
Physical Communication 41 (2020) 101057

Contents lists available at ScienceDirect

Physical Communication

journal homepage: www.elsevier.com/locate/phycom

Full length article

Novel suboptimal approaches for hyperparameter tuning of deep
neural network [under the shelf of optical communication]
M.A. Amirabadi ∗, M.H. Kahaei, S.A. Nezamalhosseini
School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran

a r t i c l e i n f o

Article history:
Received 6 September 2019
Received in revised form 13 January 2020
Accepted 21 February 2020
Available online 27 April 2020

Keywords:
Hyperparameter tuning
Grid search
Deep neural network
Free space optical communication
Fiber optical communication

a b s t r a c t

Grid search is the most effective method for tuning hyperparameters in machine learning (ML).
However, it has high computational complexity, and is not appropriate when here are many hy-
perparameters to be tuned. In this paper, two novel suboptimal grid search methods are presented,
which search the grid marginally and alternatively. In order to show the efficiency of hyperparameter
tuning by the proposed methods four datasets are used. Two datasets were collected by simulating
FSO and fiber OC links by MATLAB software, and two other datasets were collected by experimental
setups for FSO and fiber OC links in Optisystem software. Results indicate that despite greatly reducing
computational complexity, the proposed methods achieve a favorable performance. The proposed
structures are compared with some of the recently published most relevant works, and the efficiency
of the proposed methods is proved.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades, optical communication (OC) systems
have attracted many considerations towards themselves. This is
mainly because of progressions in optoelectronic devices and
reduction in their costs. These systems have a large un-licensed
secure bandwidth, and simple implementation. They are suitable
for the last-mile backup/ bottleneck applications for next gen-
eration communication systems [1,2]. Despite these advantages,
they have some critical barriers, which limits their practical ap-
plications. These barriers are created by the propagating media;
e.g., free space optical (FSO) communication is highly sensitive to
atmospheric turbulence, which is caused by random fluctuations
of the received signal intensity [3,4], or fiber OC is highly sensitive
to fiber linear/ nonlinear effects.

Recently, machine learning (ML) has been extensively used
in various OC applications including mitigation the mentioned
barriers and achieved significant results. ML is a branch of artifi-
cial intelligence that makes a machine (an OC system) to learn a
task by training based on an input dataset [5]. Despite flexibility
and performance of ML algorithms, they could not learn complex
tasks. Deep learning (DL) is a branch of ML that could learn
deeper, and is appropriate for complex tasks [6,7]. DL or deep
neural network (DNN) learning has been widely used for complex

∗ Corresponding author.
E-mail addresses: m_amirabadi@elec.iust.ac.ir (M.A. Amirabadi),

kahaei@iust.ac.ir (M.H. Kahaei), nezam@iust.ac.ir (S.A. Nezamalhosseini).

OC based tasks, such as fiber effects mitigation [8], performance
monitoring [9], and modulation format identification [10,11].

One of the main ambiguities and difficulties in working with
DNN is hyperparameter tuning. Hyperparameters are the design
parameters, and could affect the training qualification. Hyper-
parameter tuning is very important [12], because the difference
between a tuned DNN, and a non-tuned DNN is the difference
between a machine that learns complex task perfectly and an
algorithm that could not learn anything.

1.1. Related works

Recently, the hyperparameter tuning, due to its importance,
has changed to a new interesting topic in ML community. How-
ever, there is lack of investigation about hyperparameter tuning
in ML for OC community. The most related works are the hyper-
parameter tuning in pure ML literatures; so, this section focuses
on these works. Some works do hyperparameter tuning empiri-
cally or based on prior knowledge from previous literatures; so,
their solutions are mostly based on trial-and-error and might
not be trustable [13]. The hyperparameter tuning algorithms are
either model free or model based. Model free algorithms do not
use the knowledge about the solution space extracted during the
optimization; this category includes manual search [14,15], grid
search [16], and random search (Fig. 1) [17–19]. Model based
algorithms, build a surrogate model of the hyperparameter space
via its precise exploration and exploitation; this category includes
Bayesian search [20,21].

https://doi.org/10.1016/j.phycom.2020.101057
1874-4907/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.phycom.2020.101057
http://www.elsevier.com/locate/phycom
http://www.elsevier.com/locate/phycom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phycom.2020.101057&domain=pdf
mailto:m_amirabadi@elec.iust.ac.ir
mailto:kahaei@iust.ac.ir
mailto:nezam@iust.ac.ir
https://doi.org/10.1016/j.phycom.2020.101057

2 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

Fig. 1. Manual search (left), grid search (center), and random search (right).

Considering the model free algorithms, in manual search, the
user chooses some sets of hyperparameters (based on previous
knowledge), trains the machine by them, calculates the perfor-
mance, and selects the set of hyperparameters that has the best
performance. However, this technique is dependent on the previ-
ous knowledge and its reliability is dependent on the correctness
of the previous knowledge. In this situation, random search [17]
would have better results (with the same computational com-
plexity). The complexity of the hyperparameter tuning problem
depends on the complexity of the application, for which the ML is
used. The more complicated is the application, the more precise
tuning is required; but manual and random search methods do
not provide an accurate tuning, because they investigate few sets
of hyperparameters [22]. In this situation, grid search method
would have better results (with high computational complexity).
This method is the best among model based and model free meth-
ods, because it applies a heuristic search and considers all sets
of hyperparameters. In grid search method, first the user collects
all possible sets of hyperparameters, then trains the machine
based on them. The set with the best performance is chosen as
the tuning output. The main drawback of grid search method
is its high complexity. Accordingly, it is commonly used when
there are few hyperparameters to be tuned; in other words, grid
search is performed when the best combinations are known [17].
According that the grid search method has a better performance,
many ML literatures are based on this algorithm. However, they
used small grid size and small range for reducing complexity, so,
their results may not be trustable [23,24]. As another solution
for the complexity problem of grid search and having reliability,
in some other ML literature some hyperparameters are adjusted
by grid search, some by random search and some by manual
search [25]. However, this method does not have the generality
of grid search method.

Considering the model based algorithms, most of them are
based on Bayesian optimization [26], which uses a set of previ-
ously observed parameters and resulting accuracies, and makes
an assumption about unobserved parameters. Acquisition func-
tion using this information suggests the next set of parameters.
Bayesian optimization adopts probabilistic surrogate models like
Gaussian processes to approximate and minimize the validation
error function of hyperparameter values [27]. However, proba-
bilistic surrogates require accurate estimates of sufficient statis-
tics of error function distribution (e.g. covariance). So, it requires
some function evaluations with a sizeable number of hyperpa-
rameters, and is not appropriate when number of hyperparam-
eters is large. For solving this problem non-probabilistic hyper-
parameter tuning methods including radial basis function error
surrogates are suggested [28,29]. Another solution is encompass-
ing the covariance matrix adaptation evolution [30]. In [31], very
initial results of evolving DNNs using genetic algorithms were
reported. In some ML literatures, Bayesian search is used for joint
finding the searching structure and tuning hyperparameter [12,
32]; in this situation, tree-based Bayesian search are better to be
used [33,34].

1.2. Novelties and contributions

As mentioned above, each hyperparameter tuning method
has its own advantages and disadvantages, and according to the
application and situation, one of them could be used. However,
in general, grid search method has the best performance, but it
is required of running multiple full training rounds and has high
computational complexity, which increases exponentially while
adding tunable hyperparameters. This method is preferable for
simple ML algorithms, which have few tunable hyperparameters;
but, it is not in complex ML algorithms such as DNN, which has
many tunable hyperparameters [17].

