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Abstract
One of the main barriers of free space optical (FSO) communication systems is atmo-
spheric turbulence. Various processing techniques at the transmitter, receiver, and trans-
ceiver sides are available for addressing this issue; however, they have either high complexity
or low performance. Considering this problem, in this study, deep learning (DL) is deployed
at the transmitter, receiver, and transceiver sides of an FSO system for constellation
shaping, detection, and joint constellation‐shaping detection, respectively. Furthermore,
the proposed DL‐based structures are deployed in an FSO‐multi‐input multi‐output
(MIMO) system. As the first investigation over DL for the FSO‐MIMO system,
different combining schemes including the maximum ratio combiner, equal gain combiner,
and the selection combiner are considered. Considering a wide range of atmospheric
turbulence, from the weak to the strong regime, the performance of the proposed struc-
tures are compared with that of the maximum likelihood (ML) detection. To the best of the
authors' knowledge, the main contributions and novelties of this work include considering
transmitter learning in the FSO system, designing low complexity DL structures for FSO
system applications, and providing complexity analysis for the proposed DL algorithms.
The results indicate that the proposed DL‐based FSO systems achieve the optimum per-
formance with lower complexity compared with the state‐of‐the‐art conventional FSO
systems. For instance, the proposed DL‐based detector is almost 2, 3, and 7.5 times faster
than the ML detector for modulation orders of 16, 64, and 256, respectively.
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1 | INTRODUCTION

Recently, the free space optical (FSO) communication system
has been taken into consideration in research studies. This is
because of its high data rate, bandwidth and security in an
unlicensed spectrum as well as its easy and low‐cost instal-
lation [1–3]. In contrast with these advantages, high sensitivity
of the FSO system to weather conditions and atmospheric
turbulences limits its practical applications. The free space
optical communication system is the main competitor against
the conventional radio frequency (RF) communication system
and is widely applied in space and ground communication

links. Compared with the conventional RF system, the FSO
system has a huge un‐licenced bandwidth with a high data
rate, high security, low cost, and low power consumption as
well as favourable performance and easy installation.
Furthermore, the FSO system can be used at the bottleneck
and last‐mile applications and is a good candidate for the
back‐haul network of the next generation communication
network [1].

Although the FSO system enjoys many advantages over
the conventional RF system, it has limited practical applica-
tions due to its low performance in long‐range links. The
main performance degradation factor in long‐range links is
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atmospheric turbulence [4]. The inhomogeneous disturbance
of temperature and pressure over the atmosphere results in
random changes of the refractive index. This induces phase
disturbances and leads to intensity fluctuations, beam wan-
dering and beam broadening of the FSO signal. The random
fluctuations in the FSO signal intensity is called scintillation
and is the most important effect of atmospheric turbulence.
Several solutions have been proposed to mitigate the atmo-
spheric turbulence effect. One of the promising approaches is
the multi‐input multi‐output (MIMO) technique [5, 6].
MIMO is a well‐established technique known for better
performance, higher capacity, and increased coverage area-
compared to the single‐input single‐output (SISO) technique.
Although maximum likelihood (ML) provides an optimal
detection scheme, its complexity is considerable. Even though
there are several sub‐optimal detectors with lower complexity,
they have reduced performance compared with the ML de-
tector [7].

1.1 | Related works

Recently, machine learning techniques have been successfully
applied as a powerful detector for different optical communi-
cation (OC) systems [8] including visible light communication
[9, 10], fibre OC [11–14], and FSO communication [15]. In the
context of FSO communication, many algorithms are used to
detect the received signal after propagating through atmo-
spheric turbulence. Depending on the deployed algorithm,
these works can be divided into three categories; classical
machine learning‐based methods [16–19], convolutional neural
network (CNN)‐based methods [20–32], and deep neural
network (DNN)‐based methods [33–40]. Table 1 shows the
main differences between these works.

Considering the classical machine learning category,
the support vector machine is proposed in Ref [16] as a de-
tector in the FSO‐SISO system with on–off keying (OOK) to
combat the noise and scintillation effects. The decision tree for
optical power estimation in a hybrid FSO/RF system with
OOK and hard switching considering weather conditions is
studied in Ref [17]. A backpropagation artificial neural
network is applied in Ref [18] for distortion correction in a
sensor‐less adaptive optic system. The artificial neural network
is also used in Ref [19] for mitigating the atmospheric tur-
bulence effects at the beam level without the need for adaptive
optical kits.

