
Received January 24, 2022, accepted February 22, 2022. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.3154414

Joint Power and Gain Allocation in MDM-WDM
Optical Communication Networks Based on
Enhanced Gaussian Noise Model

MOHAMMAD ALI AMIRABADI1, MOHAMMAD HOSSEIN KAHAEI 1,
S. ALIREZA NEZAMALHOSSEINI 1, AND LAWRENCE R. CHEN 2, (Senior Member, IEEE)
1School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
2Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada

Corresponding author: S. Alireza Nezamalhosseini (nezam@iust.ac.ir)

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

ABSTRACT Achieving reliable communication over different wavelength channels and modes is one of the

main goals of Mode Division Multiplexing-Wavelength Division Multiplexing (MDM-WDM) transmission.

The reliability can be described by the minimum Signal to Noise Ratio (SNR) margin which depends

on launch power, the gain of Few-Mode Erbium-Doped Fiber Amplifiers (FM-EDFA), and the nonlinear

impairments of Few-Mode Fiber (FMF). In this paper, we develop the Enhanced Gaussian Noise (EGN)

nonlinear model for FMF, which can be used in both weak and strong coupling regimes. We validate the

model by comparing simulation results with those obtained through the Split-Step Fourier Method. Based

on our proposed EGN model, we address the problem of joint optimized power and gain allocation based on

minimum SNRmargin maximization when accounting for practical FM-EDFA constraints such as saturation

power and maximum gain. The problem is solved using a convex optimization approach and considering

different scenarios such as the best equal power, optimized power, and joint optimized power and gain.

Results demonstrate that the minimum SNR margin improvement for the joint optimized power and gain

allocation compared to the best equal power allocation is 1.4 dB and 1.7 dB for MDM-single channel and

single-mode fiber-WDM systems, respectively.

INDEX TERMS Enhanced Gaussian noise model, few-mode fiber, power allocation, gain allocation.

I. INTRODUCTION

Mode Division Multiplexing (MDM) over Few-Mode

Fibers (FMF) or multi-core fibers has emerged as a possible

solution for overcoming the data-rate crunch in optical

communication networks. Theoretically, deploying FMF

that supports D spatial modes can increase capacity D

times [1]. The combination of MDM with Wavelength Divi-

sion Multiplexing (WDM) and polarization division multi-

plexing schemes further increases total capacity. However,

MDM-WDM systems suffer from both linear and nonlinear

transmission impairments in FMF. The linear impairments

include attenuation, chromatic and modal dispersion, and

linear coupling [2]–[6]. The linear coupling between spa-

tial (polarization) modes results in a power transfer from

one spatial (polarization) mode to another one [3]. When

The associate editor coordinating the review of this manuscript and

approving it for publication was Jie Tang .

linear mode coupling is insignificant compared to the linear

polarization coupling, it is called weak coupling which is

more prone in short-range links [7], [8]. On the other hand,

in long-range links, strong coupling appears wherein the

linear mode coupling is significant compared to the linear

polarization coupling [3], [5]. For compensating FMF linear

effects in the weak coupling regime, each mode is processed

separately without using complex Multiple-Input-Multiple-

Output (MIMO) Digital Signal Processing (DSP) [8]. How-

ever, for compensating FMF linear effects in the strong

coupling regime, MIMO DSP is required [2]. It has been

shown that the MIMO DSP complexity can be used only in

the case of nearly equal group delays between the propagating

modes [9]–[11]. Graded index fibers, especially those with a

nearly parabolic index profile, can minimize the differential

mode group delay and are the most commonly employed

in current FMF-based MDM-WDM transmission [4]. The

nonlinear impairments include Kerr-based nonlinearity and
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nonlinear coupling [1]; these represent the main limitations

towards realizing practical MDM-WDM systems.

A. RELATED WORKS

During the last decade, several studies have investigated the

analyzed the impact of FMF nonlinearities; these include

those that focus mainly on numerical simulations [3] and

analytical predictions [12] combined with experimental ver-

ification [13]. The first step towards analyzing the impact

of FMF nonlinearity is to solve the Manakov equation [3].

While the Split Step Fourier Method (SSFM) can solve

the Manakov equation through many successive numeri-

cal simulation steps, it involves high computational com-

plexity. On the other hand, perturbation-based methods

can solve approximately the Manakov equation [14] and

result in analytical formulations that predict FMF non-

linearity. The Gaussian Noise (GN) model is the most

practical perturbation-based model which describes the non-

linear effects by an additive Gaussian noise source [26].

Existing publications on the GN model for FMF system

can be separated in two main categories: those involving

an integral-form [4],[10],[15],[20],[21] and those that are

closed-form [6],[22]. These formulations all involve and

Incoherent GN (IGN) model, which is based on the assump-

tion that the nonlinear interference noise created at each

span is accumulated incoherently at the receiver. This results

in an under-estimation of the Nonlinear Interference (NLI)

noise power spectral density [23]. Previously, we compared

the complexity performance of the closed-form IGN model,

integral-form IGNmodel, and SSFM for FMF [24]. Although

the closed-form IGN model is very fast, it can only be

applied to rectangular shaped Nyquist WDM [17], [18] and

is accurate when the channel spacing is close to the symbol-

rate [19]. Recently, we derived an integral-form coherent GN

model for FMF [25] and compared its complexity perfor-

mance with the IGN model. The GN model is only accurate

in Gaussian-shaped constellations for multi-span links [26].

The Gaussian distribution assumption of the transmitted sig-

nal leads to an over-estimation of the NLI noise power in

practical applications with modulation formats such as Phase

Shift Keying (PSK) and Quadrature Amplitude Modulation

(QAM). This over-estimation, which is greater in the first

spans (several dB) [16], in turn results in a 0.5 dB error on

predicting the optimum launched power. As a consequence,

the obtained gains with respect to the best equal power allo-

cation can be conservative and fall within the accuracy of

the GN model [16]. In Single Mode Fiber (SMF) systems,

the Enhanced GN (EGN) model, presented by [16]–[18],

removes the signal Gaussian distribution assumption and

does not have the above mentioned limitations.

One of the main goals of MDM-WDM systems is to

achieve reliable communication which is usually expressed in

terms of the Signal to Noise Ratio (SNR) margin between the

existing situation and the required error correction threshold.

Channels and modes with the lowest SNR margins have the

most likely failure. This failure can be minimized by the

minimum SNR margin maximization. The SNR margin is

directly related to the NLI noise, which is a dominating issue

for achieving reliable communication [10]. The NLI noise is

related to system parameters such as transmitted power and

FM-EDFA gain; therefore, power allocation [27]-[31] and

gain allocation [32] play essential roles in achieving reliable

communication.

B. NOVELTIES AND CONTRIBUTIONS

Previous researches on FMF systems have led to the devel-

opment of a closed-form IGN model, an integral-form IGN

model, and an integral-form coherent GN model. Despite the

improvements offered by the EGN model for simulating and

analyzing SMF systems, no such EGN model exists for FMF

systems. Therefore, in the first part of the paper, we derive

an EGN model for FMF. This model, which can be used in

both weak and strong coupling regimes, includes the first four

dispersion terms as well as Carrier Phase Estimation (CPE).

The significance of the first part of this paper include the

following:

• Presenting the EGN model for MDM-WDM system,

which can provide very accurate estimates of NLI noise

power for different numbers of spans, launched power,

and modulation format. Results from the ENG model

show that we can remove the 0.1 dB and 0.9 dB SNR

margins predicted by the integral-form IGN model [4]

in the weak and strong coupling regimes, respectively,

for the optimal (best equal) launched power per channel-

mode. This is important in applications such as resource

allocation, quality of transmission estimation, and opti-

cal performance monitoring.

