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a b s t r a c t

The few-mode fiber (FMF) nonlinear effects including Kerr nonlinearity and nonlinear coupling are
the most important barriers in FMF-based transmission. The performance degradation due to FMF
nonlinearity can be mitigated by properly designing the constellation points. The location and
occurrence probability of constellation points can be optimized with geometric constellation shaping
(GCS) and probabilistic constellation shaping (PCS), respectively. In this paper, we present end-to-
end deep learning (EEDL)-based GCS, PCS, and joint geometric-probabilistic constellation Shaping
(JGPCS) algorithms for FMF systems. The performance of the proposed algorithms is compared with
the uniform distributed quadrature amplitude modulation (QAM) and the well-known Maxwell–
Boltzmann distributed QAM, in terms of mutual information (MI). Simulation results show 0.15, 0.19,
and 0.22 bits/symbol MI improvement respectively for proposed EEDL-based GCS, PCS, and JGPCS
algorithms compared with uniform distributed QAM constellation.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decades, the required capacity in the optical fiber
communication systems has been increased exponentially. Due to
the ever increasing traffic generation, the single mode fiber (SMF)
is rapidly approaching its capacity limits [1]. Consequently, differ-
ent multiplexing schemes have been developed to increase the
optical fiber communication capacity, among them, the mode-
division multiplexing is a very promising solution wherein differ-
ent parallel data streams can be transmitted over spatial modes
in a few-mode fiber (FMF) link [2]. The FMF nonlinear effects,
including Kerr nonlinearity and nonlinear coupling, are the main
barriers in front of FMF practical applications [3–6]. Optimiz-
ing the location of the constellation points, i.e., geometric con-
stellation shaping (GCS), or the probabilities of occurrence of
the constellation points, i.e., probabilistic constellation shaping
(PCS) can mitigate the fiber nonlinearity and improve the sys-
tem performance in terms of mutual information (MI) [7]. The
GCS is employed in shape of the multi-ring constellations in [8]
and iterative polar modulation in [9,10] to arrange the loca-
tion of constellation point to approximate a Gaussian distribu-
tion. GCS produces irregular constellation points which increases
the receiver complexity, and does not provide a simple solu-
tion for designing the location of constellation points in any

∗ Corresponding author.
E-mail addresses: m_amirabadi@elec.iust.ac.ir (M.A. Amirabadi),

kahaei@iust.ac.ir (M.H. Kahaei), nezam@iust.ac.ir (S.A. Nezamalhosseini).

channel conditions [11]. PCS optimizes the occurrence proba-
bility of constellation points for quadrature amplitude modu-
lation (QAM) to approximate the Gaussian signaling [11]. It is
shown that in the additive white Gaussian noise (AWGN) channel,
the well-known Maxwell–Boltzmann distribution is the optimal
PCS for QAM constellation [12]. The Maxwell–Boltzmann dis-
tributed QAM, although optimal, has some barriers while prac-
tical implementation. In this distribution, the inner constellation
points appear more likely rather than the outer points, there-
fore, a very high number of symbols is necessary for precisely
approximating the desired distribution. The digital to analog con-
verter (DAC) restricts the transmit sequence length in practi-
cal implementations [13], thereby, it is extremely hard to build
a transmit sequence with a desired Maxwell–Boltzmann dis-
tribution [14]. Combination of PCS and GCS in terms of joint
geometric-probabilistic constellation shaping (JGPCS) is investi-
gated in [15,16]. Although JGPCS shows MI gain over PCS, it is
along with disadvantages of both GCS and PCS.

Recently, deep learning (DL) has attracted significant atten-
tions in optical communication for fiber nonlinearity mitigation
[17], modulation format identification [18], optical performance
monitoring [19], and resource allocation [7,20]. Considering FMF
communication systems, several studies have been proposed [21]
which employ DL for demodulation [22], mode decomposition
[23], detection [24], and equalization [25]. However, the afore-
mentioned studies in FMF consider DL at the receiver side which
result in sub-optimal solutions. Using the DL at both transmit-
ter and receiver sides, i.e. end-to-end DL (EEDL), can enhance
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the performance significantly [26]. In EEDL approach, the trans-
mitter, fiber channel, and receiver are implemented as an au-
toencoder, and the transceiver is jointly trained to best match
the output with the input [27]. EEDL can design the constel-
lation shape by optimizing either the location of the symbols
or their occurrence probabilities. The optimum constellation for
the FMF system is robust to FMF nonlinearity [28]. The self-
and cross-channel as well as intra- and inter-modal FMF non-
linear interactions can be well modeled as an additive Gaussian
noise source by enhanced Gaussian noise (EGN) model [4–6].
The EGN model formulates the relationship between nonlinear
interference (NLI) noise variance and high-order moments of
the transmitted signal constellation [27]. The NLI noise variance
is small in constellations with small high-order moments [29],
thereby an optimal set of high-order moments (an optimal con-
stellation) exists which maximizes MI [30,31]. The constellation
shaping is a non-convex optimization problem conventionally
solved by metaheuristic algorithms such as genetic algorithm or
iterative optimization methods which are time-consuming ap-
proaches [32–34]. The main feature of EEDL-based constellation
shaping is that it unlocks using the gradient-based optimiza-
tion techniques, and solves constellation shaping problem via
gradient-descent techniques which are much more cost-effective
than metaheuristic or iterative optimization approaches. The con-
stellation shaping is analytically solved for simple scenarios such
as AWGN channel in which channel distribution is known. How-
ever, in case of a mathematical intractability, either because of
complexity or even lack of channel distribution it is impossible
to mathematically design constellations, unless several assump-
tions are made which yields to sub-optimal solutions. Note that
finding the optimal distribution using conventional PCS meth-
ods is a difficult problem even when knowing channel distribu-
tion. Moreover, conventional PCS methods assume that the target
distribution is symmetric around the origin which is true for
AWGN channel. However, the EEDL-based constellation shaping
is not restricted to symmetric probability distributions, and can
be employed for any channel model.