Considering the CNN category, the CNN is deployed
in Ref [20, 21] for identification of the structured light in-
tensity profiles without requiring mode sorters or mode
demultiplexers and in Ref [22] for detection in the FSO‐
SISO system with OOK. Orbital angular momentum
(OAM) encoding is a promising approach for enhancing the
FSO system capacity [23]. However, atmospheric turbulence
causes distortion of phase fronts of OAM beams and hin-
ders the decoding of OAM modes. Different CNN struc-
tures are deployed in Ref [23, 24] for efficient decoding of
the OAM modes. In Ref [25–27], the CNN is used as a

demodulator for a turbo‐coded OAM‐shift keying (SK) FSO
system at strong atmospheric turbulence. In Ref [28], the
CNN is used for joint atmospheric turbulence detection and
demodulation for an OAM FSO system. Compared to pre-
vious approaches using the self‐organising mapping, this
method achieved a higher accuracy in atmospheric turbu-
lence detection. In Ref [29], three‐dimensional chaotic
interleaved multi‐coded video frames are transmitted using
the OAM‐SK FSO system to have reliable video commu-
nication. To tackle the defects of the OAM‐SK FSO system,
a three‐dimensional CNN is proposed to decode OAM
modes. In Ref [30], the authors used CNN as a demodulator
for the OAM‐SK FSO system considering the effects of
pointing error and limited receiving aperture. The authors of
Ref [31] presented a double stage system to receive high
fidelity image data wherein first, a multi‐CNN demodulator
detects the atmospheric turbulence strength, and then a
CNN demodulates the incident OAM modes. To reduce the
atmospheric turbulence‐induced power loss, an AlexNet‐
based CNN is deployed in Ref [32] for wavefront aberra-
tion compensation.

Considering the DNN category, an autoencoder for
the FSO‐SISO system with OOK is presented in Ref [33]
considering a log‐normal turbulence channel and the perfect
channel state information (CSI). In Ref [34], an autoencoder
is studied considering a single‐user and multi‐user FSO sys-
tem with OOK modulation in an additive white Gaussian
noise (AWGN) channel. Other applications of DNN in FSO
involve channel estimation as demonstrated in Ref [35],
imperfect CSI detection [36], blind CSI detection [37] as well
as perfect CSI detection [38]. DNN is used in Ref [39] to
detect the presence of an eavesdropper and in Ref [40] to
decode polar codes, considering the FSO‐SISO system with
OOK.

1.2 | Practical aspects

Conventional communication systems are composed of mul-
tiple individual processing blocks, each performing an isolated
task, for example, constellation shaping, channel estimation,
and detection. However, isolated processing does not achieve
the best possible end‐to‐end complexity‐performance trade‐
off [33, 34]. Although joint signal processing achieves gains,
it leads to computationally complex systems. End‐to‐end deep
learning (DL) optimises the communication system design to
achieve efficient performance without requiring a rigid struc-
ture [33–35].

The main reason that DL may guide the design of practical
FSO communication systems is that it achieves good perfor-
mance due to its lower complexity and higher processing
speed. Nowadays, there are many electronic boards in different
platforms (even in mobile platforms) that can be used for
deploying real time processing of the proposed DL‐based
structures. For instance, GPUs and NPUs are available,
which can accelerate the processing of the proposed DL‐based
structures. Let us consider the deployment of high‐order
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modulation formats in FSO systems, which is presently seen as
a promising way of increasing spectral efficiency. Several
conventional implementation options for detection are
possible, among which ML is the best. However, ML’s
complexity increases with the modulation order; catering to
this interest, DL provides a fast way of detecting optical signals
with high‐order modulation.

1.3 | Contributions and novelties

Themajority of the above‐mentioned studies, including those on
CNN, did not explore complexity, and their provided algorithms
are inefficient in terms of computation. One of the main mis-
sions of this study is to propose low complexity DL‐based
transmitter, receiver, and transceiver structures. We present

TABLE 1 Comparison between different works on machine/deep learning for the FSO system

Category Ref Application Transmitter Receiver
System
model Channel model

Complexity
analysis

Machine
learning‐
based
algorithms

[16] Detector to combat noise and scintillation OOK SVM SISO Log‐normal No

[17] Optical power estimator OOK Decision tree SISO Experimental No

[18] Correcting distortion in a sensor‐less
adaptive optic system

Phase‐only
spatial light
modulator

ANN SISO Experimental No

[19] Mitigating the atmospheric turbulence
effects at the beam level without the
need for an adaptive optic system

Phase‐only
spatial light
modulator

ANN SISO Experimental No

CNN‐based
algorithms

[20] Detector OOK CNN SISO Gamma–Gamma No

[21] Detector OOK CNN SISO Gamma–Gamma No

[22] Detector OOK CNN SISO Gamma–Gamma No

[23] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[24] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[25] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[26] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[27] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[28] Demodulator for OAM‐SK OAM‐SK CNN SISO Experimental No

[29] Demodulator for OAM‐SK OAM‐SK 3 dimensional
CNN

SISO Gamma–Gamma No

[30] Demodulator for OAM‐SK OAM‐SK CNN SISO Pointing error No

[31] Demodulator for OAM‐SK OAM‐SK Multi‐CNN SISO Gamma–Gamma No

[32] Reducing the atmospheric turbulence‐
induced power loss

Phase‐only
spatial light
modulator

AlexNet‐CNN SISO Experimental No

DNN‐based
algorithms

[33] Autoencoder DNN DNN SISO Log‐normal No

[34] Autoencoder DNN DNN SISO Gaussian No

[35] Channel estimation M‐QAM DNN SISO Gamma–Gamma Yes

[36] Detector for imperfect CSI M‐QAM DNN SISO Gamma–Gamma No

[37] Detector for blind CSI OOK DNN SISO Log‐normal/Gamma–
Gamma/Negative
exponential

