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A B S T R A C T

The few-mode fiber nonlinearity has been well modeled by an additive Gaussian Noise (GN) source. The
available GN models in Mode Division Multiplexing–Wavelength Division Multiplexing (MDM–WDM) systems
are incoherent and neglect the dispersion slope. The incoherent GN model assumes that the Nonlinear
Interference (NLI) noise created at each span is summed up in power incoherently at the receiver and leads
to underestimating the NLI noise power. In the first part of this paper, a coherent GN model is derived by
taking into account the dispersion slope and verified through Split-Step Fourier Method (SSFM) simulations. In
the second part of this paper, the total capacity maximization, as well as the minimum Signal to Noise Ratio
(SNR) margin maximization problems are presented and solved based on the obtained GN model. MDM–WDM
multi-node nonlinear network under different scenarios including Equal/Non-Equal Required SNR (ERS/NERS),
and Flat/Non-Flat Amplifier Gain (FG/NFG) are considered in the numerical simulations. Considering 200
different sets of randomized traffic demands (random channel-mode distributions) the cumulative distribution
function of minimum SNR margin improvement in optimized power allocation compared with the best flat
power allocation is in 99% more than 1 dB, 1.2 dB, 2.4 dB, and 2.8 dB, for ERS-FG, ERS-NFG, NERS-FG, and
NERS-NFG scenarios, respectively.

1. Introduction

The rapid spread of internet services led to the increasing capacity
demand in long-haul optical fiber communication systems. Several
techniques including Wavelength Division Multiplexing (WDM), po-
larization division multiplexing, and coherent modulations have been
proposed in Single-Mode Fiber (SMF) to increase the optical fiber
communication data rate [1]. However, the transmission capacity of
SMFs is now reaching the theoretical limits confined by nonlinear
effects [2,3]. Recently, Space Division Multiplexing (SDM) techniques
in Few-Mode Fiber (FMF) have been proposed to overcome this ca-
pacity limit [4]. In the aforementioned systems, the combination of
Mode Division Multiplexing (MDM) with WDM which is respectively
the multiplexing of signals with different spatial modes and different
channels has been developed to dramatically increase the capacity of
optical fiber communication systems [4].

The MDM–WDM system suffers from both linear and nonlinear
effects of FMF. The FMF linear effects include attenuation, modal dis-
persion, chromatic dispersion, and linear coupling. For compensating
FMF linear effects in the weak coupling, each mode is separately pro-
cessed without Multiple-Input-Multiple-Output (MIMO) Digital Signal
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Processing (DSP) [5]. However, in the strong coupling, a MIMO DSP
is required for compensating FMF linear effects [6]. The MIMO DSP
complexity can be handled only in quiet small differential mode group
delays between propagating modes [7,8]. The FMF nonlinear effects
are the fundamental limitation factors of the MDM–WDM system which
include Kerr nonlinearity and nonlinear coupling.

1.1. Related works

During the last decade, several investigations analyzed the FMF
nonlinear effects by mainly focusing on numerical simulations [9]
and analytical predictions [10] combined with experimental verifica-
tion [11]. To analyze FMF nonlinear effects, the Manakov equation
should be solved, the perturbation-based methods are the most well-
known techniques for this aim [12]. The Gaussian Noise (GN) model
is the most practical perturbation-based model which describes the
nonlinear effects by an additive Gaussian noise [13]. The available
GN model formulations for MDM–WDM system can be divided in two
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categories including; integral-form [4,14–17] and closed-form [18–
20]. Note that these GN model formulations are obtained based on
incoherency assumption wherein the Nonlinear Interference (NLI) noise
created at each span is incoherently accumulated at the receiver. The
Incoherent GN (IGN) model leads to underestimating the NLI noise
Power Spectral Density (PSD) [21]. Moreover, only first-order and
second-order dispersion terms are considered in these models. The ef-
fects of third-order dispersion may be observed in MDM–WDM systems
operating over a broad wavelength range. The dispersion slope has
been included in the GN model in [21–25] for SMF–WDM systems to
improve modeling accuracy, especially in cases involving large band-
width. In a recent work, we compared the complexity-performance of
the closed-form IGN model, integral-form IGN model, and SSFM for
MDM–WDM systems [20]. Although the closed-form IGN model is very
fast, it can only be applied to rectangular shaped Nyquist WDM signals
with the channel spacing close to the symbol-rate [26–28].