• Proposing a formulation for NLI noise power wherein

different system and link parameters can be selected

independently (e.g., launch power of different channels

and modes, FM-Erbium Doped Fiber Amplifier (FM-

EDFA) gain of different spans, and fiber parameters

of different spans). This then allows for the formula-

tion of different marginal (or joint) resource allocation

problems at the physical and network layers (e.g., joint

optimized power and gain allocation).

The above referenced works use convex optimization for

power allocation in SMF links and networks. In our recent

work [24], we solved a power allocation problem for FMF

links using convex optimization without considering any

practical constraints, e.g., FM-EDFA saturation power. How-

ever, the joint optimized power and gain allocation has not

been investigated in FMF links and networks. Therefore,

in the second part of this paper, we use the proposed EGN

model to address the problem of joint optimized power and

gain allocation considering minimum SNR margin maxi-

mization. The contributions of the second part of this paper

include the following:

• Deploying power allocation in a multi-node lin-

ear MDM-WDM network by considering constraints

such as FM-EDFA saturation power and FM-EDFA
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FIGURE 1. Schematic diagram of the MDM-WDM system.

maximum gain. We show that the results are adaptable

to practical scenarios.

• Providing convex optimization solutions along with dis-

cussions on convergence speed and computational com-

plexity. This demonstrates that the proposed algorithms

can be implemented for joint optimized power and gain

allocation.

• Preparing a comprehensive investigation over joint opti-

mized power and gain allocation, optimal power alloca-

tion, and best equal power allocation in SMF-WDM and

MDM-single channel systems. We show that the joint

optimized power and gain allocation achieves 1.4 dB and

1.7 dB higher minimum SNRmargin compared with the

best equal power allocation in SMF-WDM and MDM-

single channel scenarios, respectively.

Note that in joint optimized power and gain allocation,

by optimized power allocation, we refer to the adjustment

of the power of different channels and modes at the source

node, and by optimized gain allocation we refer to adjust-

ing the FM-EDFA gain of different spans considering equal

FM-EDFA gain for different modes per span. In other words,

we do not adjust the FM-EDFA gain for different channels

and modes, rather we adjust the FM-EDFA gain for different

spans, since according to the current progress of FM-EDFA,

optimizing the FM-EDFA gain for different modes to a spe-

cific gain and power is still difficult to realize technically. In

the case of SM-EDFAs, the change in gain of one polarization

state will result in a change in gain of another polarization

state (at the same time); such problems also exist in FM-

EDFAs. The rest of this paper is organized as follows. In

Section II, we present the system and signal models. Next,

we derive the EGNmodel in Section III and present the prob-

lem statements in Section IV. We show the results and our

analysis in Section V and conclude the paper in Section VI.

II. SYSTEM AND SIGNAL MODEL

A. SYSTEM MODEL

Fig. 1 shows the MDM-WDM system investigated in which

the input data is a multiplexing of Nch channels, D spatial

modes, and 2 polarization modes. This link has Ns spans with

length Ls, combined by an FM-EDFA at the end of each

span for compensating the optical fiber loss. To minimize

the FMF nonlinear effects, neither modal nor chromatic dis-

persion is compensated [4]. The Kerr nonlinearity produced

by inter/intra channel and mode interactions is considered.

We consider bothweak and strong linear coupling among spa-

tial modes to be applicable in both short-haul and long-haul

links [3]–[6]. Moreover, a MIMO DSP at the receiver is

considered for compensating FMF linear effects, and a CPE

is used for carrier phase recovery [14].

B. SIGNAL MODEL

The following Ket notation represents the time domain of the

optical signal launched into the FMF link as

|A(0, t)〉 =

∞
∑

i1=−∞

Nch
∑

i2=1

2D
∑

i3=1

ζiW
i2,i3
Tx (t − i1Ti2 )e

j2π fi2 t |i3〉,

(1)

where ζi is the digital symbol (for example, Quadrature

PSK (QPSK)) at time index i1, WDM channel index i2,

polarization-spatial mode index i3; i3 = 1, . . . , 2D, and i =

[i1, i2, i3]. Moreover,W
i2,i3
Tx (t− i1Ti2 ) is the transmitted pulse

at time index i1. Moreover, i2 and i3 represent the WDM

channel and polarization-spatial mode index, respectively.

Ti2 shows the symbol duration and fi2 is the carrier frequency.

|i3〉 represents a one-hot vector wherein the i3th element is

one and the other elements are zero. Actually, i3 is used

to denote the polarization-spatial mode of the propagated

signal. In other words, i3 , p′, p, where p′; p′ = x, y is the

polarization mode index and p; p = 1, . . . ,D represents the

spatial mode index. It is obvious that i3 takes values between

1 and 2D, since each spatial mode is a multiplexing of 2 polar-

ization modes. Therefore, the time domain representation of

the optical signal launched into the FMF can be expressed as

|A(0, t)〉 =

2D
∑

i3=1

Ai3 (0, t)|i3〉 ,













A1(0, t)

A2(0, t)

. . .

A2D−1(0, t)

A2D(0, t)













,













Ax,1(0, t)

Ay,1(0, t)

. . .

Ax,D(0, t)

Ay,D(0, t)













, (2)

and

〈A(0, t)|

,
[

A∗1(0, t) A
∗
2(0, t) . . . A∗2D−1(0, t) A

∗
2D(0, t)

]

,
[

A∗x,1(0, t) A
∗
y,1(0, t) . . . A∗x,D(0, t) A

∗
y,D(0, t)

]

, (3)

whereAi3 (0, t) , Ap′,p(0, t) represents the time domain of the

propagated signal in i3th polarization-spatial mode (i.e., p′th

polarizationmode and pth spatial mode) and can be expressed

as

|Ai3 (0, t)〉 =

∞
∑

i1=−∞

Nch
∑

i2=1

ζiW
i2,i3
Tx (t − i1Ti2 )e

j2π fi2 t |i3〉, (4)

Considering (1), the propagated signal in the frequency

domain can be expressed by

|Ã(0, f )〉 =
∑

i

ζi|W̃
i
Tx(f )〉, (5)
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where

|W̃ i
Tx(f )〉 , W̃ i

Tx(f )|i3〉

= W̃
i2,i3
Tx (f − fi2 )e

−j2π (f−fi2 )i1Ti2 |i3〉. (6)

III. EGN MODEL FORMULATION

The Manakov equation for the considered MDM-WDM link

can be expressed as [14]

∂|Ai3 (z, t)〉

∂z
= L+N , (7)

where L and N represent the linear and nonlinear effects in

the FMF. The linear effects L are given by [3]–[6]

L = −
αi3

2
|Ai3 (z, t)〉 + jβ0i3

|Ai3 (z, t)〉 − β1i3

∂|Ai3 (z, t)〉

∂t

−j
β2i3

2

∂2|Ai3 (z, t)〉

∂t2
−

β3i3

6

∂3|Ai3 (z, t)〉

∂t3
, (8)

where αi3 is the attenuation, βmi3
is the mth order Taylor

coefficient of the i3th polarization-spatial mode propagation

constant. The nonlinear effects N are comprised of [3]–[6]

N = j

2D
∑

k3,m3,n3=1

γ̃i3k3m3n3

(

〈An3 (z, t)|Am3
(z, t)〉|A∗k3 (z, t)〉

+〈A∗k3 (z, t)|Am3
(z, t)〉|An3 (z, t)〉

)

, (9)

where

γ̃i3k3m3n3 =







4

3
(
2

3
)δi3k3 δi3m3 δi3n3 fi3k3m3n3γ , weak coupling

κγ , strong coupling,

with

κ =
∑

k3,m3,n3≤i3
i3,k3,m3,n3∈{1,2,...,2D}

32

2δi3k3 δi3m3 δi3n3

fi3k3m3n3

6D(2D+ 1)
,

and

fi3k3m3n3 =
Aeff

√

Ii3 Ik3 Im3
In3

×

∫∫

Fi3 (x, y)Fk3 (x, y)Fm3
(x, y)Fn3 (x, y)dxdy,

γ is the Kerr nonlinearity coefficient, Ii3 =
∫∫

F2
i3
(x, y)dxdy,

Fi3 (x, y) is the spatial profile of i3th mode, and Aeff is the

effective area of the fundamental mode [3]–[6]. The first-

order perturbation approximation of the solution to the Man-

akov equation expresses the received signal as [14]

|A(z, t)〉 ≃ eLz|A(0, t)〉 +

∫ z

0

eL(z−ξ )
N

(

eLξ |A(0, t)〉

)

dξ.