Yes

[38] Detector for perfect CSI OOK DNN SISO Gamma–Gamma Yes

[39] Eavesdropper detection OOK DNN SISO Experimental No

[40] Decoder of polar codes OOK DNN SISO Gamma–Gamma No

This
work

Joint (and individual) constellation shaping‐
detection

DNN DCNN MIMO Gamma–Gamma Yes

Abbreviations: ANN, artificial neural network; CNN, convolutional neural network; CSI, channel state information; DNN, deep neural network; FSO, free space optical; MIMO, multi‐
input multi‐output; M‐QAM, M‐ary quadrature amplitude modulation; OAM, orbital angular momentum; OOK, on‐off keying; SISO, single‐input single‐output; SK, shift keying; SVM,
support vector machine.
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low complexity transmitter, receiver, and transceiver structures
and compare their performance complexity with each other.
Moreover, the proposed methods are compared with conven-
tional methods in terms of performance and complexity.
Furthermore, this study presents a comprehensive investigation
of transmitter, receiver, and transceiver learning in FSO systems.
Note that the aim of using DL at the transmitter, receiver, and
transceiver sides is constellation shaping, detection and joint
constellation shaping and detection, respectively.

The existing DL‐based structures considered the FSO‐
SISO system. In this study, we investigate both SISO and
MIMO FSO systems. To have a comprehensive investigation,
different combining techniques such as maximum ratio
combining (MRC), equal gain combining (EGC), and selective
combining (SC) have been considered. In addition, a wide
range of atmospheric turbulence regimes from weak to strong
with different modulation orders have been studied in this
work. Therefore, the main contributions and novelties of this
work are summarised as follows:

� Designing low complexity DL‐based transmitter, receiver,
and transceiver structures for the FSO system.

� Providing complexity analysis for DL applications in the
FSO system.

� Considering transmitter learning in the FSO system.
� Presenting a comprehensive investigation over DL applica-

tions in the FSO system.
� Investigating DL applications in the FSO‐MIMO system

(and deploying, MRC, EGC, and SC schemes).
� Considering a wide range of atmospheric turbulences from

weak to strong and different modulation orders.

The rest of this work is organised as follows: Section 2 de-
scribes channel and system models. Section 3 describes the
system model of the proposed structures. Section 4 presents
simulation results, and Section 5 is the conclusion of this work.

2 | FSO CHANNEL AND SYSTEM
MODEL

2.1 | FSO channel model

The most important FSO channel effects include weather
conditions, pointing error, atmospheric turbulence, and path
loss. Considering a short‐range link in a clear atmosphere, the
major challenges faced by the FSO links are atmospheric tur-
bulence and pointing error. Note that the pointing error can be
removed by properly fastening the FSO transceiver. Various
statistical distributions have been used in the literature to
model the atmospheric turbulence effects [41–49]; among
them, Gamma–Gamma distribution has the highest accom-
pany with the actual results for weak to strong atmospheric
turbulence regimes [2, 47, 50, 51]. In this study, the atmo-
spheric turbulence effect is modelled by Gamma–Gamma
distribution, which has the following probability distribution
function:

f ðIÞ ¼
2ðαβÞ

αþβ
2

ΓðαÞΓðβÞ
I

αþβ
2 −1Kα−β

�
2
ffiffiffiffiffiffiffiffi
αβI

p �
; I > 0; ð1Þ

where I is the atmospheric turbulence intensity, Γð:Þ is a well‐
known gamma function, K :ð:Þ is a modified Bessel function of
the second kind and 1=β and 1=α are the variances of the
small and large scale eddies, respectively. Moreover,

α¼ ½expð0:49σ2
R=ð1þ 1:11σ12=5

R Þ
7=6
Þ − 1�

−1
; β ¼ ½ expð0:51

σ2
R=ð1þ 0:69σ12=5

R Þ
5=6
Þ − 1�−1, where σ2

R ¼ 1:23C2
nk

7=6z11=6

is the Rytov variance, k ¼ 2π=λ is the optical wavenumber,
and z is the propagation distance [52, 53].