The performance of the MDM–WDM system can be evaluated by
using the minimum SNR margin and the total capacity which are
dependent on SNR that includes NLI noise contribution. The NLI noise
is related to system parameters such as launched power per channel
and mode, therefore, power allocation [29–32] has an important role
in optimizing performance of MDM–WDM systems and networks.

1.2. Novelties and contributions

Previous investigations on FMF nonlinearity resulted in the de-
velopment of closed-form and integral-form IGN models. Despite the
improvements provided by coherent GN model for simulating and
analyzing SMF systems, no such formulation exists for FMF systems.
Therefore, in the first part of this paper, we derive a coherent GN model
formulation for the MDM–WDM system by taking into account the first,
second, and third-order dispersion terms. The significance of this paper
in first part include;

• Presenting a coherent GN model for MDM–WDM system, showing
proposed coherent GN model provides better accuracy by remov-
ing the 1 dB and 2 dB SNR margin of IGN model presented by [4]
respectively in weak and strong coupling at the optimal (best
equal) launched power per channel-mode. This is very important
in different applications such as resource allocation, optical per-
formance monitoring, and quality of transmission estimation in
unestablished lightpaths.

• Considering dispersion slope in GN model formulation for MDM–
WDM system as an extension of previous work in [21] for SMF,
describing the impact of dispersion slope induced inter-modal
phase-matching on NLI noise in MDM–WDM systems, providing a
normalized parameter beyond which the dispersion slope should
be considered.

• Presenting a clear relation between NLI noise and launched power
of different channels-modes in the proposed coherent GN model
formulation, making it proper for power allocation in link, light-
path and network level.

The above mentioned researches apply convex optimization algo-
rithms for power allocation in SMF links and networks. Recently, we
solved a power allocation in FMF links using convex optimization [20].
However, the optimized power allocation in FMF networks is not
investigated yet. Therefore, in the second part of this paper, based on
the proposed GN model formulation, the optimized power allocation by
minimum SNR margin maximization and total capacity maximization is
investigated considering an MDM–WDM multi-node nonlinear network
structure. Considering different practical scenarios, the obtained results
show remarkable minimum SNR margin improvement, which is very
important in the practical implementation of MDM–WDM networks.
Therefore, the significance of the second part of this paper include;

• Deploying power allocation in MDM–WDM network by maximiz-
ing total capacity and minimum SNR margins by the proposed
coherent GN model in DTG network.

• Providing comprehensive investigation over optimized power
allocation for different MDM–WDM network scenarios, showing
minimum SNR margin improvements are 99% more than 1 dB,
1.2 dB, 2.4 dB and 2.8 dB for flat/non-flat EDFA gain with
equal/non-equal modulation format scenarios, respectively.

The rest of this paper is organized as follows. Section 2 describes
the link topology and terminology, signal model, and Four-Wave Mix-
ing (FWM) in MDM–WDM systems. Section 3 presents the proposed
GN model formulation. The problem statement is given in Section 4.
Section 5 presents the simulation results, and Section 6 concludes the
paper.

2. Signal propagation in MDM-WDM system

2.1. Link topology and terminology

The considered MDM–WDM system is depicted in Fig. 1 [33]. In
this structure, the input data carries 𝑁𝑐ℎ WDM channels which each
channel is the multiplexing of 𝐷 spatial modes, and each mode is the
multiplexing of 2 polarization modes. The generated signal is transmit-
ted through an MDM–WDM link with 𝑁𝑠 spans, each with length 𝐿𝑠. At
the end of each span, the signal is amplified by an Erbium-Doped Fiber
Amplifier (EDFA), and in turn, the Amplified Spontaneous Emission
(ASE) noise is produced. The considered MDM–WDM link is assumed to
be dispersion uncompensated to reduce FMF nonlinear effects [4]. The
Kerr nonlinearity is generated by inter and intra channel interactions,
as well as inter and intra mode interactions [4]. We consider both weak
and strong linear coupling among spatial modes to be applicable in both
short and long-range links [9,34]. Furthermore, a MIMO processor at
the receiver is used to compensate FMF linear distortions [6]. However,
no processing is used for nonlinearity compensation.