1.1. Literature review

The available EEDL-based constellation shaping investigations
can be divided into three categories, GCS, PCS, and JGPCS. Consid-
ering GCS category, [35] employed GCS to learn a constellation
robust to SNR and laser linewidth estimation errors with a MI
gain up to 0.3 bits/symbol. [7,36–38] deployed GCS to optimize
the constellation design mitigating nonlinear effects with gains
up to 0.07 bits/symbol when trained with GN and NLI noise
(NLIN) channel model. Final verification of these works is by
split-step Fourier method (SSFM) simulations [7,16,36] and ex-
perimental setup [30,31]. EEDL is used in [37] for GCS considering
a simplified single mode fiber channel mitigating nonlinear phase
noise effect. In these works, almost the same deep neural network
(DNN)-based modulators is considered, and only the learned con-
stellation is used in transmitter after training. While dealing with
GN and NLIN models, the channel model appears memoryless
Gaussian auxiliary from the receiver standpoint and the DNN-
based detector mimics maximum-likelihood receiver. Therefore,
the complexity and performance of presented DNN-based de-
tectors is the same. In fact, these works train almost the same
EEDL-based algorithms considering different system and channel
models, i.e., the methodology is the same but implementation
is different. Considering PCS and JGPCS categories, PCS/JGPCS is
its infancy in optical communication applications, an auxiliary
AWGN channel (not GN or NLIN model) is considered in [39–41]
showing about 0.04 bit/symbol MI improvement in JGPCS com-
pared with PCS. In [39] a training symbol batch of size N is

generated by drawing randomly N samples indices from pm, then
each index m is taken about Npm times, for m = {1, . . . ,M},
and all indices are randomly permuted. In [40] the sampling is
done by finding the maximizing argument of the summation a
sample with Gumble distribution and log2(pm). Both approaches
show the same performance as Maxwell–Boltzmann distribution
and their complexity is almost the same. However, [39] needs
some careful integer rounding when Npm < 1 and [40] needs to
tune a hyperparameter.

1.2. Novelties and contributions

Despite the importance of constellation shaping, it is only
investigated in SMF systems, and no conventional or EEDL-based
approach is employed for GCS, PCS, or JGPCS in FMF systems.
In this paper, we propose EEDL-based GCS, PCS, and JGPCS algo-
rithms for mitigating FMF nonlinear effects. The contributions and
novelties of this paper include;

• Employing constellation shaping in FMF system which can
provide higher MI for FMF-based transmission,

• Deploying EEDL in FMF system that can optimize the FMF
transceiver design in an end-to-end manner and obtain bet-
ter results than disjoint block based processing,

• Presenting EEDL-based GCS, PCS, and JGPCS algorithms for
FMF system with more flexibility and be more practical than
the conventional analytical methods,

• Providing a comprehensive comparison by demonstrating
well-known conventional methods and EEDL-based algo-
rithms considering both EGN model and verifying the prac-
ticability of the obtained results by final verification based
on the SSFM.

The rest of this paper is organized in the following form; the
FMF system model and the signal propagation are described in
Section 2. Section 3 explains the proposed EEDL-based algo-
rithms, Section 4 provides the simulation results, and Section 5
is the discussion, and Section 6 presents the conclusion of this
paper.