2.2 | FSO system model

As depicted in Figure 1, in the considered FSO system model,
the same FSO signal is simultaneously transmitted from Nt
optical transmitters, received by Nr optical detectors, and
combined by MRC, EGC, or SC. We assume coherent detec-
tion at the receiver side; therefore, the phase of the received
signal can be detected. Moreover, equal power is allocated to
the transmitters, that is, Pi ¼ P=Nt; i¼ 1;…;Nt. Consid-
ering x, as the transmitted FSO signal, the received signal at the
ith; i¼ 1;…;Nr receive aperture can be expressed as

yi ¼ R
XNt

j¼1

I i;jxþ ni; ð2Þ

where ni is AWGN at the input of ith receive aperture, with
zero mean and variance σ2; I i;j is the atmospheric turbulence
intensity of the link between the jth transmitter and the ith
receive aperture. Moreover, R¼ ηq=hf is the photo detector
responsibility, where η is the quantum efficiency of the
photodetector, q is the electron's charge, h is Planck's constant,
and f is the optical frequency. We consider receivers with
limited background noise in which the shot noise created by
background radiation is dominant compared to other noise
components such as thermal noise, dark noise, and signal‐
dependent shot noise. Therefore, the noise term is modelled
as signal‐independent AWGN [54].

There are several copies of the transmitted signal available
at the receiver, which are combined to improve the system
capacity and coverage area [55]. Various combining schemes
are available; among them MRC, EGC, and SC are some of the
well‐known combiners [53]. In SC, only the received apertures
are selected so that its received signal has the maximum signal‐
to‐noise ratio. Assuming p as the index of the selected receive
aperture by SC, the ML receiver for SC becomes

x̂u ¼
argmin
~xu

�
�
�
�
�
�
y − R

XNt

j¼1
Ip;j~xu

�
�
�
�
�
�

2

; ð3Þ

where ~xu is a symbol of the transmitted constellation map. In
EGC, all the received signals are co‐phased and added together
without any weighting. Since the FSO channel only takes real
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values, EGC can be performed by adding the received signals
and can be expressed as follows [56]:

y¼
XM

i¼1
yi ¼

R
Nt

XM

i¼1

XNt

j¼1
I i;jxu þ

XM

i¼1
ni: ð4Þ

After combing the received signals with the EGC method,
the ML receiver for the EGC will be as follows [56]:

x̂u ¼
argmin
~xu

�
�
�
�
�
�
y −

R
Nt

XNr

i¼1

XNt

j¼1
I i;j~xu

�
�
�
�
�
�

2

ð5Þ

In MRC, all of the received signals are rotated and
weighted according to the phase and strength of the channel
such that all of the received signals are combined to yield the
maximum signal to noise ratio. The FSO channel only takes
real values; therefore, MRC can be performed by adding
the weighted received signals, and can be expressed as fol-
lows [56]:

y¼
XNr

i¼1

XNt

j¼1

I i;jyi ¼ R2
XNr

i¼1

0

@
XNt

j¼1

I i;j

1

A

2

xþ R
XNr

i¼1

XNt

j¼1

I i;jni:

ð6Þ

After combing the received signals with the MRC method,
the ML receiver for the MRC is given by [56]

x̂¼ argmin
~x

�
�
�
�
�
�
y − R2

XNr

i¼1

0

@
XNt

j¼1
I i;j

1

A

2

~x

�
�
�
�
�
�

2

: ð7Þ

3 | PROPOSED DL‐BASED FSO
SYSTEMS

Deep learning is an evolution of machine learning, which uses
a programmable neural network that enables machines to make
accurate decisions without help from humans. This technique

is successfully applied in different OC applications [57]. Deep
learning is an established technique for learning complex
relationships between the received signal and impairments.
Among DL algorithms, the DNN is the most widely used al-
gorithm in OC applications, which provides favourable per-
formance and can be considered as an alternative for
conventional methods [57]. The deep neural network learns the
relationship between the input data and target output by using
several hidden layers, each consisting of multiple connected
neurons by some weights, biases and activation functions that
represent the importance of each connection. The dimen-
sionality of DNN can be reduced by combining it with CNN.
This is called network in the DL community and is widely
investigated in image classification [38].

In this study, three DL‐based FSO systems are proposed in
which DL is deployed at the receiver (classical transmitter/DL‐
based detector), transmitter (DL‐based transmitter/ML de-
tector), and transceiver sides (DL‐based transmitter/DL‐based
detector) for detecting, constellation shaping, and joint
constellation shaping‐detection, respectively. In the following
sections, these proposed structures are described in detail.

3.1 | Classical transmitter/DL‐based
detector

The proposed classical transmitter/DL‐based detector system
model is presented in Figure 2a. Considering x as the
transmitted M‐ary symbol, it is first converted to the one‐hot
vector s ∈ S ¼ fei ji ¼ 1;…;Mg; where ei equals 1 at row i
and else 0, then mapped on an M‐ary quadrature amplitude
modulation (M‐QAM) constellation. The one‐hot vector is
composed since a target is required for training the DL al-
gorithm; the aim of the training is to reduce the difference
between the DL algorithm output (the detected symbol) and
the target (the transmitted symbol). Then, Nt copies of the
mapped symbol are transmitted simultaneously from Nt FSO
transmit apertures. The transmitted signal is encountered by
the Gamma–Gamma atmospheric turbulence channel. In the
receiver side, the received optical signal is covenanted to the
electrical signal in each photodetector. Different received
copies of the transmitted signals are then combined at the
receiver side using MRC, EGC or SC methods. Note that the