2.2. Signal model

The Linearly-Polarized (LP) spatial modal fields are considered in a
transverse plane, each field contains two polarizations. The launched
electrical field into the FMF is presented by a sum of spatial modes
as [9]

�̃�𝐸𝐸(𝑥, 𝑦, 𝑧, 𝑓 ) =
𝐷
∑

𝑚=1
𝑒𝑗𝛽𝑚(𝑓 )𝑧�̃�𝐴𝐴𝑚(𝑧, 𝑓 )𝐹𝑚(𝑥, 𝑦)∕

√

𝑁𝑚, (1)

where ̃(⋅) represents the frequency domain of parameters and for the
𝑚th mode �̃�𝐴𝐴𝑚(𝑧, 𝑓 ) = [�̃�𝑚,𝑥(𝑧, 𝑓 ) �̃�𝑚,𝑦(𝑧, 𝑓 )] shows the slowly-varying
amplitude of 𝑥 and 𝑦 polarizations, 𝐹𝑚(𝑥, 𝑦) is the spatial distribution,
𝛽𝑚(𝑓 ) is the propagation constant, 𝑁𝑚 = 0.5𝜖0𝑛𝑒𝑓𝑓 ,𝑚𝑐𝐼𝑚 is the mode
power with 𝐼𝑚 = ∬ 𝐹 2

𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦, 𝜖0 shows the vacuum permittivity, 𝑐 is
the light speed, and 𝑛𝑒𝑓𝑓 ,𝑚 denotes the fiber effective refractive index.
The application of GN model analysis is along with some important
assumptions including the Gaussian distribution for the transmitted
signal, the statistical independence of the NLI noise from both the ASE
noise and the transmitted signal [35]. Accordingly, a complex periodic
process is chosen for the amplitude of transmitted signal which is
spectrally shaped to satisfy the above assumptions [35]. The amplitude
of transmitted signal has the following frequency domain descriptions
in 𝑥 and 𝑦 polarizations of 𝑚th mode [18]

�̃�(𝑚,𝑥)(0, 𝑓 ) =
√

𝑓0
∞
∑

𝑛=−∞
𝜉𝑛,𝑚

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑛𝑓0)𝛿(𝑓 − 𝑛𝑓0)

�̃�(𝑚,𝑦)(0, 𝑓 ) =
√

𝑓0
∞
∑

𝑛=−∞
𝜁𝑛,𝑚

√

𝐺(𝑚,𝑦)
𝑇𝑥 (𝑛𝑓0)𝛿(𝑓 − 𝑛𝑓0),

(2)

where 𝑓0 is the frequency separation between any two successive
frequency-components, 𝜉𝑛,𝑚, and 𝜁𝑛,𝑚 are random variables of 𝑚th mode
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Fig. 1. Schematic diagram of MDM–WDM system.

and frequency 𝑛𝑓0, with zero mean and unit variance, 𝐺(𝑚,𝑥)
𝑇𝑥 (𝑛𝑓0) and

𝐺(𝑚,𝑦)
𝑇𝑥 (𝑛𝑓0) are the PSDs of the transmitted signal of 𝑥 and 𝑦 polariza-

tions of 𝑚th mode, respectively. Note that the PSD of the transmitted
signal is continuous in general. However, the GN model is an FWM-
like model which is based on ideally splitting up the transmitted signal
spectrum into spectral components with 𝑓0 spacing whose nonlinear
interactions during the propagation are then analytically explored in
an approach similar to the FWM formulas [35].