(10)

After compensating the linear effects of the FMF using

MIMO DSP, the received signal can be expressed as

|AR〉 ≃ |A(0, t)〉 +

∫ z

0

e−Lξ
N (eLξ |A(0, t)〉)dξ, (11)

The L can be described in the frequency domain by its

Fourier transform F(eLz) = |eν(z,f )〉 where

νi3 (z, f ) = −

∫ z

0

(αi3 (ξ )+ jβi3 (ξ, f ))dξ. (12)

Moreover, βi3 (z, f ) can be calculated as

βi3 (z, f ) = β0i3
+ β1i3

(2π f )+
β2i3

2
(2π f )2 +

β3i3

6
(2π f )3.

(13)

The second term in (11) represents the NLI noise which,

by considering (12), can be simplified in the frequency

domain as

|ñ(f )〉 = − j

∫∫ −∞

−∞

|η(f , f1, f2)〉

〈Ã(f + f1 + f2)|Ã(f + f2)〉|Ã(f + f1)〉df1df2, (14)

where

ηi3 (f , f1, f2)

,

Ns
∑

s=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

∑

k3,m3,n3

γ̃i3,k3,m3,n3

×

∫ zs

zs−1

e
νn3 (ξ,f+f1)+νm3 (ξ,f+f2)+ν∗k3

(ξ,f+f1+f2)−νi3 (ξ,f )
dξ

,

Ns
∑

s=1

s−1
∏

n=1

(Gn Ln)
3

Ns
∏

n=s

(Gn Ln)ηi3,s(f , f1, f2), (15)

withGn being FM-EDFA amplifier gain and Ln being the loss

of the nth fiber span. Using matched filtering on the received

signal gives
∫ ∞

−∞

〈gi(f )|Ã(f )〉Ridf , (16)

where |gi(f )〉 = gi(f )|i3〉 is the spectral shape of transmitted

pulse on the i2th channel and i3th polarization-spatial mode,

which has been normalized such that
∫ +∞
−∞ gi(f )df = 1. Ri is

the symbol rate of transmitted pulse on the i2th channel and

i3th polarization-spatial mode. Accordingly, the NLI noise

takes the form of (17), as shown at the bottom of the page,

at the receiver which can be written in (18), as shown at the

bottom of the next page.

ni(f ) = −j

Ns
∑

s=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

∑

k,m,n

ζ ∗k ζmζn

∫∫∫ ∞

−∞

|ηs(f , f1, f2)〉〈W̃
k
Tx(f + f1 + f2)|W̃

m
Tx(f + f2)〉

〈gi(f )|W̃ n
Tx(f + f1)〉Ridf1df2df (17)
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The variance of the NLI noise is derived in (19), as shown

at the bottom of the page, which depends on six infinite inte-

gration/summations where the following Poisson summation

helps to drop some of the interactions/summations:

∞
∑

k=−∞

ejkf 2πT = T

∞
∑

k=−∞

δ(f − k/T ). (20)

By considering the sinc pulses with finite bandwidth inter-

acting with only one Dirac delta function, summation over

the time index can be given by (19). Furthermore, equating

the arguments with equal atoms results in

f + f1 + f2 = v+ v1 + v2

f + f2 = v+ v2

f + f1 = v+ v1, (21)

and accordingly

f = v

f1 = v1

f2 = v2, (22)

which yields to simplify three integrals with v, v1, and v2.

The Kerr nonlinearity is cubic; therefore, the product

E[ni(f )n
∗
i (f )] depends on the product of six atoms. Note that

only combinations with an equal number of conjugate/non-

conjugate pairs are non-zero. In addition, it should be noted

that ζi are independent and identically distributed random

variables with zero mean and unit variance. The considered

CPE removes the average phase at the receiver (φ) [14].

In a perturbative frame, this corresponds to work with the

following nonlinear interference noise

n′i = ni + jφζi. (23)

The NLI noise variance in the EGN model can be interpreted

as a summation over the Second-Order Noise (SON) which

is usually called the GN contribution, Fourth-Order Noise

ni(f ) = − j

Ns
∑

s=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

∑

k,m,n

ζ ∗k ζmζn

∫∫∫ ∞

−∞

|ηs(f , f1, f2)〉W̃
k∗

Tx (f + f1 + f2)W̃
m
Tx(f + f2)g

i∗ (f )

W̃ n
Tx(f + f1)〈k3|m3〉〈i3|n3〉Ridf1df2df (18)

E[ni(f )n
∗
i (f )] =

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

∑

kmnljo

E[ζ ∗k ζmζnζlζ
∗
j ζ ∗o ]

∫

· · ·

∫ ∞

∞

〈ηs(f , f1, f2)|ηs′ (v, v1, v2)〉W̃
k∗
Tx (f + f1 + f2)W̃

m
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)

W̃
j∗
Tx(v+ v2)W̃

l
Tx(v+ v1 + v2)W̃

o∗
Tx (v+ v1)g

i(v)〈k3|m3〉〈i3|n3〉〈j3|l3〉〈o3|i3〉Ridf1df2dfdv1dv2dv (19)

σ 2
EGN ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

[

3/4
∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,q

×Pn2,pX
a
i2,p

(k2,m2, n2, q)+ 1/4
∑

k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p

(k2, k2, n2, q)+ Pk2,pPk2,qPn2,q

×X ci2,p(k2, n2, k2, q))+ 1/4
∑

n2

κ
(n2)
3 P2n2,qPn2,pX

d
i2,p

(n2, n2, n2, q)

]

(25)

Mi2,p =

(

Pi2,p

Ns
∏

n=1

(Gn Ln)/

( Ns
∏

n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+

Ns
∑

s=1

[(F(Gs − 1)hνBi2 )

Ns
∏

n=s+1

(Gn Ln)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

[

3/4
∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,pX

a
i2,p

(k2,m2, n2, q)

+1/4
∑

k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p

(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX
c
i2,p

(k2, n2, k2, q))+ 1/4
∑

n2

κ
(n2)
3 P2n2,qPn2,p

×Xdi2,p(n2, n2, n2, q)

]

+ σ 2
RxN

))

/SNR
req
i2,p

(28)
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(FON), and Higher-Order Noise (HON) variances, i.e.,

σ 2
EGN = σ 2

GN + σ 2
FON + σ 2

HON . (24)

It is shown in Appendix A that the NLI noise variance

of the whole link becomes equal to (25), as shown at the

bottom of the previous page, where Pi2,p , Pi2,p,1 is the

launch power at the first span and Pi2,p,s = Pi2,p,s−1(Gs Ls)

is the launch power at the sth span. The power at each span

input is the multiplication of the power of the previous span

by the loss and FM-EDFA gain of that span. Note that (25)

represents both self- and cross-channel as well as intra- and

inter-modal interactions.