A suboptimal search method or a method that could auto-
matically tune hyperparameters in one training round would be
more practical, especially when the user do not have a strong
intuition regarding appropriate sets of hyperparameters [35]. Ac-
cordingly and considering the tradeoff between performance and
complexity, this paper presents two novel suboptimal grid search
methods for hyperparameter tuning of a DNN. In the first method,
marginal search is developed over the grid points, in the sense
that at first a grid with large size and long range is constructed,
an initial point is selected, and one of the hyperparameters is
tuned over the whole range. Then considering the initial point,
another hyperparameter is tuned, and the same procedure will
be continued until all of hyperparameters would be tuned. In this
method, at each round, all of the hyperparameters are fixed and
only one of them will be tuned. In the second method, alternating
optimization is used for tuning hyperparameters, in the sense that
at first a grid with large size and long range is constructed, an
initial point is selected, and one of the hyperparameters is tuned
over the whole range. This point is chosen as the initial point for
the next round, and the same procedure will be continued until
all of hyperparameters would be tuned. In order to examine the
accuracy and universality of the proposed methods, four different
OC based datasets are used. Two datasets are collated from MAT-
LAB software simulations for FSO and fiber OC systems, and two
other datasets are collected from Optisystem software for FSO
and fiber OC. Optisystem is a software that considers many real
scenarios and its results are close to experimental results. In these
structures, a DNN is applied at the receiver for joint equalizer,
detector, and demodulator. The novelties and contributions of
this paper include:

(1) Presenting a step by step explanation about hyperparam-
eter tuning of a DNN (see Section 4).

(2) Presenting and solving the problem of hyperparameter
tuning in ML for OC applications.

(3) Presenting two novel suboptimal grid search hyperparam-
eter tuning methods.

(4) Presenting an ML technique applicable for both FSO and
fiber OC systems.

(5) Deploying a DNN for joint equalization, detection, and
demodulation in FSO and fiber OC systems.

The rest of this work is organized as follows; Section 2, and
3 present the channel model and DNN based OC system model,
respectively. Section 4 presents a step by step explanation on
hyperparameter tuning of a DNN. Section 5 presents the proposed
methods. Section 6 is the results and discussions, and Section 7
is the conclusion of this paper.

M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057 3

2. Channel model

In order to show the universality of the proposed methods
for OC tasks, two completely different OC systems including fiber
OC and FSO systems are considered. This section presents their
channel models.

2.1. FSO Channel model

Various statistical distributions have been proposed to model
atmospheric turbulence of FSO channel, e.g., Exponential–Weibull
[36], Generalized Malaga [37], Lognormal [38], Gamma–Gamma
[39], and Negative Exponential [40]. Among them, Gamma–
Gamma is commonly used and is highly accompanied with the
actual results. The probability distribution function of Gamma–
Gamma atmospheric turbulence is as follows:

f (I) =
2 (αβ)

α+β
2

Γ (α) Γ (β)
I

α+β
2 −1Kα−β

(
2
√

αβI
)

; I > 0, (1)

where I is the atmospheric turbulence intensity, Γ (.) is the well-
known gamma function, K. (.) is modified Bessel function of the

second kind, α =

[
exp

(
0.49σ 2

R /

(
1 + 1.11σ 12/5

R

)7/6
)

− 1
]−1

is

the shaping parameter, and β =[
exp

(
0.51σ 2

R /

(
1 + 0.69σ 12/5

R

)5/6
)

− 1
]−1

is the scaling param-

eter that characterize the irradiance fluctuations in Gamma–
Gamma model, where σ 2

R = 1.23c2nk
7/6l11/6, where k = 2π/λ

is the wave number, and l is FSO link distance [41].

2.2. Fiber optic channel model

Modeling of fiber optic could help better and simpler under-
standing of the fiber effects. The model expressed for fiber OC is
the Gaussian noise model [42]. In this model, the fiber effects are
modeled as an additive Gaussian noise with a variance dependent
on fiber effect parameters. In this model the input signal to the
fiber is assumed to be Gaussian, and the modulation format has
no effect on the model; so [43] extended this model and applied
it for all signals considering modulation format. According to [43]
model, and considering x as the input signal to a fiber, the output
signal would be as follows:

y = x + nASE + nNL, (2)

where nASE is the amplifier spontaneous emission noise, and nNL is
nonlinear interference noise [42], which its variance is a function
of the optical launch power and moments of the constellation.
The Matlab and Python codes for obtaining this variance could
be found in [44] and [45], respectively.

3. DNN Based OC system model

The DNN based OC system model is shown in Fig. 2. The
generated M-ary symbols are first converted to one-hot vectors
(because at the end, the output of the DNN would be an M-ary
vector, which should be compared with the transmitted vector).
The produced one-hot vectors are then mapped to an MQAM
constellation, transmitted through FSO/ fiber channel and added
by the receiver input additive white Gaussian noise (AWGN) with
zero mean and unit variance. The receiver is assumed to imple-
ment equalization, detection, and demodulation jointly, by use of
a DNN. The DNN has 2 inputs (because the input is complex, but
DNN only takes real values), and M outputs, Nhid hidden layers,
and Nneu hidden neurons. The target is to adjust DNN parameters
(weights W and biases b) such that, the M-ary output vector

of the DNN (ŝ) be the same as the transmitted M-ary one-hot
vector (s). In another words, the following loss function should
be minimized:

L (θ) =
1
K

K∑
k=1

[
l(k)

(
s, ŝ

)]
, (3)

where θ is the vector containing DNN parameters, K is the batch
size, l (., .) is loss function. This loss function could be minimized
by calculating the gradients of all layers and updating the DNN
parameters by back propagating the error using the following
formula:

θ (j+1)
= θ (j)

− η∇θ L̃
(
θ (j)) (4)

, where η is learning rate, j is the training step iteration, and
∇θ L̃ (.) is the estimate of the gradient. This problem could be
solved using the well-known Stochastic Gradient Descent meth-
ods [46]. However, in order to do that, first should tune the
hyperparameters.

4. Hyperparameter tuning of a DNN

Among ML algorithms, DNN has the most number of hyper-
parameters to be tuned. So, there would be many difficulties
and ambiguities while tuning them. In this section, a brief but
sufficient explanation is presented about a standard hyperpa-
rameters, and their tuning. This section shows that at each step
which hyperparameter should be tuned and how to tune it. The
steps of hyperparameter tuning of an standard DNN (in a row)
are selecting number of epoch and batch size, normalizing input
data, selecting the layer type, selecting number of neurons and
hidden layers, selecting the activation functions, selecting the loss
function, selecting the optimizer, selecting the learning rate and
number of iterations.

4.1. Selecting number of epochs and batch size

The first step for hyperparameter tuning is simply preparing
the input dataset (features). Before designing the structure of
a DNN for a specific task, the collected dataset should be pre-
processed. Terminologies like number of epochs and batch size
appear while the entering data is large and cannot be passed
through DNN at once. One epoch is when the entire dataset is
passed through the DNN. Since the entering dataset is large, it
should be divided into several smaller batches. Updating DNN
parameters in one epoch is not a good idea, and leads to under-
fitting; accordingly, it should be fed in multiple epochs. As the
number of epochs increases, the curve goes from under fitting
to good fitting and to overfitting. The number of epochs is dif-
ferent for different datasets, but it is related to the diversity of
the dataset. Batch size is the total number of training samples
presented in a single batch.

4.2. Normalizing input dataset

The second step in hyperparameter tuning is reducing the
variance of input dataset by normalization (scaling). The DNN
could better track the changes and derive the relationships when
the variance of the input dataset is limited. So, normalization
would accelerate training. The input dataset could be either dis-
crete or continuous. The continuous dataset could be in the range
of [−1, 1], or [0, 1], or distributed normally with zero mean and
unit variance. The discrete dataset could be presented by one-hot
vector representation. In should be noted that the same normal-
ization method should be used for both training and testing data.
Also, it is important that if train and test dataset do not have
the same distribution, validation and test datasets should have
the same distribution. There are many ways for normalization
available in literature [47], however, the input dataset of this
paper is normalized by itself (one-hot vectors).

4 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

Fig. 2. The DNN based OC system model.

