of the transmitted symbol
in the signal constellation. Actually, this DNN is used for constellation
shaping, which is a solution for reducing the effect of atmospheric
turbulence. Then the mapped symbol is transmitted, encountered by
Gamma–Gamma atmospheric turbulence, and added by AWGN with
zero mean and 𝜎2 variance. The received signal is entered a DNN
exactly the same as the DNN of Section 2.2. The aim is to adjust the
DNN parameters of the proposed structure simultaneously to reduce
atmospheric turbulence effect, and recover signal better. The training
procedure is exactly the same as descriptions of Section 2.2.

2.4. QAM-DNN-maximum likelihood

The purpose of the fourth structure (Fig. 1d) is presenting a DNN
based channel estimator. This structure is composed of QAM modula-
tor, DNN based channel estimation, and maximum likelihood detector.
Considering 𝑥, as the transmitted symbol, the received signal at the
receiver is entered a DNN with 2 input and 2 output neurons, 𝑁ℎ𝑖𝑑
hidden layers, 𝑁𝑛𝑒𝑢 per layer neurons, 𝛼(.) activation function, 𝑾
weight matrix, and 𝒃 bias vector, actually the output of this DNN is the
estimation of channel (which is done without any pilot symbols, and the
channel is assumed to be un-correlated and stochastic). The received
signal is entered a maximum likelihood detector, and by the use of the
estimated channel, the transmitted signal is recovered. The aim is to
adjust the DNN parameters of the proposed structure simultaneously
to reduce atmospheric turbulence effect, and recover signal better. The
training procedure is exactly the same as descriptions of Section 2.2.

2.5. QAM-DNN-DNN

The purpose of the fifth structure (Fig. 1e) is to investigate the effect
of using DNN for joint channel estimation and detection. This structure
includes QAM modulation, DNN based channel estimation, and DNN
based detection. Consider 𝑥 as the transmitted symbol, this symbol is
first converted to a one-hot vector, then mapped on an M-QAM constel-
lation, and transmitted through FSO channel. The transmitted signal
is encountered by Gamma–Gamma atmospheric turbulence channel,
and the receiver noise is added to the detected photocurrent of the
photo detector. The received signal is first entered a DNN with the

Table 1
Tuned hyperparameters.

Hyperparameter Value

Modulation order 16
Number of hidden layers 4
Number of per layer neurons 40
Batch size 2∧16
Sample size to batch size ratio 4
Number of iterations 1000
Activation function Relu
Loss Softmax cross entropy
Optimizer Adam
Learning rate 0.005
Gamma–Gamma atmospheric
turbulence intensity

Strong (𝛼 = 4.2, 𝛽 = 1.4)
Moderate (𝛼 = 4, 𝛽 = 1.9)
Weak (𝛼 = 11.6, 𝛽 = 10.1)

Photo detector responsibility R = 1

same structure as Section 2.4, the output of this DNN is the channel
estimation, then considering this channel estimation for removing the
effect of channel, the signal (with removed channel effects) is entered
a DNN with the same structure as Section 2.2. The aim is to adjust
the DNN parameters of the proposed structure simultaneously to reduce
atmospheric turbulence effect, and recover signal better. The training
procedure is exactly the same as descriptions of Section 2.2.

2.6. DNN-DNN-DNN

The purpose of the sixth structure (Fig. 1f) is to investigate the
effect of using DNN for joint constellation shaping, channel estimation,
and detection, accordingly all of these parts are DNN based. Consider
𝑥 as the generated M-ary symbol, it is first converted to a one-hot
vector, then entered a DNN with the same as the DNN in Section 2.3.
Then the mapped symbol is transmitted, encountered by Gamma–
Gamma atmospheric turbulence, and added by AWGN with zero mean
and 𝜎2 variance. The received signal is first entered a DNN with the
same structure as Section 2.4, the output of this DNN is the channel
estimation, then considering this channel estimation for removing the
effect of channel, the signal (with removed channel effects) is entered
a DNN with the same structure as Section 2.2. The aim is to adjust
the DNN parameters of the proposed structure simultaneously to reduce
atmospheric turbulence effect, and recover signal better. The training
procedure is exactly the same as descriptions of Section 2.2.

3. Results and discussions

In this section, the simulation results of performance of the proposed
structures are compared. Simulations are done in Python, Tensorflow
environment. The hyperparameters are tuned manually (Table 1), and
based on previous knowledge from literature. Considering FSO link in
Gamma–Gamma atmospheric turbulence, strong (𝛼 = 4.2, 𝛽 = 1.4),
moderate (𝛼 = 4, 𝛽 = 1.9), and weak (𝛼 = 11.6, 𝛽 = 10.1) regimes are
considered in the simulations. The hyperparameter tuning here is done
manually, but the proposed DNN based structures could achieve the
performance of the state of the art conventional systems (in perfect
channel estimation) or get close enough to the ideal results (in DNN
channel estimator). Although hyperparameter tuning improves perfor-
mance, the achieved improvements are not so much considerable that
deserve adding complexity and processing to achieve them. In addition,
it is complicated, and time and power consuming, so, the manual tuning
here might not be a bad idea.