IV. PROBLEM STATEMENT

Based on the proposed notations in the previous section,

the SNR of i2th channel and pth mode can be expressed

as [26]

SNRi2,p =
Pi2,p

∏Ns
n=1(Gn Ln)

σ 2
ASE + σ 2

EGN ,i2,p
+ σ 2

RxN

, (26)

where σ 2
RxN is the receiver noise power. Moreover, the vari-

ance of the Amplified Spontaneous Emission (ASE) noise in

the receiver can be expressed as

σ 2
ASE =

Ns
∏

n=1

(Gn Ln)(F(GBA − 1)hνBi2 )

+

Ns
∑

s=1

[(F(Gs − 1)hνBi2 )

Ns
∏

n=s+1

(Gn Ln)], ] (27)

where F is the amplifier noise figure, GBA is the booster

amplifier gain, h is Plank’s constant, and ν is the central

frequency. The SNRmargin of the i2th channel and pth mode

can be defined in (28), as shown at the bottom of the previous

page, where Mi2,p denotes SNR margin of the i2th channel

and pth mode, and SNR
req
i2,p

is the required SNR of the i2th

channel and pth mode. Therefore, the minimum SNR margin

maximization problem can be expressed in (29), as shown at

the bottom of the page, where the second constraint means

that the total power at the s-th FM-EDFA should be less

than the saturation power of the s-th FM-EDFA, and the

third constraint means that the s-th FM-EDFA gain should

be less than the maximum possible gain. The optimization

problem (29) is equivalent to the optimization problem (30),

as shown at the bottom of the next page, as the min-max of

a function is equivalent to the max-min of its inverse. (30) is

a non-convex optimization problem. To solve this problem,

we replace Pi2,p,Gi with e
P̂i2,p , egi in (30) and note that log(x)

is a monotonic function in x; thus, we get in (31), as shown at

the bottom of the next page, with the same minimum as (30).

By defining the slack variable β, (31) can be rewritten in (32),

as shown at the bottom of the next page.

We use the gradient descent algorithm in vector form to

solve (32). This is performed by introducing a vector p of

dimension DNch whose elements Pl; l = 1, 2, . . . ,DNch
are given by Pn,m, n = 1, 2, . . . ,Nch, m = 1, 2, . . .D.

In order to incorporate the values of Bn, we use a vector with

the same dimension as p defined as B = [B1,B1, . . . ,B1,

B2,B2, . . . ,B2, . . . ,BNch ,BNch , . . . ,BNch ] in which each Bn
has been repeated D times. Also, let X be a Nch ×

D × Nch × Nch × Nch × D dimensional tensor with

elements X
(.)
l2,p

(k2,m2, n2, q). To match the latter dimen-

sions with p, we define a NchD × NchD × NchD × NchD

tensor, H , whose elements, H
(.)
l (l1, l2, l3), are equal to

X
(.)
l2,p

(k2,m2, n2, q) in different subscripts. Thus, (32) can be

expressed as (33). (33) is a convex optimization problem

(see Appendix B) and can be solved using many different

methods, e.g., the Bisection method [33]. The Bisection

method converts the main problem into a feasibility prob-

lem by selecting a region and choosing a candidate for

the objective function. The feasibility problem can then be

solved using the Lagrangian method [34]. In each step, the

region boundaries are updated based on the obtained solution

max
Gi,Pi2,p

min
i2,p,i

Pi2,p

Ns
∏

n=1

(Gn Ln)/

( Ns
∏

n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+

Ns
∑

s=1

[(F(Gs − 1)hνBi2 )

Ns
∏

n=s+1

(Gn Ln)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

[

3/4
∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,p

Xai2,p(k2,m2, n2, q)+ 1/4
∑

k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p

(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX
c
i2,p

(k2, n2, k2, q))

+1/4
∑

n2

κ
(n2)
3 P2n2,qPn2,pX

d
i2,p

(n2, n2, n2, q)

]

+ σ 2
RxN

)

1

SNR
req
i2,p

s.t.















Pi2,p,s = Pi2,p,s−1Gs Ls
∑

i2,p
Pi2,p

∏s−1

n=1
(Gn Ln) ≤ P

FM−EDFAs
sat

Gs ≤ G
FM−EDFAs
max

(29)
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for the feasibility problem from the previous step. In this

manner, the Bisection method converges to the optimum

objective.

Algorithm 1 summarizes the Bisection method for solv-

ing (33). The first step in this algorithm is to define appro-

priate upper (u) and lower (l) bounds for the search region

min
Pi2,p,Gi

max
i2,p,i

SNR
req
i2,p

( Ns
∏

n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+

Ns
∑

s=1

[(F(Gs − 1)hνBi2 )

Ns
∏

n=s+1

(Gn Ln)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

[

3/4
∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,pX

a
i2,p

(k2,m2, n2, q)

+1/4
∑

k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p

(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX
c
i2,p

(k2, n2, k2, q))+ 1/4
∑

n2

κ
(n2)
3 P2n2,p

×Pn2,qX
d
i2,p

(n2, n2, n2, q)

]

+ σ 2
RxN

)

/

(

Pi2,p

Ns
∏

n=1

(Gn Ln)

)

s.t.















Pi2,p,s = Pi2,p,s−1Gs Ls
∑

i2,p
Pi2,p

∏s−1

n=1
(Gn Ln) ≤ P

FM−EDFAs
sat

Gs ≤ G
FM−EDFAs
max

(30)

min
P̂i2,p,gi

max
i2,p,i

log(SNR
req
i2,p

)+ log

( Ns
∏

n=1

(egnLn)(F(GBA − 1)hνBi2 )+

Ns
∑

s=1

[(F(egs − 1)hνBi2 )

Ns
∏

n=s+1

(egnLn)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s

(egn Ln)
1/2

s′−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s′

(egn Ln)
1/2

[

1

4

D
∑

q=1

Nch
∑

k2,m2,n2=1

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 eP̂k2,p+P̂m2,q+P̂n2,q

3Xai2,p(k2,m2, n2, q)+
1

4

D
∑

q=1

Nch
∑

k2,n2=1

κ
(k2)
2 κ

(n2)
1 (e2P̂k2,q+P̂n2,p5Xbi2,p(k2, k2, n2, q)+ e

P̂k2,p+P̂k2,q+P̂n2,q

X ci2,p(k2, n2, k2, q))+
1

4

D
∑

q=1

Nch
∑

n2=1

κ
(n2)
3 e2P̂n2,q+P̂n2,pXdi2,p(n2, n2, n2, q)

]

+ σ 2
RxN

)

− (P̂i2,p +

Ns
∑

n=1

gnlog(Ln))

s.t.















P̂si2,p = P̂s−1i2,p
+ gs + log(Ls)

∑

i2,p
eP̂i2,p

∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(G
FM−EDFAs
max )

(31)

min
β,P̂i2,p,gi

β

s.t.



























































































log(SNR
req
i2,p

)+ log

(

∏Ns

n=1
(egnLn)(F(GBA − 1)hνBi2 )+

∑Ns

s=1
[(F(egs − 1)hνBi2 )

∏Ns

n=s+1
(egnLn)]+

∑Ns

s,s′=1
∏s−1

n=1
(egn Ln)

3/2
∏Ns

n=s
(egn Ln)

1/2
∏s′−1

n=1
(egn Ln)

3/2
∏Ns

n=s′
(egn Ln)

1/2

[

1

4

∑D

q=1

∑Nch

k2,m2,n2=1
κ
(k2)
1 κ

(m2)
1

κ
(n2)
1 eP̂k2,p+P̂m2,q+P̂n2,q3Xai2,p(k2,m2, n2, q)+

1

4

∑D

q=1

∑Nch

k2,n2=1
κ
(k2)
2 κ

(n2)
1 (e2P̂k2,q+P̂n2,p5Xbi2,p(k2, k2, n2, q)

+eP̂k2,p+P̂k2,q+P̂n2,qX ci2,p(k2, n2, k2, q))+
1

4

∑D

q=1

∑Nch

n2=1
κ
(n2)
3 e2P̂n2,q+P̂n2,pXdi2,p(n2, n2, n2, q)

]

+ σ 2
RxN

)

−(P̂i2,p +
∑Ns

n=1
gnlog(Ln)) ≤ β

P̂si2,p = P̂s−1i2,p
+ gs + log(Ls)

∑

i2,p
eP̂i2,p

∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(G
FM−EDFAs
max )

(32)
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for β. The defined upper bound is assigned to β, and the

problem (30) is converted to a feasibility problem. The feasi-

bility problem is solved using the Lagrangian method. If the

defined upper bound is lower than the optimal solution for

β, the feasibility problem does not have a solution. In other

words, the feasible set is empty and a higher upper bound

should be used. The defined lower bound can be tested and

adjusted in the same manner.