4.3. Selecting the layer type

The third step in tuning hyperparameters of a DNN is selecting
the layer type. There are many layer types available for DNN,
which each of them is proper for some specific tasks, and could
not be used everywhere. For example, the most popular layer
types are Feedforward, Radial Basis Function (for linear data),
Multilayer Perceptron (for non-linear data), Convolutional (for
imagery data), and Recurrent (for data with memory). If there
would be no knowledge about the input data, then the best
solution would be trial and error. In this paper layer type se-
lection is not investigated, because it has been already selected
(DNN, which is an extension of Multilayer Perceptron). However,
because there is no note in ML for OC over this subject in this
part the famous layer types are reviewed briefly and sufficiently.

Feedforward [48] is one of the simplest types, in which the
input dataset propagates in only one direction through one or
more layers. It is used for dealing with noisy datasets, e.g. in
face recognition and computer vision. Radial Basis Function [49]
considers the distance of any point relative to the center. It has
two layers, in the inner layer, the features are combined with
the radial basis function. It is used in power restoration systems.
Multilayer Perceptron [50] has three or more fully connected
layers. It uses a nonlinear activation function (mainly hyperbolic
tangent or logistic). It is used in speech recognition and machine
translation. Convolutional neural network (NN) [51] contains one
or more interconnected or pooled convolutional layers. Before
passing to the next layer, it applies a convolutional operation
on the input. Accordingly, the network can be much deeper but
with much fewer parameters. It is used in image and video
recognition, natural language processing, recommender systems,
semantic parsing, and paraphrase detection. In Recurrent NN [52],
except the first layer, other layers have feedback. From each time-
step to the next, each node acts as a memory cell and remembers
its previous information. It is used in text-to-speech conversion.

4.4. Selecting number of the neurons and layers

After selecting the layer type, it is the turn to choose number
of layers as well as number of neurons, which are completely
dependent on the input data type. There is no specific formulation
for tuning the number of hidden neurons as well as layers. How-
ever, there are some empirical rules, e.g. the optimal size of the
hidden layer is usually between the size of the input and output
layers. In linear data, there is no need for hidden layer. So, usually
one hidden layer is sufficient and situations, in which the addition
of a second (or third, etc.) hidden layer improves performance are
very few. NN presents a nonlinear function, accordingly, in binary
classification task one layer would be sufficient for this purpose.
In these situations, the number of neurons is the geometric mean
of the neurons in the input and output layers [53].

Table 1
Tensorflow activation functions.
Activation function Equation

Linear f (x) = cx

Sigmoid f (x) =
1

1+e−x

Tanh f (x) =
ex−e−x

ex+e−x

Relu f (x) =

{
x x > 0
0 x ≤ 0

Elu f (x) =

{
x x > 0
α (ex − 1) x ≤ 0

Selu f (x) = λ

{
x x > 0
α (ex − 1) x ≤ 0

Relu6 f (x) =

⎧⎪⎨⎪⎩
6 6 < x
x 0 < x ≤ 6
0 x ≤ 0

Crelu f (x) =

{
max(0, x) x > 0
max(0, −x) x ≤ 0

Softmax f (xi) =
e−xi∑
j e

−xi

Softsign f (x) =
x

1+|x|

Softplus f (x) = ln (1 + ex)

4.5. Selecting the activation function

The next step in hyperparameter tuning is specifying the ac-
tivation function type, which is somehow related to the task
and input data; e.g., Sigmoid and Softmax functions are well for
binary and M-ary classification, respectively, and use of them will
lead to faster convergence. If there is no knowledge about the
task or data, then Rectifier Linear Unit (Relu) is a good choice.
The activation function is either linear or nonlinear; nonlinear
activation function produces output in range (0, 1) or (−1, 1).
Therefore, it could be used for classification task. Linear activation
function produces any output values. The results of this paper
are obtained by deploying a DNN in Tensorflow environment, the
available activation function in this environment are collected
in Table 1. The history behind their generation is quoted in the
following.

The step function is threshold based, and activates only when
the input is above a certain level. In binary classification it works,
but its Achilles Hell is M-ary classification problem, in which mul-
tiple neurons are connected. Linear function appeared to solve
this problem (in situations with more than one firing neuron, max
or softmax could be used to solve the problem, but it has a fixed

M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057 5

Table 2
Tensorflow loss functions.
Softmax cross entropy with logits
Sigmoid cross entropy with logits
Softmax cross entropy with logits v2
Weighted cross entropy with logits

gradient. In addition, considering a DNN with linear activation
function, then output of each layer would be the input of the next
layer, each firing is based on another linear firing. So, it could be
assumed that only one linear firing exists in the whole NN. Sig-
moid function looks like a smooth and step function, and solved
problems of both of previous functions. It has limited analog
output, smooth gradient, and nonlinear combinations. However,
the input in the range (−2, 2) causes observable change in the
output, and the gradient would be small out of this range. Tanh
function is a scaled sigmoid function with stronger gradients than
sigmoid, and solved the problem somehow.

The Relu is a nonlinear function in range [0, ∞) that can
be approximated with its combinations. It is a sparse activation
function, which only fires a few neurons (almost 50%); it solved
the problem of computational complexity of previous functions.
However, it has zero gradient for negative inputs, which causes
the so-called dying Relu problem, in which the neurons cannot
response to the changes. Exponential Linear Unit (Elu) solved
this problem by adding a small slope for negative inputs (the
slope is defined by a positive constant); furthered, Selu function
extended Elu by replacing the linear slope by twisted slope (and
an additional constant). These constants are related to the input,
e.g., for standard scaled inputs (mean 0, var. 1), the values are
α = 1.6732, λ = 1.0507. Concatenated Relu (Crelu) extended
Relu by doing the same in the negative direction.

Softmax function calculates probability distribution function
of each target class over all possible target classes. Softsign func-
tion is an alternative to hyperbolic tangent. Even though tanh
and softsign functions are closely related, tanh converges expo-
nentially whereas softsign converges polynomially. Softplus is an
alternative of traditional functions, because it is differentiable and
its derivative is easy to demonstrate. Sigmoid and tanh outputs
have upper and lower limits whereas softplus outputs are in
range (0, ∞).

4.6. Selecting loss function

After designing the DNN structure and before running it, an
appropriate loss function should be found. Table 2 shows the
Tensorflow loss functions. The same as before, this task is em-
pirical and depends on the input data. For example in M-ary
classification, softmax cross entropy, and in binary classification,
sigmoid cross entropy are good choices. If the input structure is
sparse, then sparse softmax cross entropy would be preferable,
and in situations which one of the classes has a higher weight,
weighed cross entropy, which is an extension of sigmoid cross
entropy is preferred. MMSE, and cross entropy, are both the
famous loss functions; however, Cross entropy is mostly used
in literature. It measures the distance between actual class and
predicted value, which is usually a real number between 0 and 1.

Sigmoid cross entropy loss function is very similar to cross
entropy loss function, except that it uses a sigmoid activation
function at the last layer. Weighted cross entropy loss function
is a weighted version of the sigmoid cross entropy loss function,
which provides a weight on the positive target. Softmax cross
entropy loss function measures the probability distribution func-
tions by applying a softmax activation function at the last layer.
Sparse softmax cross entropy loss function is the same as softmax

Table 3
Tensorflow optimizers.
Gradient Descent Optimizer
Proximal Gradient Descent Optimizer
Momentum Optimizer
Adagrad Optimizer
Proximal Adagrad Optimizer
Adadelta Optimizer
Adam Optimizer
RMS Prop Optimizer
Ftrl Optimizer

cross entropy loss function, except that instead of being the target
a probability distribution, it is an index of which category is true.
Instead of a sparse all-zero target vector with one value of one, it
just passes in the index of which category is the true value.

4.7. Selecting optimizer

In order to find the best DNN hyperparameters, the selected
loss function should be minimized; this is done by iterative opti-
mization algorithms. Optimization is a tricky subject, which again
depends on the input quality and quantity, model size, and the
contents of the weight matrices; again trial and error is the way
to determine the best optimizer. Table 3 shows the Tensorflow
optimizers. The iterative Gradient Descent based formulation for
updating DNN parameters is θ = θ−η∇J(θ), where η is the learn-
ing rate, J(θ) is loss function, ∇J(θ) is the gradient of loss function
w.r.t parameters θ . The most popular algorithm for optimizing
DNN is Stochastic Gradient Descent (SGD) [54]. However, SGD has
high variance oscillations and could not converge properly. This
problem could be solved by addition of a momentum term [55],
which navigates SGD along the relevant direction and softens
the oscillations in irrelevant directions. In the momentum, the
updating function changes toV (t) = γV (t − 1) + η∇J(θ), and
θ = θ −V (t), where γ is the momentum term (usually set to 0.9).
The momentum term γ increases for dimensions whose gradients
point in the same directions and reduces updates for dimensions
whose gradients change directions.