2. FMF system model

The transmitted signal is a multiplexing of 2 polarization
modes, D spatial modes, and Nch frequency channels. The con-
sidered FMF is consisted of Ns spans with a Few-Mode Erbium-
Doped Fiber Amplifier (FM-EDFA) at the end of each span to
compensate fiber attenuation. In turn, each FM-EDFA produces
Amplified Spontaneous Emission (ASE) noise. FMF linear effects
affecting signal propagation include modal dispersion, chromatic
dispersion, and linear coupling [42]. Kerr-nonlinearity and non-
linear coupling are the considered FMF nonlinear effects [42].
The received signal is passed through a Multi-Input Multi-Output
(MIMO) Digital Signal Processing (DSP) for compensating the FMF
linear effects including modal dispersion, chromatic dispersion,
and linear coupling. Then Carrier Phase Recovery (CPR) is de-
ployed to recover the nonlinear phase noise. The received signal
at the output of the CPR can be described by EGN model as a
summation of the transmitted signal with ASE and NLI noise [4].
Therefore, considering xn,m as the transmitted symbol in nth
channel andmth mode, the received signal, yn,m, can be expressed
as [4]

yn,m = xn,m + nASE,n,m + nEGN,n,m, (1)

where nASE,n,m ∼ N(0, σ 2
ASE,n,m) and nEGN,n,m ∼ N(0, σ 2

EGN,n,m)
respectively represent the ASE noise and NLI noise related to nth
channel and mth mode. Here, σ 2

ASE,n,m = NsFn,m(Gn,m − 1)hν∆fn,m
where Fn,m is the amplifier noise figure of nth channel and mth
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mode, Ns is number of spans, Gn,m is amplifier gain of nth chan-
nel and mth mode equal to per span fiber loss of nth channel
and mth mode, ∆fn,m is the channel bandwidth of nth channel
and mth mode, and h is the Planck's constant, and ν is central
frequency [4]. The NLI variance of nth channel and mth mode,
σ 2
EGN,n,m, can be defined as [4]

σ 2
EGN,n,m =

D∑
q=1

[ ∑
k2,m2,n2

3κ (k2,q)
1 κ

(m2,q)
1 κ

(n2,m)
1 Pk2,qPm2,qPn2,m

× Xa
n,m(k2,m2, n2, q) +

∑
k2,n2

κ
(k2,q)
2 κ

(n2,q)
1 5

× (P2
k2,qPn2,mXb

n,m(k2, k2, n2, q)

+ Pk2,mPk2,qPn2,qX c
n,m(k2, n2, k2, q)) +

∑
n2

κ
(n2,q)
3 P2

n2,qPn2,m

× Xd
n,m(n2, n2, n2, q)

]
,

(2)

where

Xa
n,m(k2,m2, n2, q) =

γ̃ 2
mq

4

∫∫∫
∞

−∞

|η(f , f1, f2)|2gk2,q

× (f + f1 + f2)gm2,q(f + f2)gn2,m(f + f1)gn,m(f )df1df2df

Xb
n,m(k2, k2, n2, q) =

γ̃ 2
mq

4

∫∫∫
∞

−∞

|η(f , f1, f2)|2gk2,q

× (f + f1 + f2)gk2,q(f + f2)gn2,m(f + f1)gn,m(f )df1df2df

X c
n,m(k2, n2, k2, q) =

γ̃ 2
mq

4

∫∫∫
∞

−∞

|η(f , f1, f2)|2gn2,q

× (f + f1 + f2)gk2,q(f + f2)gk2,m(f + f1)gn,m(f )df1df2df

Xd
n,m(n2, n2, n2, q) =

γ̃ 2
mq

4

∫∫∫
∞

−∞

|η(f , f1, f2)|2gn2,q

× (f + f1 + f2)gn2,q(f + f2)gn2,m(f + f1)gn,m(f )df1df2df ,

(3)

with

η(f , f1, f2) =
1 − e−αn,mLsej|βq(f+f1−f2)−βm(f )+βm(f2)−βq(f1)|Ls

αn,m − j|βq(f + f1 − f2) − βm(f ) + βm(f2) − βq(f1)|

×
1 − ej|βq(f+f1−f2)−βm(f )+βm(f2)−βq(f1)|NsLs

1 − ej|βq(f+f1−f2)−βm(f )+βm(f2)−βq(f1)|Ls
.

(4)

where κ
(n,m)
1 = µ

(n,m)
2 , κ

(n,m)
2 = µ

(n,m)
4 − 2µ(n,m)2

2 , and κ
(n,m)
3 =

µ
(n,m)
6 − 4µ(n,m)

4 µ
(n,m)
2 + 12µ(n,m)3

2 , with µ
(n,m)
2 , µ

(n,m)
4 , and µ

(n,m)
6

denoting the second, fourth, and sixth order moments of the
constellation of nth channel and mth mode, respectively. Here,
Pn,m and g (n,m)(.) are respectively the launched power and the
spectral shape of transmitted signal in nth channel andmth mode,
αn,m is attenuation of nth andmth mode and Ls is span length, and
β1m and β2m are respectively the modal and chromatic dispersion
coefficients of mth mode [4].

γ̃mq =

{
4
3 (

2
3 )

δmq fmqγ weak coupling
κγ strong coupling,

(5)

with

κ =

∑
q≤p

m,q∈{1,2,...,D}

32
2δmq

fmq

6D(2D + 1)
, (6)

where γ is the Kerr nonlinearity coefficient, fmq =
Aeff
ImIq

∫∫
F 2
m(x, y)

F 2
q (x, y)dxdy is the nonlinear coupling coefficient between modes
p and q, and Aeff is the effective area of the fundamental mode.