In the second step, the upper bound (u + l)/2 is assigned

to β. As with the first step, we test whether (u + l)/2 is the

upper or lower bound of the feasible set. Then, the upper and

lower bounds are updated. The second step is repeated until

we reach convergence.

At each iteration of Algorithm 1, the feasibility problem

is solved by the Lagrange duality method as summarized

in Algorithm 2. Furthermore, the second constraint can be

relaxed since it is satisfied by the objective function. The

Lagrangian function of (33), as shown at the bottom of the

page, is given by (34), as shown at the bottom of the page,

where λl, µs, and νs ∈ R+ are the Lagrangian multipliers.

Accordingly, the Lagrangian dual function of (33) can be

expressed as (35), as shown at the bottom of the page.

min
β,P̂l ,gs

β

s.t.











































































[

log(SNR
req
l )+ log

(

∏Ns

n=1
(egnLn)(F(GBA − 1)hνBl)+

∑Ns

s=1
[(F(egs − 1)hνBl2 )

∏Ns

n=s+1
(egnLn)]+

∑Ns

s,s′=1
∏s−1

n=1
(egn Ln)

3/2
∏Ns

n=s
(egn Ln)

1/2
∏s′−1

n=1
(egn Ln)

3/2
∏Ns

n=s′
(egn Ln)

1/2

[

1

4

∑DNch

l1,l2,l3=1
κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l3

3Ha
l (l1, l2, l3)+

1

4

∑DNch

l1,l2,l3=1
κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l25Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1

4

∑DNch

l1,l2=1
κ
′(l1)

3

e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]

+ σ 2
RxN

)

− (P̂l +
∑Ns

n=1
gnlog(Ln))

]

≤ β

P̂sl = P̂s−1l + gs + log(Ls)
∑

l
eP̂l

∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(G
FM−EDFAs
max )

(33)

β +

DNch
∑

l=1

λl

([

log(SNR
req
l )+ log

( Ns
∏

n=1

(egnLn)(F(GBA − 1)hνBl2 )+

Ns
∑

s=1

[(F(egs − 1)hνBl2 )

Ns
∏

n=s+1

(egnLn)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s

(egn Ln)
1/2

s′−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s′

(egn Ln)
1/2

[

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l2 5Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1

4

DNch
∑

l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]

+ σ 2
RxN

)

−(P̂l +

Ns
∑

n=1

gnlog(Ln))

]

− β

)

+

Ns
∑

s=1

µs

(

∑

l

eP̂l
s−1
∏

n=1

(egnLn)− P
FM−EDFAs
sat

)

+

Ns
∑

s=1

νs(gs − log(G
FM−EDFAs
max )) (34)

inf
P̂l ,gi

β +

DNch
∑

l=1

λl

([

log(SNR
req
l )+ log

( Ns
∏

n=1

(egnLn)(F(GBA − 1)hνBl2 )+

Ns
∑

s=1

[(F(egs − 1)hνBl2 )

Ns
∏

n=s+1

(egnLn)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s

(egn Ln)
1/2

s′−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s′

(egn Ln)
1/2

[

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l2 5Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1

4

DNch
∑

l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]

+ σ 2
RxN

)

−(P̂l +

Ns
∑

n=1

gnlog(Ln))

]

− β

)

+

Ns
∑

s=1

µs

(

∑

l

eP̂l
s−1
∏

n=1

(egnLn)− P
FM−EDFAs
sat

)

+

Ns
∑

s=1

νs(gs − log(G
FM−EDFAs
max )) (35)
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Algorithm 1: Bisection Method to Solve Convex Opti-

mization Problem (33)

Initialization: upper bound u = 100, and lower bound

l = −10;

β ← u;

Solve convex problem (33) by Lagrangian method;

if P̂
∗(t)
== NAN then break;

β ← l;

Solve convex problem (33) by Lagrangian method;

ifP̂
∗(t)
== NAN then break;

while u− l ≤ ǫ do

β ← (u+ l)/2;

Solve convex problem (33) by Lagrangian method;

if P̂
∗(t)
== NAN then l ← β else u← β

end

(35) is a convex problem with respect to P̂l, gi, since the

dual problem is a convex optimization problem [34]. Note

that at each iteration of Algorithm 2, λl, µs, and νs are

updated based on the derivative of (35) with respect to λl, µs,

and νs which are shown in (36).

The convergence proof and complexity analysis of

Algorithms 1 and 2 are presented in Appendices C and D,

respectively.

V. SIMULATION RESULTS

In the first part of this section, the accuracy of the proposed

EGNmodel is examined for both weak and strong linear cou-

pling regimes using the well-known SSFM. The second part

of this section presents the simulation results of the proposed

joint optimized power and gain allocation problem. Note that

in the second part, we consider strong linear coupling as the

link ranges are long. The simulation parameters and their

values are presented in Tables 1, 2, and 3.

Algorithm 2: Lagrangian Duality Method to Solve the

Convex Problem (35)

Initialization: iteration counter t = 0, step size

parameter a > 0, b > 0, c > 0, and λ(0) � 0, µ(0) � 0,

ν(0) � 0;

while achieving convergence do
Solve convex problem (35) with fixed λ, µ, and ν

values, and obtain optimized power P̂
∗(t)

, and

optimal gain g∗(t);

λ(t+1) =

[

λ(t)−a1λ

]+

;

µ(t+1) =

[

µ(t)−b1µ

]+

;

ν(t+1) =

[

ν(t)−c1ν

]+

;

update t = t + 1
end

TABLE 1. Simulation parameters.

A. ACCURACY OF THE PROPOSED EGN MODEL

FORMULATION

In this section, the signal propagation in weak and strong

linear coupling is simulated by approximating the output of

the Manakov equation (7) using the well-known SSFM with

1λl =

[

log(SNR
req
l )+ log

( Ns
∏

n=1

(egnLn)(F(GBA − 1)hνBl2 )+

Ns
∑

s=1

[(F(egs − 1)hνBl2 )

Ns
∏

n=s+1

(egnLn)]+

Ns
∑

s,s′=1

s−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s

(egn Ln)
1/2

s′−1
∏

n=1

(egn Ln)
3/2

Ns
∏

n=s′

(egn Ln)
1/2

[

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1

4

DNch
∑

l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1

(e2P̂l1+P̂l2 5Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1

4

DNch
∑

l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]

+σ 2
RxN

)

− (P̂l +

Ns
∑

n=1

gnlog(Ln))

]

−β

1µs =
∑

l

eP̂l
s−1
∏

n=1

(egnLn)− P
FM−EDFAs
sat

1νs = gs − log(G
FM−EDFAs
max ) (36)
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FIGURE 2. SNR versus launched power per channel-mode, based on the proposed EGN model, IGN model [4], and the SSFM
simulation, for a) weak coupling (Ns = 1, Ls = 80 km) and b) strong coupling (Ns = 8, Ls = 80 km), considering MDM-WDM
system (D = 3, Nch = 3).