F I GURE 1 Conventional free space optical Communication system. EGC, equal gain combining; MRC, maximum ratio combining; SC, selective combining
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aforementioned combing methods need the CSI at the
receiver side. After combining the received signal, it is
entered in the detector. Our detector is inspired from Ref
[38] where a convolutional layer is used in DNN for the sake
of dimensionality reduction and speedup. To distinguish it
from DNN and CNN, we call it the dense CNN (DCNN).
The dense layer does not support complex numbers; there-
fore, the real and imagery parts of the combined signal
should be separately fed. The dense layer is composed of
two input neurons and Nhid hidden layers each with Nneu
hidden neurons. The output of each layer is multiplied by a
weight matrix (W ), summed by a bias vector (b), and passed
through an activation function (αð:Þ). Note that after each
hidden layer, a drop out layer is used for dimensionality
reduction. In the output layer of the DCNN, M 1� 1
convolutional filters are used. Therefore, the DCNN is
different from CNN wherein the convolutional layers are
prior to the dense layers.

The weights and biases should be adjusted such that the
difference between the output and the target is minimised. In
order to adjust these parameters, the DCNN algorithm should
be trained. The first step is selecting and tuning its hyper-
parameters [57]. The DCNN hyperparameters include the
sample size to batch size ratio, layer type, number of layers,
number of neurons, activation function, loss function, opti-
miser, learning rate, and number of iterations. The sample size
to batch size ratio is important because entering the whole data
at once into the DCNN leads to underfitting, while dividing it
into several batches helps the DCNN to better understand the
data structure. The number of layers, as well as neurons, should
be adjusted by trial and error, and there is no specific rule for
tuning them. The activation functions are extended during the
time and according to complexity, accuracy, and timing de-
mands, there is a trade‐off between them; however some of
them such as tanh, sigmoid, relu are shown to be proper for DL
in OC applications.

(a)

(b)

(c)

F I GURE 2 The proposed (a) Classical transmitter/deep learning (DL)‐based detector; (b) DL‐based transmitter/maximum likelihood detector; and (c) DL‐
based transmitter/DL based detector structures. DCNN, dense convolutional neural network; EGC, equal gain combining; MRC, maximum ratio combining;
SC, selective combining
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After selecting and tuning the structural hyperparameters,
it is necessary to define the hyperparameters directly related to
the training aspect. The inputs of each layer of the DCNN are
multiplied by the corresponding weights, added by biases,
summed, and then passed through the activation function. The
outputs of each layer are the inputs of the next layer, and the
procedure continues until it reaches the last layer. Considering
the original one‐hot vector at the transmitter as s and the
output vector of the DCNN as ŝ, the aim is to reduce the
difference between s and ŝ. Therefore, a loss function should
be defined and calculated for each individual transmitted
symbol and expected over the whole batch size. The loss
function can be defined as in Ref [57]

LðθÞ ¼
1
K

XK

k¼1

h
lðkÞðs; ŝÞ

i
; ð8Þ

where θ is a vector including weights and biases, K is the batch
size, and lð:; :Þ is the loss function. The cross‐entropy loss
function is considered in this study and is defined as in Ref [57]

lðs; ŝÞ ¼ −
X

i

si logð̂siÞ: ð9Þ

Several algorithms are available for finding θ that minimise
the loss function. One of the most popular algorithms is the
stochastic gradient descent (SGD) that obtains the θ iteratively
by the following formulation [58]:

θðmþ1Þ ¼ θðmÞ − η∇θ~L
�

θðmÞ
�

ð10Þ

where η > 0 is the learning rate, m is the iteration number, and
∇θ~Lð:Þ is the estimate of the gradient. The error derivation
ð∇θ~LðθðjÞÞÞ is fed back to the DCNN as an updating guide.
The SGD includes many extensions; among them, the Adam
algorithm is the state‐of‐the‐art algorithm with enhanced
convergence [57]. The Adam algorithm is used for optimiza-
tion during the training process in this work.

3.2 | DL‐based transmitter/ML detector

The proposed DL‐based transmitter/ML detector system
model is depicted in Figure 2b. The idea of using DL on the
transmitter is to learn a waveform representation that is robust
to the FSO channel impairments. The trained transmitter can
be viewed as a look‐up table that simply maps the input
message to one of the optimised blocks. The generated M‐ary
symbol x is first converted to the one‐hot vector s; then
entered into a DCNN. The dense layer is composed of M input
neurons and Nhid hidden layers each with Nneu hidden neu-
rons. After each hidden layer, a drop out layer is used. At the
output layer of the DCNN, 2 1� 1 convolutional filters are
used. Complex summation of the neurons at the output layer
results in a complex number, which stands for the location of
symbol x in the constellation. Note that this value is limited to