The momentum is high while reaching the minima (it does
not slow down at that point), so, it passes the minima. Nesterov
accelerated gradient could solve this problem and prevents going
too fast and missing the minima. It takes a big jump according to
the previous momentum, then calculates the gradient, makes a
correction, and finally updates the parameters. Computing θ −

γV (t − 1) gives an approximation of the next position of the
parameters. Calculating the gradient w.r.t. the approximate future
position of parameter, i.e., V (t) = γV (t − 1) + η∇J(θ − γV (t −

1)) gives a look ahead, and finally could update the parameters
using θ = θ − V (t).

Although this method speeded up the updating, it would be
better to apply larger or smaller updates for each individual
parameter based on its importance. Adagrad solved this problem
by making big and short updates for infrequent and frequent
parameters, respectively. Considering g(t, i) to be the loss func-
tion gradient w.r.t. to the parameter θ (i) at time stept , the updat-
ing formula becomesθ (t + 1, i) = θ (t, i) − ηg(t, i)/

√
G (t, ii) + ϵ.

Actually, it modifies the learning rate at each time step t for every
parameter θ (i) based on the past gradients computed forθ (i).
Adagrad does not require to know learning rate (a default value
of 0.01 would be sufficient); however, its learning rate is always
decreasing and decaying. Adadelta [54] solved this problem by
calculating the momentum; it limits the accumulated past gra-
dients to a window with sizew. The running average E[g2

](t) at
time step t then depends only on the previous average and the
current gradient. So, the updating formula changes toE[g2

](t) =

γ E[g2
](t − 1) + (1 − γ)g2(t), θ (t + 1) = θ (t) − ηg(t, i).

https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/21/sigmoid-function-as-an-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/
https://sefiks.com/2017/01/29/hyperbolic-tangent-as-neural-network-activation-function/

6 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

Adam [55] extended the Adadelta by calculating momentums
for each parameter. In addition to storing an exponentially decay-
ing average of the past squared gradients like Adadelta, Adam also
keeps an exponentially decaying average of past gradientsM(t),
similar to momentum. The formulas for the first moment (mean)
and the second moment (the variance) of the Gradients are
m̂(t) = m(t)/(−β1(t)), and v̂(t) = v(t)/(−β2(t)), where m(t) and
v(t) are values of the first and second moment, respectively. The
updating formula changes to θ (t + 1) = θ (t) − η/(

√
v̂(t) + ϵ) ×

m̂(t). RMS Prop is similar to Adam it just uses different moving
averages but has the same goals. Ftrl Proximal was developed
for ad-click prediction where they had billions of dimensions and
hence huge matrices of weights that were very sparse. The main
feature here is to keep near zero weights at zero, so calculations
can be skipped and optimized.

4.8. Selecting learning rate, and number of iterations

The last step in tuning hyperparameters is selecting the learn-
ing rate, as well as number of iterations, which is very important.
If the loss is oscillating around a point at the start of training,
the learning rate is chosen high. If the loss is decreasing con-
sistently but very slowly, increasing the learning rate is a good
idea. Low learning rates not only slow down training but also
can degrade the performance of the trained model. High learning
rates increase generalization ability, as well as the noise on the
stochastic gradient, which acts as an implicit regularizer. Learning
rates can take a wide range of values, so gradually adjusting is
time-consuming. In addition, results of using learning rates of
0.001 and 0.0011 are not very different. So, different learning
rates should be used to determine the exploring range of learning
rates. After finding the optimal range of learning rates, search
in smaller grids around the optimal range. Before determining
number of iterations, it is required to specify the acceptable error
tolerance of the trained model. The iterations could be done as
much as either reaching a threshold, or failing to make additional
progress. In the latter case, ought to adjust hidden layers, consider
alternative algorithms, treat data beforehand, or use DL methods.

5. Proposed hyperparameter tuning methods

Among hyperparameter tuning methods, grid search is the
most popular, because its results are more accurate and trustable.
However, it is highly dependent on the grid size and grid range.
DNN has much more hyperparameters than the other ML algo-
rithms; so, the use of grid search for DNN hyperparameter tuning
would take a long time. DNN has at least 9 hyperparameters (see
Section 4), which each of them should get at least 9 points in the
grid (because a grid should be wide enough). So, in order to tune
hyperparameters of a DNN by grid search method it is required
to run 9! = 362880 times the cross validation and see the
results, and then decide. Marginally and alternatively searching
the previous scenario would require 9 × 9 = 81 computations.
Simply developing the grid search marginally and alternatively
rather than jointly might better deserve the tradeoff between
performance and complexity. How much would be degradation
of so much computation reduction? The answer to this question
is completely data dependent, however, the results of paper prove
that in OC applications, there is slight difference between perfor-
mances of different hyperparameter sets, and there is no need
to develop such a huge investigations. In this section, two novel
suboptimal (marginally and alternatively) grid search algorithms
are presented.

Table 4
The initial hyperparameter set of both methods for both OC systems.
Hyperparameter Value

Modulation order 16
Number of layers 2
Number of hidden neurons 32
Activation function Selu
Sample Size/ Batch Size 8
Batch Size 217

Learning Rate 0.001
Iterations 250
Loss Function Softmax cross entropy
Optimizer Adam

Table 5
FSO channel parameters.
α 4.2
β 1.4
Es/N0[dB] 0

Table 6
Fiber OC channel.
C [m/s] 299792458

h 6.6261e−34
D [ps/nm/km] 16.4640
β2 [ps2/km] 21
fc [Hz] 1.9341e+14
γ [1/W/km] 1.3
α [dB/km] 0.2
Number of spans 20
Span length [km] 100
Pre-dispersion [ps2] 0
P0 [dBm] 2
Baud-rate [GHz] 32
Channel spacing [GHz] 50
Second order modulation factor 1.32
Third order modulation factor 1.96
EDFA Noise figure [dB] 5

5.1. First method (marginal grid search)

In the first method, first the size and the range of the grid
(the hyperparameters and their values) should be defined. Then,
(based on previous knowledge from literature) an initial hyperpa-
rameter set should be selected for the starting point. Considering
this initial set, one of the hyperparameters would be tuned over
its defined grid range. Again, considering the initial set, another
hyperparameter would be tuned over its defined grid range. This
procedure will continue until tuning all of the hyperparameters.
This would be the first round, the initial point of the second round
is the hyperparameter set of the first round that has the least
Symbol Error Rate (SER) performance. The same procedure would
be continued in at all of the following rounds until reaching a
desired convergence.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf
https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057 7