FIGURE 3. SNR versus number of channels for a) weak (Ns = 1, Ls = 80 km) and b) strong (Ns = 8, Ls = 80 km) coupling,
considering MDM-WDM system (D = 3).

TABLE 2. Nonlinear coupling coefficient (γ fpq(1/W /km)) [36].

TABLE 3. Attenuation (αp (dB/km)), and dispersion terms (β1p (ps/km),

β2p (ps2/km), and β3p (ps3/km)) [36].

logarithmic step-size [35] in the Python/Tensorflow environ-

ment.

As an example, we consider an MDM-WDM system with

(D = 3,Nch = 3). Fig. 2 compares the SNR versus launch

power per channel-mode, calculated using the proposed EGN

model, the IGN model presented in [4], and the SSFM sim-

ulation, for weak coupling (Ns = 1,Ls = 80 km), Fig. 2a,

and strong coupling (Ns = 8,Ls = 80 km), Fig. 2b. Note that

only the SNR of the central channel is plotted, and that QPSK

modulation is considered in the SSFM simulation. The results

highlight the accuracy of the proposed EGN model in both

weak and strong coupling regimes at all power levels. The

IGN model [4] matches with the SSFM in the linear regime

(i.e., at low power) and pseudo-linear regime (i.e., moderate

power). However, the accuracy of the IGN model decreases

when the power is increased to the nonlinear regime (high

power). Considering the optimum launch power per channel-

mode, the difference between the IGN and SSFM is almost

0.1 dB and 0.9 dB for weak coupling and strong coupling

regimes, respectively.

Figs. 3a and 3b show the SNR versus number of channels

for weak (Ns = 1,Ls = 80 km) and strong (Ns = 8,Ls =

80 km) coupling, respectively. In both plots, we consider the

optimum (best equal) launched power per channel-mode in

an MDM-WDM system with D = 3 spatial modes. The

10 VOLUME 10, 2022
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FIGURE 4. A 4-node linear network with 6 lightpaths.

proposed EGN model and SSFM simulation are in agree-

ment for differing number of channels. However, the differ-

ence between the IGN model and the SSFM simulation is

0.1 dB and 0.9 dB in the weak and strong coupling regimes,

respectively.

B. MINIMUM SNR MARGIN MAXIMIZATION

In this section, the results of joint optimized power and

gain allocation based on minimum SNR margin maximiza-

tion are presented. Three scenarios are compared including

a) best equal power, b) optimized power, and c) joint opti-

mized power and gain. In the first scenario, equal powers

are considered for the different channels and modes with

equal FM-EDFA gain in all spans. It is worth mentioning

that the FM-EDFA gain is equal to the span loss. In the sec-

ond scenario, different powers are allocated to the different

channels and modes with equal FM-EDFA gain in all spans.

In the third case, the allocated powers to each channel and

mode are different. Moreover, the FM-EDFA gain for each

span is optimized separately. Tomaximize theminimumSNR

margin based on the optimized power and gain allocation,

the 4-node linear network [37] with 6 lightpaths shown in

Fig. 4 is considered. Moreover, the SMF-WDM (D = 1,

Nch = 11) and MDM-single channel (D = 4,Nch = 1)

systems are considered [3], [4]. For the aforementioned sys-

tems, the lightpath number propagated by each channel and

mode is presented in Table 4. Furthermore, Binary PSK

(BPSK) modulation with 5.5 dB the corresponding required

SNR is considered [38]. There are 1, 3 and 4 spans respec-

tively between nodes 1 to 2, 2 to 3 and 3 to 4, and the span

length is Ls = 100 km. Therefore, the 4-node linear network

we consider is composed of 8 spans where at the end of each

span is an FM-EDFA. We consider strong coupling in all of

the simulations shown in this section as all of the channels and

FIGURE 5. a) Channel power and b) SNR margin versus channel number, and c) FM-EDFA gain versus span number, for joint optimized
power and gain allocation, optimized power allocation and best equal power allocation, considering SMF-WDM system.
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FIGURE 6. a) Mode power and b) SNR margin versus mode number, and c) FM-EDFA gain versus span number, for joint optimized
power and gain allocation, optimized power allocation and best equal power allocation, considering MDM-single channel system.

TABLE 4. Lightpath number propagated by each channel and mode.

modes propagate through long-range links. It is worth noting

that the point-to-point links often have a homogeneous set

where different channels/modes experience the same interact-

ing channels/modes. However, in multi-node linear networks,

the channels/modes may propagate different distances so that

they accumulate different NLI noise, experience fragmen-

tation/partial utilization (and hence see different interacting

channels/modes), and observe different FM-EDFA gains.

The results for the SMF-WDM system are summarized in

Fig. 5. Figs. 5a and 5b depict respectively the channel power

and SNRmargin versus channel number, while Fig. 5c shows

the FM-EDFA gain versus span number for joint optimized

power and gain allocation, optimized power allocation, and

best equal power allocation. The best equal power alloca-

tion, optimized power allocation, and joint optimized power

and gain allocation achieve 15.6 dB, 16.7 dB, and 17.3 dB

minimum SNR margin improvement, respectively. The joint

optimized power and gain allocation obtains improvements of

0.6 and 1.7 dB in minimum SNR margin compared with the

optimized power allocation and best equal power allocation,

respectively. This is due to the joint optimized power and gain

allocation havingmore degrees of freedom. Note that the cen-

tral channel indices have higher NLI noise (lower SNR mar-

gins); correspondingly, they should be allocated higher power

to have a reliable link. Moreover, channels that propagate

through longer lightpaths should be allocated higher power,

since longer lightpaths involve more ASE/NLI noise power.

In the joint optimized power and gain scenario, the last FM-

EDFA gain is set to its maximum possible value. This result

can be deduced from the SNR formulation where all terms

except for receiver noise are scaled withGNs (to minimize the

contribution of the receiver noise term, themaximumpossible

value should be chosen for GNs ).

The results for the MDM-single channel system are sum-

marized in Fig. 6: 6a and 6b demonstrate the mode power and

SNRmargin versusmode number, respectively, while 6c plots

12 VOLUME 10, 2022
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FIGURE 7. The SNR margin of the central channel in SMF-WDM scenario as a function of iteration number of
a) Algorithms 1 and b) Algorithm 2.

the FM-EDFA gain versus span number, for joint optimized

power and gain allocation, optimized power allocation, and

best equal power allocation. The minimum SNR margins

are 19.1 dB for best equal power allocation, 19.7 dB for

optimized power allocation, and 20.5 dB for joint optimized

power and gain allocation showing that the latter results in

improvements of 0.8 and 1.4 dB compared with optimized

power allocation and best equal power allocation, respec-

tively. The main difference between the different modes of

the same channel is their spatial profile. The LP11a/b mode

has a larger spatial profile and therefore, a higher overlap

with the other modes. Therefore, this mode has more NLI

noise power and lower SNR margin. Accordingly, it should

be allocated higher power than the other modes. Neither the

allocated powers nor the FM-EDFA gains are not symmetric,

since different modes have different NLI noise power which

is not symmetric due to the nonlinear coupling.