In Fig. 2 symbol error rates (SER) of the proposed structures is
plotted as a function of Es/N0 for a. weak, b. moderate, and c. strong
atmospheric turbulence regime, when modulation order is 𝑀 = 16.
The aim of this paper is to investigate the effect of using DNN as a
channel estimator at various system and channel models, and this aim
is displayed in Fig. 2 as can be seen, when perfect channel estimation
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Fig. 2. SER of the proposed structures as a function of Es/N0 for a. weak, b. moderate, and c. strong atmospheric turbulence regime, when modulation order is 𝑀 = 16.

is done, the effect of conventional and DNN based structures are the
same, this is because when channel estimation is perfect, the problem
that the DNN should solve is linear; actually, DNN outperformance over
conventional systems is anywhere that model is not known or is non-
linear. This shows that the proposed DNN based receiver does its work
perfectly and efficiently in linear models. As can be seen, when channel
estimation is not perfect, addition of each DNN system (detector, con-
stellation shaper, and channel estimator), would improve performance
of the system, because estimation of channel, when it is uncorrelated
and stochastic is very hard without pilot symbol sequence, and this is
exactly where DNN could be used. The performance difference between
DNNs at each of these parts indicates that despite most of the applied
investigations, which used DNN at the receiver side, DNN could be used
as each parts of the communication system. Another thing that could
be discussed is the difference between DNN based and conventional
structures; as could be seen, this difference is almost the same for the
all atmospheric turbulence regimes. So this is one of the advantages
of the DNN based structures, immunity to the atmospheric turbulence
variations makes this structure reliable. It is only tune and train it one
time, it is expected to be robust at all atmospheric turbulence regimes.
This reduces the cost and complexity required for running different
systems for different atmospheric turbulence scenarios.

However, Fig. 2 (also) clearly compares support vector machine
and DNN (when they are used both as detector). Actually, SVM is
a binary classifier, so, it could only be used as the detector in a
FSO communication system. Because, (e.g.,) the purpose of channel
estimator or constellation shaper is not classifying anything (they are

just predictors). SVM is a supervised machine learning algorithm, and
needs labels in addition to features; in this system model, labels are
only available at the detector, in the sense that the machine algorithm
for constellation shaper and channel estimator should be unsupervised,
and there is no label available for them. But DNN is everything, it is
a supervised/un-supervised/semi-supervised/(and even) reinforcement
machine learning algorithm. DNN could be used everywhere, because
of its structure, it is the most flexible machine learning algorithm. That
is why the works which used machine learning at the transmitter, used
DNN. As can be seen, they have the same performance, (and both
can achieve the maximum likelihood performance). This is because the
model of FSO system is known and linear, and therefore, the optimum
detector is available for it (the maximum likelihood), accordingly,
when apply support vector machine or DNN as the detector, the ac-
tually find (and achieve) the optimum detector, and technically they
do not outperform it.

Fig. 3 shows the proposed system models; the constellation maps
for transmitter and receiver (under the proposed schemes) are shown
in left and right columns, respectively. The system parameter details of
these plots are explained in Table 1. The assumed Es/N0 is 10 dB. As
can be seen, the transceiver constellations in cases without constellation
shaping are the same, in cases with deep learning based joint constel-
lation shaping, detection, and deep learning based joint constellation
shaping, channel estimation, detection, the transceiver constellations
are different, from Fig. 2, it can be concluded that (as is expected) the
second deep learning based technique performs better.
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Fig. 3. (left column: Transmitted signal constellation, and right column: received signal
constellation), a. the outstanding conventional FSO communication system, and the
proposed FSO communication systems in which DNN is used as b. channel estimator,
c. detector, d. joint constellation shaper and detector, e. joint channel estimator and
detector, f. joint constellation shaper, channel estimator and detector.

4. Conclusion

Perfect channel estimation is a complex task with high power
consumption, low data rate, and high cost. So, it is not recommended
especially in mobile communication systems. The aim of this paper
is to design the first deep learning based channel estimator for free
space optical communication. In order to have a better understand-
ing, different new deep learning based FSO systems are presented,
in which deep learning is used as detector, joint constellation shaper
and detector, channel estimator, joint channel estimator and detector,
joint constellation shaper and channel estimator and detector. For com-
parison with conventional systems, the outstanding QAM modulation,
perfect channel estimation and maximum likelihood detection is ap-
plied. Considering wide range of atmospheric turbulences, symbol error

rate performance of the proposed structures is investigated. Results
indicate that the proposed deep learning based channel estimation
technique could get close enough to the perfect channel estimation.
The performance of the proposed deep learning based structures does
not change with atmospheric turbulence variation, and accordingly to
the achieved performances, they could be good choices especially for
mobile communication systems.
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