3. Proposed EEDL-based algorithms

The proposed EEDL-based GCS, PCS, and JGPCS algorithms for
FMF system are depicted by Fig. 1a, b, and c, respectively, and we
describe each of them in the following sections.

3.1. GCS

The proposed EEDL-based GCS algorithm demonstrated by
Fig. 1a is composed of two DNN-based functions representing
modulator and detector, with the goal of reproducing the gen-
erated symbol at the detector output. To do so, we first convert
the generated M-ary symbol of nth channel and mth mode to the
one-hot vector sn,m ∈ S = {ei|i = 1, . . . ,M} where ei is equal
to 1 at ith element and 0 elsewhere and M is modulation order
(e.g. e3 is [0, 0, 1, 0] when M = 4). Then sn,m is modulated to
constellation point xn,m via the following function

xn,m = fθM (sn,m), (7)

where fθM (.) is DNN-based modulator with θM as trainable pa-
rameters. The DNN-based modulator is composed of an input
layer with M neurons, an output layer with 2 neurons, and Nhid
hidden layers which each of them has Nneu hidden neurons.
The output neurons depict in-phase and quadrature components
of the transmitted signal. The DNN-based modulator is ended
by a normalization layer to justify the unit power constraint
of constellation design. The modulated symbol, xn,m, is propa-
gated through FMF nonlinear channel according to the following
expression

yn,m = fEGN (xn,m), (8)

where yn,m is the received symbol of nth channel and mth mode
at the output of CPR block. The received symbol is passed through
the DNN-based detector according to the following formulation

rn,m = fθD (yn,m), (9)

where rn,m is the detected symbol of nth channel and mth mode,
fθD (.) is the DNN-based detector with trainable parameters θD.
The DNN-based detector is composed of an input layer with
2 neurons, an output layer with M neurons, and Nhid hidden
layers which each of them has Nneu hidden neurons. The output
neurons depict the demodulated symbol in one-hot vector form.
The aim is to adjust θ = {θM , θD} by end-to-end training the
DNN-based modulator and DNN-based detector such that we
have the minimum detection error. To do so, we use softmax
activation function layer at the DNN output which yields the
following probability (note that the softmax output can be seen
as probability) [43]

rn,m ∈ {p ∈ R+

M |

M∑
i=1

pi = 1}, (10)

then, we consider cross-entropy loss function which can be ex-
pressed as [44]

L(θ) = −1/K
K∑

k=1

M∑
i=1

s(i,k)n,m log(r (i,k)n,m ), (11)

where K defines the considered batch size and the batch number
is denoted by superscript k. The loss function can be iteratively
minimized by stochastic gradient descent (SGD) method using the
following formula

θ(j+1)
= θ(j)

− η∇θ L̃(θ(j)), (12)

where η is the learning rate, superscript j defines the iteration
number, and the estimated gradient of loss function is denoted
by ∇θ L̃(.).
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Fig. 1. The proposed EEDL-based (a) GCS algorithm, (b) PCS algorithm, and (c) JGPCS algorithm for FMF system.

3.2. PCS

The proposed EEDL-based PCS algorithm described by Fig. 1b
is composed of two DNN-based functions representing sampler
and detector. The DNN-based sampler must learn the parametric
distribution pθS (sn,m) for transmitted symbols of nth channel and
mth mode which provided to the DNN-based detector, holds
enough information for replicating the transmitted symbols at the
receiver output. The DNN-based sampler is composed of an input
layer with 1 neuron, an output layer with M neurons, and Nhid
hidden layers which each of them has Nneu hidden neurons. The
DNN-based sampler tries to find the optimum probabilistic distri-
bution in an end-to-end process based on the channel condition
which is described by EGN-model and is in turn dependent on
the input power. Therefore, we use the input power as the only
input feature of DNN-based sampler. The training of PCS is done
by optimizing an end-to-end loss function which is dependent
on the mathematical model of all processing blocks, i.e., sampler,
modulator, channel and detector. The SGD is used for minimizing
this loss function, accordingly, the mathematical model of all
these blocks should be differentiable. The mathematical models
of modulator, detector, and channel are differentiable functions.
Therefore, the challenge of employing EEDL-based algorithms for
PCS is to design a trainable sampler which is differentiable w.r.t.
parametric distribution pθS (sn,m) (i.e., the sampler should not
have functions like max(.), |.| and so on). It is shown in [45] that
a convenient way to sample a discrete distribution pθS (sn,m) is to
find the maximizing argument of the summation of sample with
Gumble distribution (g) and log(pθS (sn,m))). In other words, the
mathematical model for computing the samples is

sn,m = max
i

(gi + log(pθS (i))). (13)