Figs. 7a and 7b plot the SNR margin of the central channel

in the SMF-WDM scenario as a function of iteration num-

ber of Algorithms 1 and 2. Although we consider the SNR

margin of the central channel in the SMF-WDM scenario,

the convergence speeds for the other channels and for the

MDM-single channel case are essentially the same. More-

over, due to the fact that Algorithm 2 is inside the while loop

of Algorithm 1, we consider the last iteration of Algorithm

1 for plotting the convergence speed of Algorithm 2, but the

same convergence speed can be observed for other iterations

within Algorithm 1. Algorithms 1 and 2 converge after 20 and

30 iterations, respectively. It should be noted that since we

consider the FMF nonlinear channel as an AWGN channel

with deterministic noise variance, we only need to deploy the

joint optimized power and gain allocation once (and offline).

Thus, the computational complexity and convergence speed

do not impact practical implementations at scale.

VI. CONCLUSION

The GN model for FMF nonlinearity overestimates the NLI

noise power in practical scenarios where the signal does not

TABLE 5. Valid combinations yielding non-zero E [ζ∗

k
ζmζnζlζ

∗

j
ζ∗

o ].

have a Gaussian distribution. For instance, in power alloca-

tion applications, this inaccuracy results in around 0.5 dB

error on predicting the optimum launch power so that the

obtained gains with respect to the best equal power allocation

are too conservative and fall within the inaccuracy of the GN

model. In the first part of this paper, we derived the EGN

model for FMF nonlinearity. Compared with the GN model

and based on SSFM simulations, our proposed EGN model

is capable of providing very accurate estimates of NLI noise

power at different number of spans in both the weak and

strong coupling regimes, as well as for any launch power

and modulation format. Achieving reliable communication

over different channels and modes is one of the main goals

in MDM-WDM networks, and the reliability is generally

quantified through the minimum SNR margin. Based on

the proposed EGN model, we formulated and solved the

joint optimized power and gain allocation problem using the

minimum SNR margin maximization in a multi-node linear

network. The joint optimized power and gain allocation com-

pared with best equal power allocation achieved 1.4 dB and

1.7 dB minimum SNR margin improvement in MDM-single

channel and SMF-WDM systems, respectively.

Two main directions can be continued in future MDM-

WDM investigations: (1) nonlinearity modelling and (2)
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TABLE 6. Computational complexity of Algorithms 1 and 2.

resource allocation. First, in terms of modelling, it should be

noted that we provided a series of investigations over IGN,

GN, and the EGN models for MDM-WDM systems. These

works are based on the Manakov equation which considers

the average of the FMF linear and nonlinear interactions.

Therefore, the derivation of IGN, GN, and EGN models

based on the nonlinear Schrodinger equation is a topic for

future work. Moreover, we derived the EGN formulation for

the observed NLI noise after CPE; it will also be important

to derive the EGN model for the NLI noise before CPE.

Finally, the existing IGN, GN, and EGN models only esti-

mate the amplitude of NLI noise and should be extended to

account for the phase. Second, different resource allocation

problems can be formulated based on our proposed IGN,

GN, and EGN models, including marginal (or joint) routing,

mode-wavelength assignment, and power allocation. These

problems can be solved by iterative optimization algorithms

or by deep learning methods. We also only considered a

linear multi-node network while nonlinear multi-node net-

works, dynamic networks, and flex-grid networks can also

be explored.

APPENDIX A: THE NLI NOISE VARIANCE OF THE i2TH

CHANNEL AND pTH MODE

The GN, FON, and HON terms in the EGN model can be

expressed in (37), (38), and (39), as shown at the top of the

next page, respectively.

κ1 = µ2,

κ2 = µ4 − 2µ2
2,

κ3 = µ6 − 4µ4µ2 + 12µ3
2,

µn = E[|ζk|
n]. (40)

Table 5 shows valid combinations yielding non-zero

E[ζ ∗k ζmζnζlζ
∗
j ζ ∗o ] where FONb, FONc, and GNa are the

removed terms from the EGN model formulation due to

the CPE assumption. Moreover, σ
(i3,odd)
EGN (f ) = σ

(i3,even)
EGN (f ),

and σ
(p)
EGN (f ) = σ

(i3,odd)
EGN (f ) + σ

(i3,even)
EGN (f ). Therefore, the

GN, FON, and HON contributions of the NLI noise variance

of the i2th channel and pth mode can be written in (41),

(42), and (43), as shown at the bottom of the 15th page,

respectively.

The power spectral density of the optical signal launched

into the fiber can be written as G̃
i2,p
Tx (f ) = Pi2,pgi2,p(f ).

Accordingly, the GN, FON, and HON contributions of the

NLI noise variance of the i2th channel and pth mode can be

expressed in (44), (45), and (46), as shown at the bottom of

the 15th page, respectively. Therefore, the NLI noise variance

can be written in (47), as shown at the top of the 17th page.

APPENDIX B: CONVEXITY PROOF OF OPTIMIZATION

PROBLEM (33)

The expression (48), as shown at the top of the 17th page is

convex in P̂l, gs, since log−sum−exp(x) is a convex function

in x [34]. The constraint function of (33) is the summation

of some convex functions, therefore, it is convex [34]. The

objective and constraint functions of (33) are convex, there-

fore, (33) is a convex optimization problem [34].

APPENDIX C: CONVERGENCE OF ALGORITHMS 1 AND 2

In Algorithm 2, (35) is solved at each iteration as a function

of P̂l and gn using the gradient descent algorithm which will

converge to its optimum solution due to the convexity of the

dual problem [34]. This procedure is repeated by Algorithm 1

in the ‘‘While loop’’, by which the minimum SNR margin

is improved successively until convergence to the maximum

value. Note that Algorithm 1 will stop searching while the

difference between the upper and lower bounds becomes less

than ǫ.

APPENDIX D: COMPUTATIONAL COMPLEXITY OF

ALGORITHMS 1 AND 2

For computational complexity analysis of Algorithms 1

and 2, we will count the total number of additions and

multiplications per iteration. Note that exp(x) =
∑n1

i=0 x
i/i!

and log(x) =
∑n1

i=1(−1)
i+1(x − 1)i/i can be computed

by 2n1 multiplications and n1 additions, with n1 as an

integer where we get better accuracy for a larger n1. The

computational complexity of Algorithms 1 and 2 is pre-

sented in Table 6. Each iteration of Algorithm 1 is com-

posed of updating the search boundaries and solving the

convex problem (33) by the Lagrangian method described in

Algorithm 2 in a while loop. Therefore, the complexity of

Algorithm 1 is (Niter1 + 1) × (complexity of Algorithm2 +

1 addition +1multiplication) with Niter1 as total iterations.

Each iteration of Algorithm 2 is composed of solving (35) by

the gradient descent algorithm and updating the Lagrangian

variables in a while loop. Therefore, the complexity of
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σ 2
GN ,i2,i3

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

∑

k,m,n

κ
(k)
1 κ

(m)
1 κ

(n)
1

( ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

W̃ k∗
Tx (f + f1 + f2)W̃

m
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)〈k3|m3〉〈i3|n3〉W̃

m∗
Tx (f + f2)W̃

k
Tx(f + f1 + f2)W̃

n∗
Tx (f + f1)g

i(f )〈m3|k3〉

〈n3|i3〉df1df2df +

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉W̃
k∗
Tx (f + f1 + f2)W̃

m
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)〈k3|m3〉〈i3|n3〉

W̃ n∗
Tx (f + f2)W̃

k
Tx(f + f1 + f2)W̃

m∗
Tx (f + f1)g

i(f )〈n3|k3〉〈m3|i3〉df1df2df

)

+

( ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

W̃ k∗
Tx (f + f1 + f2)W̃

n
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈k3|n3〉〈i3|k3〉W̃

m∗
Tx (f + f2)W̃

m
Tx(f + f1 + f2)W̃

n∗
Tx (f + f1)g

i(f )〈m3|m3〉

〈n3|i3〉df1df2df +

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉W̃
k∗
Tx (f + f1 + f2)W̃

n
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈k3|n3〉〈i3|k3〉

W̃ n∗
Tx (f + f2)W̃

m
Tx(f + f1 + f2)W̃

m∗
Tx (f + f1)g

i(f )〈n3|m3〉〈m3|i3〉df1df2df

)