Table 7
Results of using proposed methods in FSO and fiber OC systems.
Learning rate 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5
method 1-FSO SER 0.785 0.773 0.770 0.768 0.768 0.769 0.799 0.774 0.9369
method 2-FSO SER 0.785 0.773 0.770 0.768 0.768 0.769 0.769 0.774 0.9369
method 1-Fiber SER 0.634 0.137 0.0346 0.0325 0.029 0.0288 0.0295 0.0302 0.0356
method 2-Fiber SER 0.191 0.0460 0.0302 0.0288 0.0294 0.0394 0.0300 0.0292 0.0303

of iteration 100 200 300 400 500 600 700 800 900
method 1-FSO SER 0.766 0.767 0.767 0.762 0.767 0.760 0.764 0.763 0.769
method 2-FSO SER 0.765 0.767 0.767 0.761 0.767 0.760 0.764 0.762 0.769
method 1-Fiber SER 0.0339 0.0323 0.0317 0.0293 0.0292 0.0265 0.0263 0.0279 0.0309
method 2-Fiber SER 0.0300 0.0289 0.0291 0.0291 0.0350 0.0269 0.0283 0.0292 0.0311

of Layer 1 2 3 4 5 6 7 8 9
method 1-FSO SER 0.768 0.768 0.769 0.768 0.799 0.768 0.766 0.767 0.766
method 2-FSO SER 0.762 0.760 0.759 0.760 0.761 0.758 0.759 0.761 0.759
method 1-Fiber SER 0.0373 0.0325 0.0294 0.029 0.029 0.029 0.0290 0.0293 0.0294
method 2-Fiber SER 0.0260 0.0269 0.0275 0.0295 0.0279 0.679 0.809 0.932 0.939

of Neuron 10 20 30 40 50 60 70 80 90
method 1-FSO SER 0.770 0.767 0.768 0.768 0.767 0.769 0.767 0.768 0.767
method 2-FSO SER 0.759 0.761 0.759 0.760 0.761 0.761 0.759 0.761 0.761
method 1-Fiber SER 0.0348 0.0351 0.0328 0.0322 0.0310 0.0305 0.0302 0.0302 0.0303
method 2-Fiber SER 0.0261 0.0257 0.0352 0.0265 0.0263 0.0272 0.0268 0.0267 0.0269

Activation function Relu Crelu Elu Selu Relu6 Tanh Softmax Softsign Softplus
method 1-FSO SER 0.769 0.767 0.769 0.768 0.769 0.790 0.782 0.769 0.768
method 2-FSO SER 0.759 0.799 0.759 0.759 0.759 0.759 0.966 0.758 0.760
method 1-Fiber SER 0.0394 0.0306 0.0333 0.0325 0.0319 0.0327 0.848 0.0359 0.0330
method 2-Fiber SER 0.0268 0.0272 0.0291 0.0261 0.0263 0.0265 0.0272 0.0261 0.0261

Optimizer Adam Adadelta Adagrad Ftrl Gradient
Descent

Proximal
Adagrad

Proximal
Gradient
Descent

RMS Prop Momentum

method 1-FSO SER 0.768 0.922 0.807 0.936 0.818 0.807 0.818 0.769 0.777
method 2-FSO SER 0.759 0.877 0.765 0.936 0.775 0.765 0.775 0.765 0.763
method 1-Fiber SER 0.0325 0.906 0.874 0.938 0.899 0.874 0.899 0.0297 0.629
method 2-Fiber SER 0.0261 0.0678 0.0261 0.0264 0.0267 0.0261 0.0267 0.0312 0.0263

Sample size/ Batch size 1 2 3 4 5 6 7 8 9
method 1-FSO SER 0.775 0.764 0.765 0.765 0.799 0.769 0.769 0.768 0.763
method 2-FSO SER 0.759 0.767 0.770 0.766 0.765 0.766 0.766 0.759 0.766
method 1-Fiber SER 0.0719 0.0454 0.0354 0.0335 0.0353 0.0368 0.0347 0.035 0.0349
method 2-Fiber SER 0.0282 0.0298 0.0297 0.0278 0.0287 0.0288 0.0295 0.0261 0.0285

Batch size 4*16 8*16 16*16 32*16 64*16 128*16 256*16 512*16 1024*16
method 1-FSO SER 0.781 0.757 0.723 0.759 0.786 0.775 0.771 0.763 0.768
method 2-FSO SER 0.774 0.789 0.773 0.771 0.769 0.780 0.778 0.758 0.759
method 1-Fiber SER 0.0312 0.0234 0.0429 0.0410 0.0312 0.0327 0.0419 0.0363 0.0351
method 2-Fiber SER 0.0312 0.0264 0.0507 0.0312 0.0312 0.0410 0.0288 0.0313 0.0261

Loss function Softmax
cross
entropy

Softmax
cross
entropy v2

Sigmoid
cross
entropy

Weighted
cross entropy

method 1-FSO SER 0.768 0.768 0.769 0.770
method 2-FSO SER 0.773 0.773 0.769 0.781
method 1-Fiber SER 0.0288 0.0288 0.0355 0.0351
method 2-Fiber SER 0.0261 0.0261 0.0496 0.0364

5.2. Second method (alternative grid search)

In the second method, the idea of alternating optimization
(which is conducted for multivariate iterative optimization prop-
erly) is used in hyperparameter tuning. First the size and range
of the grid (hyperparameters and their values) should be defined.
Then, (based on previous knowledge from literature) an initial hy-
perparameter set should be defined. Considering this initial point,
one of the hyperparameters would be tuned over its defined grid
range. Then, the tuned point would be replaced (updated) in the
initial set. Then, the next hyperparameter would be tuned over
its grid range and would be replaced (updated) in the initial set.
This process continues until all of the hyperparameters would be
tuned and would be replaced (updated) in the initial set. This
would be the first round, the initial point of the second round
is the updated hyperparameter set. The same procedure would

be continued in at all of the following rounds until reaching a

desired convergence.

8 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

Fig. 3. Optisystem setups for a. FSO and b. Fiber OC systems.

Table 8
FSO channel parameters.
Link range [km] 1
Attenuation [dB/km] 0
Transmitter aperture diameter [m] 0.05
Beam divergence [mrad] 2
Receiver aperture diameter [m] 0.2
Scintillation model Gamma–Gamma
Wavelength [nm] 1550
Index refraction structure [m−

2
3] 5etmin15

Transmitter power [dBm] 20
Bit rate [Gbps] 10

6. Results and discussions

In this section, the results of applying the proposed methods
for hyperparameter tuning of a DNN are discussed. The DNN
based simulations are developed in Tensorflow environment, be-
cause it is very helpful for DNN. Table 4 shows the hyperparam-
eter set, which is selected based on previous knowledge from
literature. Four datasets are collected as the DNN input; two

Table 9
Fiber OC channel parameters.
C[m/s] 299792458
h 6.6261e−34
β2[ps2/km] −20
fc [Hz] 1.9341e+14
γ [1/W/km] 1.3
α [dB/km] 0.2
Length [km] 25
P0 [mW] 15
Bit rate [Gbps] 10
EDFA gain [dB] 5
EDFA Noise figure [dB] 6
PMD coefficient [ps/km1/2] 0.5

datasets collected by simulating the FSO and fiber OC channels
in MATLAB software. However, in order to get closer to the
actual results, Optisystem software is also used for collecting two
other datasets on FSO and fiber OC channels. Because Optisystem
considers more parameters and is closer to the experimental
results (comparing with simple MATLAB simulations). The first

M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057 9

Table 10
Results of using proposed methods in FSO and fiber optic communication systems on the experimental setups.

Learning rate 0.00005 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5
method 1-FSO SER 0.495 0.491 0.483 0.482 0.492 0.483 0.479 0.482 0.495
method 2-FSO SER 0.482 0.481 0.483 0.482 0.482 0.483 0.479 0.482 0.495
method 1-Fiber SER 0.500 0.499 0.495 0.495 0.497 0.497 0.503 0.497 0.502
method 2-Fiber SER 0.500 0.499 0.495 0.495 0.497 0.497 0.503 0.497 0.502

textbf# of iteration 100 200 300 400 500 600 700 800 900
method 1-FSO SER 0.495 0.480 0.485 0.491 0.481 0.499 0.483 0.482 0.480
method 2-FSO SER 0.498 0.482 0.482 0.480 0.484 0.480 0.484 0.483 0.489
method 1-Fiber SER 0.512 0.496 0.501 0.497 0.495 0.494 0.495 0.520 0.498
method 2-Fiber SER 0.514 0.497 0.499 0.500 0.495 0.496 0.496 0.496 0.500

of Layer 1 2 3 4 5 6 7 8 9
method 1-FSO SER 0.489 0.492 0.482 0.483 0.499 0.483 0.492 0.482 0.481
method 2-FSO SER 0.480 0.480 0.499 0.484 0.493 0.487 0.492 0.480 0.495
method 1-Fiber SER 0.520 0.495 0.500 0.497 0.495 0.498 0.530 0.497 0.495
method 2-Fiber SER 0.530 0.495 0.521 0.495 0.493 0.500 0.492 0.499 0.495

of Neuron 10 20 30 40 50 60 70 80 90
method 1-FSO SER 0.489 0.486 0.498 0.482 0.481 0.485 0.483 0.483 0.483
method 2-FSO SER 0.481 0.481 0.481 0.497 0.481 0.481 0.481 0.481 0.481
method 1-Fiber SER 0.495 0.495 0.496 0.494 0.495 0.495 0.500 0.521 0.494
method 2-Fiber SER 0.496 0.493 0.492 0.498 0.513 0.521 0.530 0.495 0.497