The max operator is not differentiable, thus, the SGD method
cannot be used. Therefore, we consider Gumbel-Softmax trick
which uses softmax as an approximate of max, and rewrite (13)

as

sn,m ≈ max
i

expgi+log(pθS (i))/τ∑S
j=1 exp

gi+log(pθS (i))/τ
; i = 1, . . . ,N, (14)

where τ is a positive parameter, if τ → 0 then sn,m approaches
to one-hot vector with a distribution close to pθS (sn,m) [45,46].
In this work, we take the same approach as [39–41] and assume
that a distribution matcher exists which maps the bits to symbols
according to the distribution pθS (sn,m). Note that in order to
be practically applied to the actual FMF system, after obtaining
the optimal distribution in DNN-based sampler, a distribution
matcher e.g., conventional algorithms as comprehensively inves-
tigated in [47] can convert the uniform distribution bit sequence
to the target distribution symbol sequence. Then sn,m is mapped
on xn,m based on the following formulation

xn,m = fQAM (sn,m), (15)

where fQAM (.) is the QAM modulator. Therefore, xn,m has the
following distribution

pθS (xn,m) =

N∑
s=1

δ(xn,m − fQAM (sn,m))pθS (sn,m), (16)

where δ(.) denotes the Dirac delta. The modulated signal of is
transmitted via FMF link as described by

yn,m = fEGN (xn,m). (17)

The detected symbol, rn,m, is obtained by passing yn,m through
the DNN-based detector based on the following equation

rn,m = fθD (yn,m). (18)

The DNN-based detector, fθD (.), has the same structure as de-
scribed in Section 3.1, and should learn the mapping denoted
by p̃θD (sn,m|yn,m) which is an approximate of the true posterior
distribution pθS (sn,m|yn,m). Therefore, we define the following loss
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function

L(θ) = Esn,m,yn,m{−log(p̃θD (sn,m|yn,m))}

= −

M∑
sn,m=1

pθS (sn,m)
∫
y
p(yn,m|fQAM (sn,m))log(p̃θD (sn,m|yn,m))dy =

−

∫
x
pθS (xn,m)

∫
y
p(yn,m|xn,m)log(p̃θD (xn,m|yn,m))dydx

(1)
= −

∫
x

∫
y
pθS (xn,m, yn,m)log(p̃θD (xn,m|yn,m))dydx

(2)
=

−

∫
x
pθS (xn,m)log(pθS (xn,m))dx −

∫
x

∫
y
pθS (xn,m, yn,m)

× log
(

p̃θ(xn,m, yn,m)
pθS (yn,m)pθS (xn,m)

)
dydx,

(19)

where θ = {θS , θD}, equality (1) is based on pθS (xn,m, yn,m) =

pθS (xn,m)p(yn,m|xn,m), and equality (2) is based on pθS (yn,m) =∫
x pθS (xn,m|yn,m) and p̃θ(xn,m, yn,m) = p̃θD (xn,m|yn,m)pθS (yn,m) with

pθS (xn,m, yn,m) as true joint distribution of (xn,m, yn,m) and
p̃θ(xn,m, yn,m) as joint distribution according to p̃θD (xn,m|yn,m). The
optimum θ can be obtained by iteratively minimizing (19) based
on (12) and using SGD method. (19) can be written as

L(θ) = HθS (Sn,m) − IθS (Xn,m; Yn,m) + Eyn,m{DKL(pθS (xn,m|yn,m) ∥

× p̃θD (xn,m|yn,m))},

(20)

where HθS (Sn,m) is the entropy of Sn,m = {s1n,m, . . . , sNn,m},
IθS (Xn,m; Yn,m) is the MI between the channel input Xn,m =

{x1n,m, . . . , xNn,m} and the channel output Yn,m = {y1n,m, . . . , yNn,m},
which constitutes the maximum achievable information rate un-
der the FMF nonlinear channel [48], DKL(pθS (xn,m|yn,m) ∥

p̃θD (xn,m|yn,m)) is the Koulback–Liber (KL) divergence between
the true posterior distribution, pθS (xn,m|yn,m), and approximated
posterior distribution, p̃θD (xn,m|yn,m). Minimizing the loss func-
tion is in touch with joint maximizing MI and minimizing KL
divergence. The DNN-based detector approximates the true pos-
terior distribution that maximizes MI which in turn reduces the
possibility of achieving a constellation that well approximates
posterior distribution but do not maximizes MI. Thus, the DNN-
based detector should learn to approximate a wide range of
posterior distributions with high precision.

3.3. JGPCS

Proposed EEDL-based JGPCS algorithm described by Fig. 1c
is composed of three DNN-based functions, a sampler, a mod-
ulator and a detector. The DNN-based sampler must learn the
parametric distribution pθS ,θM (sn,m) for transmitted symbols of
nth channel and mth mode which provided to the DNN-based
modulator and DNN-based detector, holds enough information
for replication the transmitted symbols at the receiver output.
The sampler has the same structure as Section 3.2. Consider-
ing the Gumbel-Softmax trick, the symbol sn,m with parametric
distribution pθS (sn,m) can be obtained by

sn,m ≈ max
i

exp(gi + log(pθS (i))/τ )∑S
j=1 exp(gi + log(pθS (i))/τ )

; i = 1, . . . ,N. (21)