The amplitude of transmitted signal has the following time domain
descriptions in 𝑥 and 𝑦 polarizations of 𝑚th mode

𝐴(𝑚,𝑥)(0, 𝑡) = 𝑓 3∕2
0

∞
∑

𝑛=−∞
𝜉𝑛,𝑚

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑛𝑓0)𝑒𝑗2𝜋𝑛𝑓0𝑡

𝐴(𝑚,𝑦)(0, 𝑡) = 𝑓 3∕2
0

∞
∑

𝑛=−∞
𝜁𝑛,𝑚

√

𝐺(𝑚,𝑦)
𝑇𝑥 (𝑛𝑓0)𝑒𝑗2𝜋𝑛𝑓0𝑡.

(3)

2.3. FWM in MDM-WDM systems

The Kerr effect in MDM–WDM systems includes Self Phase Modula-
tion (SPM), Cross Phase Modulation (XPM), and FWM which produce
intra/inter channel as well as intra/inter modal nonlinear interac-
tions in frequency and spatial domains, respectively. The FWM in
MDM–WDM systems includes the nonlinear interactions between dif-
ferent frequencies-modes, and results in an energy transfer into an
idler frequency-mode. The relation between the interacting frequencies-
modes is defined through the so-called frequency condition as [2]

[𝑛𝑓0]𝑚 = [𝑘𝑓0]𝑞 − [𝑙𝑓0]𝑠 + [ℎ𝑓0]𝑡, (4)

where 𝑚, 𝑞, 𝑠, 𝑡 and 𝑛, 𝑘, 𝑙, ℎ are mode and channel indices, respec-
tively. Moreover, the relation between the phase of the interacting
frequencies-modes is defined through the so-called phase matching
condition as [2]

𝛥𝛽𝑚𝑞𝑠𝑡(𝑛𝑓0, 𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0) = 𝛽𝑚(𝑛𝑓0) − 𝛽𝑞(𝑘𝑓0) − 𝛽𝑠(𝑙𝑓0) + 𝛽𝑡(ℎ𝑓0), (5)

where 𝛽𝑚(𝑛𝑓0) is the propagation constant. For the further analysis, we
expand the propagation constant into a Taylor series as [2]

𝛽𝑚(𝑛𝑓0) = 𝛽0𝑚 + 𝛽1𝑚(2𝜋𝑛𝑓0) +
𝛽2𝑚
2

(2𝜋𝑛𝑓0)2 +
𝛽3𝑚
6

(2𝜋𝑛𝑓0)3, (6)

where 𝛽𝑖𝑚 is the 𝑖th order dispersion coefficient.

3. GN model formulation

To describe the signal propagation in the MDM–WDM system, the
Manakov equation is used which includes attenuation, dispersion, Kerr
nonlinearity, and nonlinear coupling, and can be expressed as [9,34]
𝜕𝐴(𝑚,𝑥)(𝑧, 𝑡)

𝜕𝑧
= −

𝛼𝑚
2
𝐴(𝑚,𝑥)(𝑧, 𝑡) + 𝑗𝛽0𝑚𝐴(𝑚,𝑥)(𝑧, 𝑡) − 𝛽1𝑚

𝜕𝐴(𝑚,𝑥)(𝑧, 𝑡)
𝜕𝑡

− 𝑗
𝛽2𝑚
2

𝜕2𝐴(𝑚,𝑥)(𝑧, 𝑡)
𝜕𝑡2

−
𝛽3𝑚
6

𝜕3𝐴(𝑚,𝑥)(𝑧, 𝑡)
𝜕𝑡3

+

𝑗
𝐷
∑

𝑞=1
�̃�𝑚𝑞|𝐴𝑞(𝑧, 𝑡)|

2𝐴(𝑚,𝑥)(𝑧, 𝑡),

(7)

where |𝐴𝑞(𝑧, 𝑡)|
2 = 𝐴2

(𝑞,𝑥)(𝑧, 𝑡) + 𝐴2
(𝑞,𝑦)(𝑧, 𝑡), 𝛼𝑚 is the attenuation of 𝑚th

mode,

�̃�𝑚𝑞 =

{

4
3 (

2
3 )