Activation function Relu Crelu Elu Selu Relu6 Tanh Softmax Softsign Softplus
method 1-FSO SER 0.493 0.482 0.499 0.482 0.483 0.482 0.482 0.489 0.482
method 2-FSO SER 0.480 0.481 0.481 0.481 0.490 0.481 0.498 0.481 0.489
method 1-Fiber SER 0.496 0.496 0.494 0.495 0.521 0.495 0.513 0.494 0.5023
method 2-Fiber SER 0.497 0.497 0.495 0.492 0.502 0.495 0.497 0.496 0.520

Optimizer Adam Adadelta Adagrad Ftrl Gradient
Descent

Proximal
Adagrad

Proximal
Gradient
Descent

RMS Prop Momentum

method 1-FSO SER 0.482 0.517 0.482 0.495 0.482 0.482 0.492 0.500 0.482
method 2-FSO SER 0.480 0.480 0.480 0.500 0.481 0.496 0.479 0.478 0.480
method 1-Fiber SER 0.495 0.498 0.522 0.497 0.503 0.503 0.523 0.497 0.497
method 2-Fiber SER 0.492 0.516 0.497 0.497 0.504 0.516 0.497 0.492 0.497

Sample size/Batch size 1 2 3 4 5 6 7 8 9
method 1-FSO SER 0.502 0.496 0.486 0.484 0.497 0.481 0.485 0.482 0.486
method 2-FSO SER 0.481 0.482 0.491 0.487 0.500 0.485 0.492 0.478 0.496
method 1-Fiber SER 0.495 0.501 0.500 0.536 0.494 0.501 0.495 0.509 0.497
method 2-Fiber SER 0.495 0.532 0.499 0.492 0.500 0.496 0.492 0.495 0.498

Batch size 4*16 8*16 16*16 32*16 64*16 128*16 256*16 512*16 1024*16
method 1-FSO SER 0.480 0.500 0.535 0.494 0.483 0.486 0.475 0.485 0.482
method 2-FSO SER 0.486 0.523 0.476 0.505 0.473 0.473 0.492 0.480 0.480
method 1-Fiber SER 0.491 0.494 0.493 0.496 0.483 0.500 0.512 0.496 0.495
method 2-Fiber SER 0.499 0.478 0.488 0.469 0.496 0.461 0.465 0.482 0.443

Loss function Softmax
cross entropy

Softmax
cross entropy
v2

Sigmoid
cross entropy

Weighted
cross entropy

method 1-FSO SER 0.482 0.482 0.483 0.482
method 2-FSO SER 0.473 0.486 0.490 0.476
method 1-Fiber SER 0.495 0.495 0.494 0.494
method 2-Fiber SER 0.443 0.443 0.443 0.443

subsection discusses results of the first two datasets, the sec-
ond subsection discusses results of the other datasets. The third
subsection is dedicated to comparison between the results of
the proposed methods, [24], and [15] (based on the first two
datasets).

6.1. MATLAB Simulations

Table 5, and Table 6 show FSO and fiber OC channel param-
eters, respectively. These parameters were considered for simu-
lating the OC systems using MALAB software. Table 7 shows ob-
tained results for hyperparameter tuning of the proposed meth-
ods for both of FSO and fiber OC systems. FSO link is assumed in
strong regime of Gamma–Gamma atmospheric turbulence (α =

4.2, β = 1.4), and Es/N0 = 0 dB. The fiber link is assumed to
have dispersion, path loss, and nonlinearity. Results indicate that
proposed methods are dependent on the input data, and have

different results for different datasets. This shows the importance
of the prior knowledge from previous literature. For the same
application (detection), different datasets (fiber and FSO) have
different DNN structures. In Table 7, appropriate range for the
tuned hyperparameters are bolded and underlined. In the first
method, the hyperparameter set with the least SER would be
selected; in the second method, the hyperparameter set (of the
last row) with the least SER would be selected. As seen, for
FSO, the first method results in SER of 0.723, while the second
method achieves 0.760. For fiber OC, the first method achieves
SER of 0.0234, while the second method achieves 0.0261. For
simplicity and without loss of generality, only one round results
are presented, (because for showing the results of each iteration,
a one page length table should be added, and the aim of this paper
is not to find the optimum point, it aims to compare the results
of the proposed methods, and their difference is obvious even at
the first step).

10 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

Table 11
Results of using grid search of [24] in FSO and fiber OC systems.

Learning rate 0.00005 0.0005 0.005 0.05 0.5
FSO SER 0.785 0.770 0.768 0.769 0.937
Fiber SER 0.634 0.035 0.029 0.030 0.039

of iteration 100 300 500 700 900
FSO SER 0.776 0.777 0.787 0.774 0.769
Fiber SER 0.034 0.039 0.029 0.029 0.041

of Layer 1 3 5 7 8
FSO SER 0.770 0.769 0.769 0.776 0.777
Fiber SER 0.037 0.029 0.029 0.029 0.032

of Neuron 10 30 50 70 90
FSO SER 0.770 0.768 0.767 0.797 0.767
Fiber SER 0.035 0.033 0.041 0.030 0.030

Sample size/ Batch size 1 3 5 7 9
FSO SER 0.775 0.795 0.769 0.769 0.773
Fiber SER 0.072 0.036 0.045 0.035 0.035

Batch size 4*16 64*16 128*16 256*16 1024*16
method 1-FSO SER 0.781 0.796 0.775 0.771 0.768
method 1-Fiber SER 0.031 0.032 0.033 0.042 0.035

Table 12
Results of using manual search of [15] in FSO and fiber OC systems.

Learning rate 0.00005 0.0005 0.005 0.05 0.1
FSO SER 0.785 0.770 0.768 0.769 0.774
Fiber SER 0.634 0.035 0.029 0.040 0.030

of iteration 200 400 500 700 900
FSO SER 0.767 0.768 0.787 0.774 0.769
Fiber SER 0.032 0.039 0.029 0.029 0.031

of Layer 1 5 6 7 8
FSO SER 0.768 0.779 0.768 0.776 0.767
Fiber SER 0.037 0.039 0.029 0.029 0.029

of Neuron 10 20 50 60 90
FSO SER 0.770 0.767 0.767 0.789 0.767
Fiber SER 0.035 0.045 0.031 0.030 0.030

Sample size/Batch size 1 4 6 7 8
FSO SER 0.775 0.765 0.799 0.789 0.768
Fiber SER 0.072 0.034 0.037 0.045 0.035

Batch size 4*16 32*16 64*16 128*16 256*16
FSO SER 0.781 0.769 0.796 0.775 0.771
Fiber SER 0.031 0.041 0.031 0.033 0.042

6.2. Optisystem simulations

In this section, Optisystem software is used for collecting
datasets for FSO and fiber OC systems. The reason is that Op-
tisystem considers more things than MATLAB simulations and its
results are closer to the experimental results. The implemented
setups for FSO and fiber OC systems are shown in Fig. 3. a and
b, respectively. The details of their channel models are shown in
Tables 8 and 9. In order to show the generality of the proposed
methods, a bit different channel parameters are considered in ex-
perimental setups, but the system models are the same. Table 10
shows the results of implementation of the proposed methods
on the defined setups. As seen, for FSO, the first method results
in SER of 0.479, while the second method achieves 0.473. For
fiber OC, the first method achieves SER of 0.494, while the second
method achieves 0.443. As seen, in the first two datasets, first
method performs better than the second method, however, for
the two second datasets this is inverse. This is because both of
the proposed methods are suboptimal, and they are dependent on
the initial point. However, both methods have close performance
and are efficient for different OC applications.