transmitter power constraint; therefore, a batch normalisation
layer is added after the convolutional layer. The DCNN maps
the one‐hot vector s onto its location on the constellation.
Then, Nt copies of the mapped symbol are transmitted
simultaneously through Nt transmit apertures, encountered by
Gamma–Gamma atmospheric turbulence, added by AWGN
with zero mean and σ2 variance, and combined by MRC, EGC
or SC at the receiver side. The combined signal is then passed
through an ML detector. The detected symbol x̂ is converted
into the one‐hot vector ŝ. In order to minimise the difference
between the transmitted one‐hot vector (s) and the detected
one‐hot vector (ŝ), the weights and biases of the DCNN
should be adjusted by training. The first step towards this end
is selecting and tuning the hyperparameters. Then, a loss
function should be defined based on s; ŝ, and tuned hyper-
parameters as expressed in Equation (8). The last step is iter-
atively minimising the loss function using the Adam algorithm
as expressed in Equation (10).

3.3 | DL‐based transmitter/DL‐based
detector

The proposed DL‐based transmitter/DL‐based detector sys-
tem model is presented in Figure 2c. Considering x as the
generated M‐ary symbol, it is first converted into a one‐hot
vector then entered into a DCNN with the same structure as
explained in Section 2.2. The complex summation of the
output neurons stands for the location of the mapped symbol
in the constellation. Then, Nt copies of the mapped symbol are
transmitted simultaneously through Nt transmit apertures,
encountered by Gamma–Gamma atmospheric turbulence,
added by AWGN with zero mean and σ2 variance, and com-
bined by MRC, EGC or SC at the receiver side. The combined
signal is entered into a DCNN in the same way as explained in
Section 2.1. This end‐to‐end DL structure is used for joint
constellation‐shaping detection to reduce the effect of atmo-
spheric turbulence. Considering the transmitted one‐hot vector
(s) and the detected one‐hot vector (ŝ), the weights and biases
of the transceiver DCNN should be adjusted by training.
Therefore, first, the hyperparameters should be selected and
tuned. Then, based on s; ŝ, and tuned hyperparameters, a loss
function should be defined as shown in Equation (8). Finally,
the loss function should be iteratively minimised using the
Adam algorithm as expressed in Equation (10).

4 | RESULTS AND DISCUSSIONS

The training of the proposed DL algorithms is performed in a
Python/Tensorflow environment. A batch of random M‐ary
symbols is created and used for training the DL‐based struc-
tures, as described in Section 3. The DL‐based hyper-
parameters are tuned manually, and the values of the tuned
hyperparameters and other simulation parameters are given in
Table 2. In this section, the simulation results of testing the
proposed DL‐based structures are presented.
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4.1 | Complexity analysis

Table 3 presents the computational complexity of the DL‐
based transmitter and ML detector. Note that the
complexity of the classical transmitter and DL‐based trans-
mitter are equal, as they both use lookup tables of the same
size. The training of DL algorithms is carried out once off-
line; therefore, it is not required to calculate the computa-
tional complexity of the training phase. In addition, it is
sufficient to take into account the forward propagation; the
backward propagation is not important, as it happens only in
the training phase and not in the test phase. The complexity
of the DL‐based detector is equal to the number of multi-
plications and summations of the DCNN. The DL‐based
detector is composed of an input layer with two neurons,
Nhid hidden layers each with Nneu hidden neurons, and an
output layer with M 1� 1 kernels. Therefore, its complexity
becomes ð2� Nneu þ Nhid � Nneu � Nneu þM � NneuÞ=2
multiplications and ðNneu � 3þNhid � Nneu � ðNneu þ 1Þþ
�NneuÞ =2 summations, where M is the modulation order.
The complexity of the ML detector is 7�M − 3 multipli-
cations and 4�M − 1 summations.

In order to have a better understanding about the
computational complexity of conventional and the proposed
DL‐based FSO systems, Figure 3 displays the run time of the
classical transmitter/ML detector, classical transmitter/DL‐
based detector, DL‐based transmitter/ML detector, and DL‐
based transmitter/DL‐based detector structures as functions
of the modulation order, for the SISO scheme with a strong
atmospheric turbulence regime when Es/N0 = 10 dB. The
DL‐based detector has lower complexity than the ML detector,
and the complexity difference between the DL‐based detector
and ML detector increases by the modulation order. As
mentioned in Table 3, the complexity order of the DL‐based
detector and ML detector are OðM=2Þ and OðMÞ, respectively.

The complexity of the classical transmitter and DL‐based
transmitter is almost the same. The classical transmitter
searches in the lookup table for constellation shaping, and the
DL‐based transmitter does some multiplications and additions
on the input one‐hot vector and acts like a lookup table. To be
more specific, at high modulation orders, the classical trans-
mitter has a bit lower complexity than the DL‐based trans-
mitter (because in this range the size of the input one‐hot
vector is high and increases the complexity); however, at low
modulation orders it is inverse (because at this range the size of
the input one‐hot vector is low).