𝛿𝑚𝑞𝑓𝑚𝑞𝛾 𝑤𝑒𝑎𝑘 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔
𝜅𝛾 𝑠𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔,

(8)

with

𝜅 =
∑

𝑞≤𝑚
𝑚,𝑞∈{1,2,…,𝐷}

32
2𝛿𝑚𝑞

𝑓𝑚𝑞
6𝐷(2𝐷 + 1)

, (9)

where 𝛾 is the Kerr nonlinearity coefficient, 𝑓𝑚𝑞 = 𝐴𝑒𝑓𝑓
𝐼𝑚𝐼𝑞

∬ 𝐹 2
𝑚(𝑥, 𝑦)𝐹

2
𝑞

(𝑥, 𝑦)𝑑𝑥𝑑𝑦 is the nonlinear coupling coefficient between modes 𝑚 and
𝑞, and 𝐴𝑒𝑓𝑓 is the effective area of the fundamental mode. The GN
model is based on the first-order perturbation which expresses the
solution of the Manakov equation as [36]

𝐴(𝑚,𝑥)(𝑧, 𝑡) ≃ 𝑒𝑧𝐴(𝑚,𝑥)(0, 𝑡) + ∫

𝑧

0
𝑒(𝑧−𝜉)

(

𝑒𝑧𝐴(𝑚,𝑥)(0, 𝑡)
)

𝜕𝜉, (10)

where  and  respectively account for linear and nonlinear propaga-
tion parts of the Manakov equation.  can be represented in the time
domain as

 ≜ −𝑗
𝐷
∑

𝑞=1
�̃�𝑚𝑞|𝐴𝑞(𝑧, 𝑡)|

2𝐴𝑚(𝑧, 𝑡). (11)

The Fourier transform of  is described as  (𝑒𝑧) ≜ 𝑒𝜗(𝑧,𝑓 ) that can
be expressed as [36]

𝜗(𝑧, 𝑓 ) = −∫

𝑧

0

(

𝛼𝑚(𝜉)
2

+ 𝑗𝛽𝑚(𝑓, 𝜉)
)

𝜕𝜉. (12)

By mitigating the dispersion effects at the receiver (10) can be
expressed as

𝐴(𝑚,𝑥)(𝑧, 𝑡) = 𝐴(𝑚,𝑥)(0, 𝑡) + ∫

𝑧

0
𝑒−𝜉

(

𝑒𝑧𝐴(𝑚,𝑥)(0, 𝑡)
)

𝜕𝜉, (13)

where the first term is the transmitted signal and the second term is the
NLI noise of 𝑥 polarization of 𝑚th mode. Considering the second term
of (13), and by using (3), (11), and (12), the NLI noise of 𝑥 polarization
of 𝑚th mode can be expressed as

𝑛𝑚,𝑥(𝑧, 𝑡) = 𝑗𝑓 3∕2
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ
�̃�𝑚𝑞𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)𝑒2𝜋(𝑘+𝑙−ℎ)𝑓0𝑡𝜉𝑘,𝑞

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)

×
(

𝜉𝑙,𝑞𝜉
∗
ℎ,𝑞

√

𝐺(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)+

𝜁𝑙,𝑞𝜁
∗
ℎ,𝑞

√

𝐺(𝑞,𝑦)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (ℎ𝑓0)

)

(14)

where

𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0) = ∫

𝑧

0
𝑒𝜗(𝜉,𝑘𝑓0)+𝜗(𝜉,𝑙𝑓0)+𝜗

∗(𝜉,(𝑘+𝑙−ℎ)𝑓0)−𝜗(𝜉,ℎ𝑓0)𝜕𝜉. (15)
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In the MDM–WDM link, the attenuation and dispersion parameters
can be assumed to be constant in 𝑧 [4]. Therefore, (15) can be expressed
as
𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)