6.3. Comparison

Tables 11 and 12 are added for better comparison between
the proposed methods and grid search of [24] as well as manual
search of [15] on the first two datasets. As mentioned in Sec-
tion 1.1, grid search method used in [24] and manual search used
in [15] had small size and small range. As seen, for FSO, SER of the
proposed methods, [24], and [15] are 0.723, 0.760 0.768, 0.767,
respectively. For fiber OC, SER of the proposed methods, [24],
and [15] are 0.0234, 0.0261, 0.029, 0.029, respectively. As seen,
the proposed methods perform better, because they considered
larger size and range in the grid search.

7. Conclusion

The first important step towards deploying a ML algorithm is
tuning its hyperparameters. There are many ways to this end,
among them grid search is the most popular method. However,
it has high computational complexity, and is not appropriate for
ML algorithms with many hyperparameters. Accordingly, this pa-
per presented two novel suboptimal grid search methods, which
search the grid marginally and alternatively. These methods are

M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057 11

investigated on a DNN under four datasets. Two datasets were
collected by simulating FSO and fiber OC links by MATLAB soft-
ware, and two other datasets were collected by experimental
setups for FSO and fiber OC links in Optisystem software. Results
indicated that despite greatly reducing computation load, favor-
able performance could be achieved by the proposed methods.
The proposed structures were compared with some of the re-
cently published most relevant works, and the efficiency of the
proposed methods was indicated.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

M.A. Amirabadi: Conceptualization, Writing - original draft.
M.H. Kahaei: Supervision. S.A. Nezamalhosseini: Supervision.

References

[1] M.A. Khalighi, M. Uysal, Survey on free space optical communication:
A communication theory perspective, IEEE Commun. Surv. Tutor. 16 (4)
(2014) 2231–2258.

[2] X. Zhou, X. Zheng, R. Zhang, L. Hanzo, Chip-interleaved optical code
division multiple access relying on a photon-counting iterative successive
interference canceller for free-space optical channels, Opt. Exp. 21 (13)
(2013) 15926–15937.

[3] A.K. Majumdar, Advanced Free Space Optics (FSO): A Systems Approach,
Vol. 186, Springer, 2014.

[4] M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, E. Udvary (Eds.),
Optical Wireless Communications: An Emerging Technology, Springer,
2016.

[5] C.M. Bishop, Pattern Recognition and Machine Learning, springer, 2006.
[6] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016.
[7] M.T. Hagan, H.B. Demuth, M.H. Beale, O. De Jesús, Neural Network Design,

Vol. 20, Pws Pub., Boston, 1996.
[8] R.T. Jones, T.A. Eriksson, M.P. Yankov, D. Zibar, Deep learning of geometric

constellation shaping including fiber nonlinearities, in: 2018 European
Conference on Optical Communication (ECOC), IEEE, 2018, pp. 1–3.

[9] C. Wang, S. Fu, Z. Xiao, M. Tang, D. Liu, Long short-term memory neural
network (LSTM-NN) enabled accurate optical signal-to-noise ratio (OSNR)
monitoring, J. Lightwave Technol. (00) (2019).

[10] F.N. Khan, K. Zhong, W.H. Al-Arashi, C. Yu, C. Lu, A.P.T. Lau, Modulation
format identification in coherent receivers using deep machine learning,
IEEE Photonics Technol. Lett. 28 (17) (2016) 1886–1889.

[11] F.N. Khan, K. Zhong, X. Zhou, W.H. Al-Arashi, C. Yu, C. Lu, A.P.T. Lau,
Joint OSNR monitoring and modulation format identification in digital
coherent receivers using deep neural networks, Opt. Exp. 25 (15) (2017)
17767–17776.

[12] J.S. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-
parameter optimization, in: Advances in Neural Information Processing
Systems, 2011, pp. 2546–2554.

[13] N. Schilling, M. Wistuba, L. Drumond, L. Schmidt-Thieme, Hyperparameter
optimization with factorized multilayer perceptrons, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, Cham, 2015, pp. 87–103.

[14] F. Hutter, J. Lücke, L. Schmidt-Thieme, Beyond manual tuning of
hyperparameters, DISKI 29 (4) (2015) 329–337.

[15] M.W.S. Chang, PianoNet: A Hyperparameter Study of a Deep Neural
Network for Automatic Music Transcription.

[16] F. Friedrichs, C. Igel, Evolutionary tuning of multiple SVM parameters,
Neurocomputing 64 (2005) 107–117.

[17] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization,
Journal of Machine Learning Research, 13(Feb) 28 (2012) 1–305.

[18] R.G. Mantovani, A.L. Rossi, J. Vanschoren, B. Bischl, A.C. De Carvalho,
Effectiveness of random search in SVM hyper-parameter tuning, in: 2015
International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8.

[19] L. Li, A. Talwalkar, Random search and reproducibility for neural
architecture search, 2019, arXiv preprint arXiv:1902.07638.

[20] J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of ma-
chine learning algorithms, in: Advances in Neural Information Processing
Systems, 2012, pp. 2951–2959.

[21] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H.
Hoos, K. Leyton-Brown, Towards an empirical foundation for assessing
bayesian optimization of hyperparameters. In NIPS workshop on Bayesian
Optimization in Theory and Practice (Vol. 10, 3), 2013.

[22] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, Y. Bengio, An empirical
evaluation of deep architectures on problems with many factors of vari-
ation, in: Proceedings of the 24th International Conference on Machine
Learning, ACM, 2007, pp. 473–480.

[23] D. Choi, H. Cho, W. Rhee, On the difficulty of dnn hyperparameter
optimization using learning curve prediction, in: TENCON 2018-2018 IEEE
Region 10 Conference, IEEE, 2018, pp. 0651–0656.

[24] Y. Zhou, S. Cahya, S.A. Combs, C.A. Nicolaou, J. Wang, P.V. Desai, J.
Shen, Exploring tunable hyperparameters for deep neural networks with
industrial ADME data sets, J. Chem. Inf. Model. 59 (3) (2018) 1005–1016.

[25] K. Wang, C. Shang, F. Yang, Y. Jiang, D. Huang, Automatic hyper-parameter
tuning for soft sensor modeling based on dynamic deep neural network,
in: 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, 2017, pp. 989–994.

[26] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, et al., Scal-
able bayesian optimization using deep neural networks, in: International
conference on machine learning, 2015, pp. 2171-2180.

[27] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, The
MIT Press, 2006.

[28] I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Efficient hyperparameter op-
timization for deep learning algorithms using deterministic rbf surrogates,
in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[29] I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Hyperparameter optimization
of deep neural networks using non-probabilistic RBF surrogate model,
2016, arXiv preprint arXiv:1607.08316.

[30] I. Loshchilov, F. Hutter, CMA-ES For hyperparameter optimization of deep
neural networks, 2016, arXiv preprint arXiv:1604.07269.

[31] O.E. David, I. Greental, Genetic algorithms for evolving deep neural net-
works, in: Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ACM, 2014, pp.
1451–1452.

[32] F. Hutter, H. Hoos, K. Leyton-Brown, Sequential model-based optimiza-
tion for general algorithm configuration, in: Proc. of LION’11, 2011, pp.
507–523.

[33] J. Bergstra, D. Yamins, D.D. Cox, Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures,
2013.

[34] T. Domhan, J.T. Springenberg, F. Hutter, Speeding up automatic hyperpa-
rameter optimization of deep neural networks by extrapolation of learning
curves, in: Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[35] J. Luketina, M. Berglund, K. Greff, T. Raiko, Scalable gradient-based tuning
of continuous regularization hyperparameters. In International Conference
on Machine Learning, 2016, pp. 2952-2960.

[36] P.K. Sharma, A. Bansal, P. Garg, T. Tsiftsis, R. Barrios, Relayed FSO commu-
nication with aperture averaging receivers and misalignment errors, IET
Commun. 11 (1) (2017) 45–52.