Note that the complexity difference of conventional and
DL‐based FSO systems is mainly on the receiver side. For
instance, considering the modulation order M ¼ 16 where
the classical transmitter and DL‐based transmitter have the
same complexity, the DL‐based detector is almost 2 times
faster than the ML detector. This difference increases when
the modulation order is increased; for example, in M ¼ 64
and M ¼ 256, the DL‐based detector is 3 times and 7:5
times faster than the ML detector, respectively, when using
the classical transmitter and 2:8 times and 6:3 times faster
than the ML detector when using the DL‐based transmitter.

4.2 | Performance analysis

To have a better conclusion, we investigate the performance
of the conventional and DL‐based FSO systems in this part.
Note that the ML detector, which we used as a reference
conventional detector, is the optimum detector. In addition,
the M‐ary QAM, due to its good performance, is an
outstanding modulation format in most of the communica-
tion standards.

In Figure 4, the symbol error rates (SER) of the classical
transmitter/ML detector, classical transmitter/DL‐based de-
tector, DL‐based transmitter/ML detector, and the DL‐based
transmitter/DL‐based detector structures are plotted as func-
tions of Es/N0, for SISO and MIMO (MRC 2� 2) schemes,
for a strong atmospheric turbulence regime. Considering the
computation of SER, it should be noted that the output one‐
hot vector of the DL algorithm, ŝ;is converted to an M‐ary
symbol, x̂; the SER is the difference between the transmitted
and received M‐ary symbols, x and x̂. As seen in Figure 4, the
proposed DL‐based structures achieve the performance of the
state‐of‐the‐art classical transmitter/ML detector. Note that
perfect channel estimation is carried out at the receiver side of
these structures. In this situation, the DL‐based detector and
the ML detector both minimise the difference between trans-
mitted and received symbols and achieve the same perfor-
mance. In addition, the DL‐based transmitter achieves the
same performance as the classical transmitter, since the at-
mospheric turbulence effect is removed at the receiver. It
might be interesting to consider that the obtained results are
achieved by simple hyperparameter tuning and with the use of
a simple structure. According to these results, and considering
the fact that hyperparameter tuning is performed manually, it
can be concluded that the proposed DL‐based structures work
perfectly and efficiently.

Figure 5 plots the SER of the classical transmitter/ML
detector and DL‐based transmitter/DL‐based detector
structures as functions of Es/N0, for SISO and MIMO
(MRC 2� 2) schemes, for different atmospheric turbulence
regimes. As seen in Figure 5, the DL‐based transmitter/DL‐
based detector is a bit better than the classical transmitter/
ML detector. Figure 4, shows that the DL‐based detector
has the same performance as the ML detector. Accordingly,
the fact that the DL‐based transmitter/DL‐based detector is
a bit better than the classical transmitter/ML detector shows
that the DL‐based transmitter can find a constellation shape
that performs a bit better than M‐QAM. Note that M‐QAM
is an outstanding modulation being used in many commu-
nication standards. The hyperparameter tuning is performed
based on the SISO structure, manually and based on pre-
vious knowledge. Despite this fact and the complexity of
MIMO and the 16‐ary constellation, the proposed DL‐based
transmitter/DL‐based detector achieves similar performance
at all atmospheric turbulence regimes in the MIMO scheme.
It shows the flexibility of the proposed DL‐based trans-
mitter/DL‐based detector, which means it is not required to
consider all scenarios for tuning and the tuning can be
carried out considering a desirable scenario; the DCNN will
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TABLE 2 The parameters used in simulations and their values

Parameter Value

Modulation order 16

Number of hidden layers (Nhid) 2

Number of hidden neurons (Nneu) 10

Batch size 216

Sample size to batch size ratio 16

Number of iterations (epochs) 300

Activation function Relu/Softmax

Layer type Dense/Convolutional

Loss function Cross entropy

Optimiser Adam

Learning rate 0:005

Gamma–Gamma atmospheric turbulence intensity Strong (α¼ 4:2; β¼ 1:4)/Moderate (α¼ 4; β ¼ 1:9)/Weak (α¼ 11:6; β ¼ 10:1)

Photo detector responsibility R¼ 1

TABLE 3 Computational complexity of the DL‐based detector and the ML detector

Method Number of summations and diffractions Number of multiplications and divisions Complexity order

DL based detector ðNneu�3þNhid�Nneu�ðNneuþ1ÞþM�NneuÞ

2
2�NneuþNhid�Nneu�NneuþM�Nneu

2 OðM=2Þ

ML detector 7�M − 3 4�M − 1 OðMÞ

Abbreviations: DL, deep learning; ML, maximum likelihood.