Then sn,m is modulated to constellation point xn,m via the follow-
ing function

xn,m = fθM (sn,m). (22)

The DNN-based modulator, fθM (.), has the same structure as Sec-
tion 3.1. The modulated signal of is transmitted via FMF link as
described by

yn,m = fEGN (xn,m). (23)

The detected symbol, rn,m, is obtained by passing yn,m through
the DNN-based detector based on the following equation

rn,m = fθD (yn,m). (24)

The DNN-based detector, fθD (.), has the same structure as de-
scribed in Section 3.1, and should learn the mapping denoted
by p̃θD (sn,m|yn,m) which is the approximation of the true poste-
rior distribution pθS ,θM (sn,m|yn,m). We define the following loss
function

L(θ) = Esn,m,yn,m{−log(p̃θD (sn,m|yn,m))} = −

M∑
sn,m=1

pθS ,θM (sn,m)

×

∫
y
p(yn,m|fθM (sn,m))log(p̃θD (sn,m|yn,m))dy =

−

∫
x
pθS ,θM (xn,m)

∫
y
p(yn,m|xn,m)log( pθD (xn,m|yn,m))dydx

(1)
= −

∫
x

∫
y
pθS ,θM (xn,m, yn,m)log(p̃θD (xn,m|yn,m))dydx

(2)
=

−

∫
x
pθS ,θM (xn,m)log(pθS ,θM (xn,m))dx −

∫
x

∫
y
pθS ,θM (xn,m, yn,m)

× log(
p̃θ(xn,m, yn,m)

pθS ,θM (yn,m)pθS ,θM (xn,m)
)dydx,

(25)

where θ = {θS , θM , θD}, equality (1) is based on pθS ,θM (xn,m, yn,m)
= pθS ,θM (xn,m)p(yn,m|xn,m), and equality (2) is based on pθS ,θM (yn,m)
=

∫
x pθS ,θM (xn,m|yn,m) and p̃θ(xn,m|yn,m) = p̃θD (xn,m|yn,m)pθS ,θM (yn,m)

with pθS ,θM (xn,m, yn,m) as true joint distribution of (xn,m, yn,m)
whereas p̃θ(xn,m, yn,m) is the joint distribution computed from
the posterior approximated by the detector p̃θD (xn,m|yn,m). The
optimum θ can be obtained by iteratively minimizing (26) based
on (12) and using SGD method. (26) can be written as

L(θ) = HθS ,θM (Sn,m) − IθS ,θM (Xn,m; Yn,m)
+ Eyn,m{DKL(pθS ,θM (xn,m|yn,m) ∥ p̃θD (xn,m|yn,m))}

(26)

where pθS ,θM (xn,m|yn,m) is the true posterior distribution of xn,m,
the same insights as (20) goes here.

4. Simulation results

This section presents and compares the simulation results of
the proposed EEDL-based GCS and PCS, JGPCS, and QAM constel-
lation. In simulations we consider a FMF optical link with 3 spatial
modes and 5 WDM channels with the center frequency 1550 nm.
The transmitted symbol rate in each WDM channel is 32 GBaud
with 50 GHz channel spacing. 10 spans each with 100 km length
are deployed. Moreover, the considered modulation order is 64.
The nonlinear coupling coefficient, modal dispersion, chromatic
dispersion, and attenuation values are shown in Tables 1 and
2. FM-EDFA noise figure is 5 dB. We deployed the simulations
in Python/Tensorflow and tune the hyperparameters manually
based on [49–51]. The tuned hyperparameters are represented in
Table 3.

Fig. 2 plots the MI versus launched power per channel-mode,
for proposed EEDL-based GCS, PCS, and JGPCS algorithms, uniform
distributed QAM and Maxwell–Boltzmann distributed QAM, con-
sidering central channel of LP01 mode. The proposed EEDL-based
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Table 1
Nonlinear coupling coefficient (γ fmq (1/W/km)) [4].

mq LP01 LP11a LP11b

LP01 0.73 0.36 0.36
LP11a 0.36 0.18 0.55
LP11b 0.36 0.18 0.18

Table 2
Attenuation (αn,m (dB/km)), and dispersion terms (β1m (ps/km), β2m (ps2/km),
and β3m (ps3/km)) [4].

LP01 LP11a LP11b

αn,m 0.2 0.2 0.2
β1m −0.29 −0.66 −0.66
β2m 28.27 26.96 26.96

Table 3
The tuned hyperparameters used in simulations of this paper.
Hyperparameter Symbol Value

Number of hidden layers Nhid 2
Number of hidden neurons Nneu 32
Batch size K 216

Sample size to batch size ratio ηs 4
Number of iterations Niter 700
Activation function α(.) Relu/Softmax
Loss function L(.) Cross-entropy
Learning rate η 0.001
Optimizer – Adam

Fig. 2. MI versus launched power per channel-mode, for proposed EEDL-bas-
ed GCS, PCS, and JGPCS algorithms, uniform distributed QAM and Maxwell–
Boltzmann distributed QAM, considering central channel of LP01 mode.