+

( ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

W̃ k∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃m
Tx(f + f1)〈k3|k3〉〈i3|m3〉W̃

m∗
Tx (f + f2)W̃

m
Tx(f + f1 + f2)W̃

n∗
Tx (f + f1)g

i(f )〈m3|m3〉

〈n3|i3〉df1df2df +

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉W̃
k∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃m
Tx(f + f1)〈k3|k3〉〈i3|m3〉

W̃ n∗
Tx (f + f2)W̃

m
Tx(f + f1 + f2)W̃

m∗
Tx (f + f1)g

i(f )〈n3|m3〉〈m3|i3〉df1df2df

)

(37)

σ 2
FON ,i2,i3

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

∑

k,m,n

κ
(k)
2 κ

(n)
1

( ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

∣

∣

∣

∣

W̃ k∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)〈k3|k3〉〈i3|n3〉 + W̃

k∗
Tx (f + f1 + f2)W̃

n
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)

〈k3|n3〉〈i3|k3〉

∣

∣

∣

∣

2

df1df2df +

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

∣

∣

∣

∣

W̃ n∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈n3|k3〉

〈i3|k3〉

∣

∣

∣

∣

2

df1df2df

)

+

[ ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉W̃
k∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈k3|k3〉

〈i3|k3〉W̃
k∗
Tx (f + f2)W̃

n
Tx(f + f1 + f2)W̃

n∗
Tx (f + f1)g

i(f )〈n3|k3〉〈n3|i3〉df1df2df +

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

W̃ k∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈k3|k3〉〈i3|k3〉W̃

n∗
Tx (f + f2)W̃

n
Tx(f + f1 + f2)W̃

k∗
Tx (f + f1)g

i(f )〈n3|n3〉

〈i3|k3〉df1df2df

]

+

[ ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉W̃
n∗
Tx (f + f1 + f2)W̃

n
Tx(f + f2)g

i∗(f )W̃ k
Tx(f + f1)〈n3|n3〉〈i3|k3〉

W̃ k∗
Tx (f + f2)W̃

k
Tx(f + f1 + f2)W̃

k∗
Tx (f + f1)g

i(f )〈k3|k3〉〈i3|k3〉df1df2df

]

+

[ ∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

W̃ n∗
Tx (f + f1 + f2)W̃

k
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)〈k3|n3〉〈i3|n3〉W̃

k∗
Tx (f + f2)W̃

k
Tx(f + f1 + f2)W̃

k∗
Tx (f + f1)g

i(f )

〈k3|k3〉〈i3|k3〉df1df2df

]

(38)

σ 2
HON ,i2,i3

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

∑

n

κ
(n)
3

∫∫∫ ∞

−∞

〈ηs(f , f1, f2)|ηs′ (f , f1, f2)〉

∣

∣

∣

∣

W̃ n∗
Tx (f + f1 + f2)W̃

n
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)〈n3|n3〉〈i3|n3〉

∣

∣

∣

∣

2

df1df2df (39)
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Algorithm 2 is Niter2 × (complexity of gradient descent+

3 additions +3multiplications) with Niter2 as total iterations.

To compute the complexity of the gradient descent algo-

rithm, we should note that it updates P̂l and gn within Niter3
iterations according to the following formula

P̂
(i+1)
l = P̂

(i)
l − µ∇

P̂l
,

g(i+1)n = g(i)n − µ∇gn , (49)

with µ as the step size, ∇
P̂l

and ∇gn as the gradient of

objective function of (35) regarding P̂l and gn, respectively.

Therefore, each iteration of the gradient descent algorithm

has DNch[Ns{2Ns + n1(9 + 6Ns + 19DNch)} + DNch{10n1
+5}]+Ns[Ns{n1(6+6Ns+25DNch)}+2+Ns] multiplications

σ 2
GN ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2 3

4

D
∑

q=1

∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1

∫∫∫ ∞

−∞

ηs(f , f1, f2)

η∗s′ (f , f1, f2)

(

G̃
m2,q
Tx (f + f2)G̃

k2,q
Tx (f + f1 + f2)G̃

n2,p
Tx (f + f1)g

i2,p(f )+ G̃
n2,q
Tx (f + f2)G̃

k2,q
Tx (f + f1 + f2)G̃

m2,p
Tx (f + f1)

gi2,p(f )

)

df1df2df (41)

σ 2
FON ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2 1

4

D
∑

q=1

∑

k2,n2

κ
(k2)
2 κ

(n2)
1

( ∫∫∫ ∞

−∞

ηs(f , f1, f2)

η∗s′ (f , f1, f2)5G̃
k2,q
Tx (f + f1 + f2)G̃

k2,q
Tx (f + f2)g

i2,p(f )G̃
n2,p
Tx (f + f1)df1df2df +

∫∫∫ ∞

−∞

ηs(f , f1, f2)η
∗
s′ (f , f1, f2)

G̃
n2,q
Tx (f + f1 + f2)G̃

k2,q
Tx (f + f2)g

i2,p(f )G̃
k2,p
Tx (f + f1)df1df2df

)

(42)

σ 2
HON ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2 1

4

D
∑

q=1

∑

n2

κ
(n2)
3

∫∫∫ ∞

−∞

ηs(f , f1, f2)η
∗
s′ (f , f1, f2)

G̃
n2,q
Tx (f + f1 + f2)G̃

n2,q
Tx (f + f2)g

i2,p(f )G̃
n2,p
Tx (f + f1)df1df2df (43)

σ 2
GN ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

3

4

∑

k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1

∫∫∫ ∞

−∞

ηs(f , f1, f2)

η∗s′ (f , f1, f2)

(

Pk2,qPm2,qPn2,pg
m2,q(f + f2)g

k2,q(f + f1 + f2)g
n2,p(f + f1)g

i2,p(f )+ Pk2,qPm2,pPn2,qg
n2,q(f + f2)

gk2,q(f + f1 + f2)g
m2,p(f + f1)g

i2,p(f )

)

df1df2df (44)

σ 2
FON ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

1

4

∑

k2,n2

κ
(k2)
2 κ

(n2)
1

(

P2k2,qPn2,p5

∫∫∫ ∞

−∞

ηs(f , f1, f2)η
∗
s′ (f , f1, f2)g

k2,q(f + f1 + f2)g
k2,q(f + f2)g

i2,p(f )gn2,p(f + f1)df1df2df + Pk2,pPk2,qPn2,q

∫∫∫ ∞

−∞

ηs(f , f1, f2)η
∗
s′ (f , f1, f2)g

n2,q(f + f1 + f2)g
k2,q(f + f2)g

i2,p(f )gk2,p(f + f1)df1df2df

)

(45)

σ 2
HON ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2

s′−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s′

(Gn Ln)
1/2

D
∑

q=1

1

4

∑

n2

κ
(n2)
3 P2n2,qPn2,p
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−∞

ηs(f , f1, f2)
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σ 2
EGN ,i2,p

=

Ns
∑

s,s′=1

s−1
∏

n=1

(Gn Ln)
3/2

Ns
∏

n=s

(Gn Ln)
1/2
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3
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1
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
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






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1
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κ
′(l1)
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+ σ 2
RxN
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− (P̂l +

Ns
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n=1
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DNch[Ns{14+ 11DNch+n1(5+4Ns+46DNch)}]+Ns[Ns{9+

10DNch + n1(5+ 7Ns + 25DNch)}] additions.
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