10 1 10 2 10 3
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10 -1

10 0

R
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im
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SISO, strong atmospheric turbulence

Classical transmitter/ ML detector
Classical transmitter/ DL based detector (proposed)
DL based transmitter/ ML detector (proposed)
DL based transmitter/ DL based detector (proposed)

F I GURE 3 Run time of the classical
transmitter/maximum likelihood (ML) detector,
classical transmitter/deep learning (DL) based
detector, DL based transmitter/ML detector, and
DL based transmitter/DL based detector structures
as functions of the modulation order, for the single‐
input single‐output (SISO) scheme, and for a strong
atmospheric turbulence regime, when Es/
N0 = 10 dB
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work well in all scenarios. This shows that this structure is
robust to any changes in the structure of the system, and by
a simple training procedure it can be adapted to any
new structure. Therefore, the DL‐based transmitter/DL‐
based detector, due to its much lower complexity, is a good
choice for working in situations with varying channel
conditions.

Figure 6 shows the SERs of the classical transmitter/ML
detector and DL‐based transmitter/DL‐based detector struc-
tures as functions of Es/N0, for MIMO (2� 2) with different

combining schemes, for a strong atmospheric turbulence
regime. As seen in Figure 6, in both the classical transmitter/
ML detector and DL‐based transmitter/DL‐based detector
structures, MRC outperforms EGC, and EGC outperforms
SC. In addition, the DL‐based transmitter/DL‐based detector
performs the same as the classical transmitter/ML detector
structure for different combining schemes. However, it should
be considered that the number of transceiver apertures is only
2, and the investigation is carried out over a strong atmo-
spheric turbulence regime; therefore, MRC, EGC, and SC are

0 5 10 15 20
Es/N0(dB)

10 -3

10 -2

10 -1

S
E

R
16-ary, strong atmospheric turbulence

Classical transmitter/ ML detector
Classical transmitter/ DL based detector (proposed)
DL based transmitter/ ML detector (proposed)
DL based transmitter/ DL based detector (proposed)

MIMO

SISO

F I GURE 4 Symbol error rates (SERs) of the
classical transmitter/maximum likelihood (ML)
detector, classical transmitter/deep learning (DL)
based detector, DL based transmitter/ML detector,
and the DL based transmitter/DL based detector
structures as functions of Es/N0, for single‐input
single‐output (SISO) and multi‐input multi‐output
(MIMO) (maximum ratio combining 2� 2)
schemes, for a strong atmospheric turbulence regime

0 5 10 15 20
Es/N0(dB)
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E

R

16-ary

Classical transmitter/ ML detector
DL based transmitter/ DL based detector (proposed)

strong
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weakstrong
moderate
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MIMO
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F I GURE 5 Symbol error rates (SERs) of the
classical transmitter/maximum likelihood (ML)
detector and deep learning (DL) based transmitter/
DL based detector structures as functions of Es/
N0, for single‐input single‐output (SISO) and multi‐
input multi‐output (MIMO) (MRC 2� 2) schemes,
for different atmospheric turbulence regimes
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not very different from each other. However, an increasing
number of apertures would increase this difference. As seen in
Figure 6, at low Es/N0, MRC, EGC, and SC have almost the

same performance; however, at higher Es/N0, there is almost
a fixed difference between them; this is due to the dominancy
of noise or Es/N0 in each case.

F I GURE 6 Symbol error rates (SERs) of the
classical transmitter/maximum likelihood (ML)
detector and deep learning (DL) based transmitter/
DL based detector structures as functions of Es/
N0, for multi‐input multi‐output (MIMO) (2� 2)
with different combining schemes, for a strong
atmospheric turbulence regime. EGC, equal gain
combining; MRC, maximum ratio combining; SC,
selective combining

F I GURE 7 The 16‐ary constellation of transmitted signal for (a) QAM transmitter, and the proposed deep learning based transmitter in (b) Weak;
(c) Moderate; and (d) Strong atmospheric turbulence, with Es/N0 = 10 dB
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Figure 7 shows the 16‐ary constellation of transmitted
signal for a. QAM transmitter and the proposed DL‐based
transmitter in b. Weak, c. Moderate, and d. Strong atmo-
spheric turbulence, with Es/N0 = 10 dB. In a perfect CSI
scenario, the receiver refines the received signal constellation
and then detects the received signal. The constellation shaper
considers the channel as an AWGN (with variance of σ2=jI j2).
In the AWGN channel, the optimum constellation is a distri-
bution of points with equal distances. This criterion can be
seen in M‐QAM as well as in Figure 7, and that is why the
performance of the classical transmitter and DL‐based trans-
mitter is the same.

5 | CONCLUSION

In this study, three DL‐based structures were proposed for
mitigating the atmospheric turbulence in FSO communication
systems. In the proposed structures, DL was used at the trans-
mitter, receiver, and transceiver sides, respectively, for constel-
lation shaping, detection, and joint constellation‐shaping
detection. Considering the SISO/MIMO structure and a wide
range of atmospheric turbulences, from the weak to the strong
regime, the performance of the proposed structures was
compared with that of the ML detector. Simulation results
showed that the proposed DL‐based methods achieved the ML
performancewith lower complexity. TheDL‐based transmitter/
MLdetector had almost the same complexity as theMLdetector,
while theDL‐based detector was almost 2, 3, and 7.5 times faster
than the ML detector in modulation orders of 16, 64, and 256,
respectively.
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