algorithms mitigate both ASE and NLI noise effect by optimiz-
ing the location and/or occurrence probability of constellation
points. The learned constellations show improved MI perfor-
mance compared with uniform distributed QAM constellation
over all power regimes. Considering the optimum power, this im-
provement (the shaping gain) is 0.15, 0.19, and 0.22 bits/symbol
respectively for proposed EEDL-based GCS, PCS, and JGPCS algo-
rithms. We observe the same shaping gain at different powers
in low power regime where ASE noise is dominant. However,
at high power regime where NLI noise is dominant the shaping
gain is heavily reduced and vanishes for highly nonlinear region.
The proposed EEDL-based constellation shaping has the same MI
as the well-known Maxwell–Boltzmann distributed QAM con-
stellation which is optimum in an AWGN channel. However,
the Maxwell–Boltzmann distributed QAM, although optimal, has

Fig. 3. MI versus launched power per channel-mode, for proposed EEDL-based
GCS, PCS, and JGPCS algorithms, uniform distributed QAM based on EGN model
and SSFM simulation, considering central channel of LP01 mode.

some barriers while practical implementation. For instance, the
ratio between the probability of occurrence of the inner and the
outer constellation points of the Maxwell–Boltzmann distributed
QAM constellation is almost 105 while in EEDL-based PCS it is
around 103. This means that the proposed EEDL-based PCS is
more practical to precisely produce a sequence with an occur-
rence probability that fits in a DAC’s memory. MI improvement
in JPCS is 15% more than MI improvement in PCS. The PCS and
JGPCS have the same complexity as the practical implementation
of both QAM modulator and DNN-based modulator is a look-
up table. Therefore, proposing JGPCS becomes meaningful while
considering JGPCS obtains 15% more MI improvement than PCS,
without any additional complexity, latency, or cost.

The well-known split-step Furrier method (SSFM) approxi-
mates the FMF outcome by solving the Manakov equation
through many consecutive numerical simulation steps. The SSFM
is verified by some experiments [52] reflecting the real transmis-
sion environment. Therefore, we employ an SSFM simulation in
Fig. 3 based on instructions provided by [6,17] to verify that the
obtained results based on EGN model truly reflect the perfor-
mance improvement of the proposed algorithms. As seen, close
agreement can be observed with a very small gap which is due to
the fact that for calculating MI for EGN model and SSFM simula-
tion we use (A.2) and (A.4), respectively. More explanations about
this observation is provided in [16,30] and in Appendix. However,
the important thing to note is that the same MI improvements as
in EGN model are provided by SSFM simulation results.

Fig. 4 depicts the learned constellations for proposed EEDL-
based GCS (top), PCS (center), and JGPCS (bottom) algorithms, for
−10 dBm (left), optimum (middle), and 10 dBm (right) launched
power per channel-mode, considering central channel of LP01
mode. In GCS, at low power regime, the inner constellation points
are randomly positioned after training. The NLI noise is the FMF
dominant effect at high launched power regime wherein the
learned constellation points locate either at the origin or on a
uniform ring. In PCS, the color of the constellation points repre-
sents their occurrence probabilities. The yellow points are with
the highest and the blue point are the lowest occurrence prob-
abilities. At low power regime, the learned distributions look
like a circular complex Gaussian distribution. The symbols with
less occurrence probabilities are located further apart from the
origin which is due to the normalization constraint (E|x|2 = 1).
At high power regime, the learned distribution is similar to a
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Fig. 4. Learned constellations for proposed EEDL-based GCS (top), PCS (center), and JGPCS (bottom) algorithms, for −10 dBm (left), optimum (middle), and 10 dBm
(right) launched power per channel-mode, considering central channel of LP01 mode.

uniform distribution. The inner learned constellation points have
lower-power and are more frequently used as opposite to the
outer points with higher power which in turn enable the learned
constellation to be tolerated to NLI noise. In JGPCS, again, we see
that the constellation points are distributed inside a Gaussian-like
constellation. At low and high launched power per channel-mode
regimes, constellation points are closer to the origin. The same
insights as the learned GCS and PCS constellations goes here.

5. Discussion

As seen in Fig. 1(b), we only feed the DNN-based sampler a
one-dimensional input, however, results indicate that the EEDL-
based PCS algorithm can learn the optimum distribution properly.
In the following, we discuss about this from different aspects.
The main reason that EEDL-based PCS can learn the optimum
distribution properly even with a one-dimensional input is due
to training by backward propagation. In simulations, we first
define the launched power and feed into DNN-based sampler,
after constellation mapping, the transmitter output is propagated