[37] P.V. Trinh, T.C. Thang, A.T. Pham, Mixed mmWave RF/FSO relaying systems
over generalized fading channels with pointing errors, IEEE Photonics J. 9
(1) (2017) 1–14.

[38] F.J. Lopez-Martinez, G. Gomez, J.M. Garrido-Balsells, Physical-layer security
in free-space optical communications, IEEE Photonics J. 7 (2) (2015) 1–14.

[39] M.L.B. Riediger, R. Schober, L. Lampe, Blind detection of on-off keying
for free-space optical communications, in: 2008 Canadian Conference on
Electrical and Computer Engineering, IEEE, 2008, pp. 001361–001364.

[40] Y.J. Zhu, Z.G. Sun, J.K. Zhang, Y.Y. Zhang, A fast blind detection algorithm
for outdoor visible light communications, IEEE Photonics J. 7 (6) (2015)
1–8.

[41] M.R. Bhatnagar, Z. Ghassemlooy, Performance analysis of gamma–gamma
fading FSO MIMO links with pointing errors, J. Lightwave Technol. 34 (9)
(2016) 2158–2169.

[42] P. Poggiolini, The GN model of non-linear propagation in uncompensated
coherent optical systems, J. Lightwave Technol. 30 (24) (2012) 3857–3879.

[43] R. Dar, M. Feder, A. Mecozzi, M. Shtaif, Properties of nonlinear noise in
long, dispersion-uncompensated fiber links, Opt. Express 21 (22) (2013)
25685–25699.

[44] R. Dar, M. Feder, A. Mecozzi, M. Shtaif, Accumulation of nonlinear
interference noise in fiber-optic systems, Opt. Exp. 22 (12) (2014)
14199–14211.

[45] R. Jones, Source code, 2018, https://github.com/rassibassi/claude.
[46] L. Bottou, Large-scale machine learning with stochastic gradient descent,

in: Proceedings of COMPSTAT’2010, Physica-Verlag HD, 2010, pp. 177–186.
[47] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network

training by reducing internal covariate shift, in: Proceedings of the 32nd
International Conference on Machine Learning, PMLR, vol. 37, no. 2015,
2015, pp. 448-456.

http://refhub.elsevier.com/S1874-4907(19)30665-2/sb1
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb1
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb1
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb1
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb1
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb2
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb3
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb3
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb3
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb4
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb4
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb4
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb4
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb4
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb5
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb6
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb7
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb7
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb7
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb8
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb8
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb8
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb8
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb8
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb9
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb9
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb9
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb9
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb9
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb10
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb10
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb10
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb10
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb10
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb11
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb12
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb12
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb12
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb12
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb12
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb13
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb14
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb14
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb14
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb16
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb16
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb16
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb17
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb17
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb17
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb18
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb18
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb18
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb18
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb18
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://arxiv.org/abs/1902.07638
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb20
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb20
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb20
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb20
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb20
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb22
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb23
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb23
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb23
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb23
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb23
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb24
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb24
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb24
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb24
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb24
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb25
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb27
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb27
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb27
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1607.08316
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://arxiv.org/abs/1604.07269
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb31
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb33
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb33
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb33
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb33
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb33
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb36
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb36
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb36
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb36
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb36
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb37
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb37
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb37
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb37
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb37
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb38
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb38
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb38
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb39
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb39
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb39
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb39
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb39
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb40
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb40
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb40
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb40
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb40
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb41
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb41
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb41
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb41
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb41
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb42
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb42
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb42
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb43
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb43
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb43
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb43
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb43
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb44
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb44
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb44
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb44
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb44
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
https://github.com/rassibassi/claude
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb46
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb46
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb46

12 M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini / Physical Communication 41 (2020) 101057

[48] H.C. Leung, C.S. Leung, E.W. Wong, S. Li, Extreme learning machine for
estimating blocking probability of bufferless OBS/OPS networks, IEEE/OSA
J. Opt. Commun. Networking 9 (8) (2017) 682–692.

[49] S.T. Ahmad, K.P. Kumar, Radial basis function neural network nonlinear
equalizer for 16-QAM coherent optical OFDM, IEEE Photonics Technol. Lett.
28 (22) (2016) 2507–2510.

[50] T.F. de Sousa, M.A. Fernandes, Multilayer perceptron equalizer for op-
tical communication systems, in: 2013 SBMO/IEEE MTT-S International
Microwave & Optoelectronics Conference (IMOC), IEEE, 2013, pp. 1–5.

[51] D. Wang, M. Zhang, J. Li, Z. Li, J. Li, C. Song, X. Chen, Intelligent constellation
diagram analyzer using convolutional neural network-based deep learning,
Opt. Exp. 25 (15) (2017) 17150–17166.

[52] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, S. Khudanpur, Recurrent
neural network based language model, in: Eleventh annual conference of
the international speech communication association, 2010.

[53] T. Masters, Practical Neural Network Recipes in C++, Morgan Kaufmann,
1993.

[54] M.D. Zeiler, ADADELTA: AN adaptive learning rate method, 2012, arXiv
preprint arXiv:1212.5701.

[55] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

Mohammad Ali Amirabadi was born in Zahedan, Iran,
in 1993. He received the B.Sc. degree in Optics &
Laser Engineering from Malek-e-Ashtar University of
Technology, Isfahan, Iran, in 2015, and the M.Sc. degree
in Communication Engineering from Iran University of
Science and Technology, Tehran, Iran in 2017. Now
he is studying Ph.D. in Communication Engineering in
Iran University of Science and Technology, Tehran, Iran.
His research interests include Multimode Fiber Optic
Communication, Free Space Optical Communication,
and Deep Learning.

Mohammad Hossein Kahaei received the B.Sc. degree
from Isfahan University of Technology, Isfahan, Iran,
in 1986, the MSc degree from the University of the
Ryukyus, Okinawa, Japan, in 1994, and the Ph.D. degree
in signal processing from the School of Electrical and
Electronic Systems Engineering, Queensland University
of Technology, Brisbane, Australia, in 1998. Since 1999,
he has been with the School of Electrical Engineering,
Iran University of Science and Technology, Tehran, Iran,
where he is currently an Associate Professor and the
head of Signal and System Modeling laboratory. His

research interests include array signal processing with primary emphasis on
compressed sensing, blind source separation, localization, tracking, and DOA
estimation, and wireless sensor networks.

S. Alireza Nezamalhosseini received the B.Sc. degree
in electrical engineering from Amirkabir University
of Technology, Tehran, Iran, in 2006, and the M.Sc.
and Ph.D. degrees in electrical engineering from Sharif
University of Technology (SUT), Tehran, Iran, in 2008
and 2013, respectively. He is currently an assistant
professor at Iran University of Science and Tech-
nology (IUST), Tehran. His research interests include
underwater wireless optical communications, mode-
division multiplexing in optical fibers, and visible light
communications.

http://refhub.elsevier.com/S1874-4907(19)30665-2/sb48
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb48
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb48
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb48
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb48
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb49
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb49
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb49
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb49
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb49
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb50
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb50
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb50
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb50
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb50
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb51
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb51
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb51
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb51
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb51
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb53
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb53
http://refhub.elsevier.com/S1874-4907(19)30665-2/sb53
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Novel suboptimal approaches for hyperparameter tuning of deep neural network [under the shelf of optical communication]
	Introduction
	Related works
	Novelties and contributions

	Channel model
	FSO Channel model
	Fiber optic channel model

	DNN Based OC system model
	Hyperparameter tuning of a DNN
	Selecting number of epochs and batch size
	Normalizing input dataset
	Selecting the layer type
	Selecting number of the neurons and layers
	Selecting the activation function
	Selecting loss function
	Selecting optimizer
	Selecting learning rate, and number of iterations

	Proposed hyperparameter tuning methods
	First method (marginal grid search)
	Second method (alternative grid search)

	Results and discussions
	MATLAB Simulations
	Optisystem simulations
	Comparison

	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	References