through FMF channel, and entered DNN-based detector. We for-
mulate the loss function inside which the whole propagation
procedures are inherent. The backward propagation computes the
loss function gradient with respect to each weight, calculates gra-
dient one layer at a time, and iterates backward from last layer.
In other words, everything (the effect of FMF channel, as well
as the impact of transmitter and receiver processing blocks) is
being considered while adjusting the DNN-based sampler weights
and not only the one-dimensional input. The EEDL-based PCS
idea is to find the optimum probability distribution for a pre-
specified launched power. The launched power (in dBm) is fed
to a DNN with trainable parameters θS , and DNN-based sampler
provides a continuum of distributions pθS that are determined
by the launched power. Available works on EEDL-based PCS feed
the DNN-based sampler a one-dimensional input, (SNR in dB)
(see [39–41]). The motivation is that the optimum probabilis-
tic distribution depends on the SNR of the respective channel
(see [53]). Note that these works consider radio frequency chan-
nel and feedback the SNR from receiver to transmitter while
feedback of SNR is not practical in long-range FMF links. Since
the channel coherency of FMF (due to linear coupling) is much

7
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less than radio frequency channel and link-range of FMF is much
more than radio frequency channel which in turn results in
outdated feedback information [54]. SNR in FMF link is in turn
dependent on the launched power, span length, number of spans,
attenuation, dispersion, and nonlinearity coefficient [4]. Here, all
these parameters except launched power are fixed as we consider
a point-to-point FMF link, and feeding fixed parameters into DNN
only increases the complexity and does not improve performance.
Launched power is a variable known by transmitter and thus we
feed it to the DNN-based sampler.

6. Conclusion

FMF NLI noise is the main practical limitation in front of long-
haul FMF optical communication. Providing an optimal constel-
lation by designing the location and occurrence probability of
constellation points can reduce the performance degradation due
to FMF nonlinearity. To this aim, in this paper, we have pro-
posed EEDL-based GCS, PCS, and JGPCS algorithms for FMF sys-
tem. We have compared the proposed EEDL-based algorithms
with uniform distributed QAM constellation and the well-known
Maxwell–Boltzmann distributed QAM constellation. Simulation
results have shown proposed EEDL-based GCS, PCS, and JGPCS
algorithms achieve MI improvement of 0.15, 0.19, and 0.22 bits/
symbol, respectively, compared with uniform distributed QAM
constellation.
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Appendix. MI estimation

We follow the same approach as [48,55] to estimate the sym-
bol wise MI. Consider the channel input Xn,m be 2D random
variable drawn from constellation Xn,m = {x1n,m, . . . , xNn,m}, and the
channel output Yn,m be 2D random variable. The MI between Xn,m
and Yn,m can be calculated by [48,55]

I(Xn,m; Yn,m) = EXn,mYn,m [log2(
pYn,m|Xn,m (Yn,m|Xn,m)

pYn,m (Yn,m)
)], (A.1)

where pYn,m|Xn,m (Yn,m|Xn,m) is the conditional channel pdf and
pYn,m (Yn,m) is the channel output pdf, and MI is defined in units
of bit per 2D symbol (bits/symbol). In reality, FMF channel ex-
hibits memory wherein (A.1) becomes a lower bound on the MI,
however, using the MIMO DSP at the receiver compensates FMF

memory, therefore, we focus on memoryless MI. (A.1) can be
solved by Monte-Carlo integration and based on the weak law
of large numbers we have

1
N

N∑
i=1

log2(
pYn,m|Xn,m (y

i
n,m|xin,m)

pYn,m (yin,m)
) p
−→

I(Xn,m; Yn,m), (A.2)

where N is number of input–output pairs, and (
−→

p) denotes con-
vergence in probability. Note that the channel pdf is known while
dealing with the EGN-model and (A.2) estimates the MI whose ac-
curacy increases with N. However, the channel pdf is not known
while dealing with SSFM, and (A.1) cannot be evaluated directly
as (A.2). As a solution, a lower bound on MI is achieved in [48,55]
by considering an auxiliary channel pdf qYn,m|Xn,m (Yn,m|Xn,m) in-
stead of the true yet unknown channel pdf pYn,m|Xn,m (Yn,m|Xn,m)
which yields to

I(Xn,m; Yn,m) = EXn,mYn,m [log2(
pYn,m|Xn,m (Yn,m|Xn,m)

pYn,m (Yn,m)
)]

⩾ EXn,mYn,m [log2(
qYn,m|Xn,m (Yn,m|Xn,m)

qYn,m (Yn,m)
)] ≜ R.

(A.3)

(A.3) can be solved by Monte-Carlo integration and based on the
weak law of large numbers we have

1
N

N∑
i=1

log2(
qYn,m|Xn,m (y

i
n,m|xin,m)

qYn,m (yin,m)
) p
−→

R. (A.4)

MI and its lower bound are both the achievable rates, the better
qYn,m|Xn,m (Yn,m|Xn,m) resembles pYn,m|Xn,m (Yn,m|Xn,m) the tighter this
bound and the higher achievable rate. qYn,m|Xn,m (Yn,m|Xn,m) is 2D
Gaussian distributed, comprehensive details about this selection
is provided by [48,55]. (A.4) is not the true MI, however, this
approach provides a practical achievable rate since a decoder
should also assume a channel.
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