= 1 − 𝑒−𝛼𝑚𝐿𝑠𝑒𝑗|𝛽𝑞 (𝑘𝑓0+𝑙𝑓0−ℎ𝑓0)−𝛽𝑚(𝑘𝑓0)+𝛽𝑚(ℎ𝑓0)−𝛽𝑞 (𝑙𝑓0)|𝐿𝑠

𝛼𝑚 − 𝑗|𝛽𝑞(𝑘𝑓0 + 𝑙𝑓0 − ℎ𝑓0) − 𝛽𝑚(𝑘𝑓0) + 𝛽𝑚(ℎ𝑓0) − 𝛽𝑞(𝑙𝑓0)|
×

1 − 𝑒𝑗|𝛽𝑞 (𝑘𝑓0+𝑙𝑓0−ℎ𝑓0)−𝛽𝑚(𝑘𝑓0)+𝛽𝑚(ℎ𝑓0)−𝛽𝑞 (𝑙𝑓0)|𝑁𝑠𝐿𝑠

1 − 𝑒𝑗|𝛽𝑞 (𝑘𝑓0+𝑙𝑓0−ℎ𝑓0)−𝛽𝑚(𝑘𝑓0)+𝛽𝑚(ℎ𝑓0)−𝛽𝑞 (𝑙𝑓0)|𝐿𝑠
.

(16)

Considering (14), after some mathematical manipulations as de-
scribed by Appendix A, the variance of NLI noise of 𝑛th channel and
𝑚th mode takes the following form

𝜎2𝐺𝑁𝑚,𝑛
=

𝐷
∑

𝑞=1

𝑁𝑐ℎ
∑

𝑛1 ,𝑛2 ,𝑛3=1
𝑃𝑛1 ,𝑚𝑃𝑛2 ,𝑞𝑃𝑛3 ,𝑞𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞), (17)

where

𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞) = 3∕4∫

𝑓𝑐𝑛+𝐵𝑛∕2

𝑓𝑐𝑛−𝐵𝑛∕2
∫

𝑓𝑐1+𝐵𝑛1
∕2

𝑓𝑐1−𝐵𝑛1
∕2 ∫

𝑓𝑐2+𝐵𝑛2
∕2

𝑓𝑐2−𝐵𝑛2
∕2

�̃�2𝑚𝑞|𝜂(𝑓1, 𝑓2, 𝑓 )|
2

𝑔𝑛1 ,𝑚(𝑓1)𝑔𝑛2 ,𝑞(𝑓2)𝑔𝑛3 ,𝑞(𝑓1 + 𝑓2 − 𝑓 )𝑅𝑛𝑔
∗
𝑛,𝑚(𝑓 )𝑑𝑓1𝑑𝑓2𝑑𝑓 .

(18)

4. Problem statement

The MDM–WDM system performance can be evaluated using the
minimum SNR margin and the total capacity criteria which are de-
pendent on SNR that in turn includes both ASE and the NLI noise
contributions. In this section, optimized power allocation based on the
aforementioned criteria is obtained.

4.1. Minimum SNR margin maximization

The SNR of the 𝑛th channel and the 𝑚th mode can be expressed
as [16]

𝑆𝑁𝑅𝑛,𝑚 =
𝑃𝑛,𝑚

𝜎2𝐴𝑆𝐸 + 𝜎2𝐺𝑁,𝑛,𝑚

, (19)

where 𝜎2𝐴𝑆𝐸 = 𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑛 is the variance of ASE noise, 𝐹 is the
amplifier noise figure, 𝐺 is the amplifier gain compensating loss in each
fiber span, ℎ is Planck constant, 𝜈 is the central frequency, and 𝐵𝑛 is
bandwidth of 𝑛th channel. By substituting (17) into (19), the 𝑆𝑁𝑅𝑛,𝑚
can be rewritten as

𝑆𝑁𝑅𝑛,𝑚

=
𝑃𝑛,𝑚

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑛 +
∑𝐷

𝑞=1
∑𝑁𝑐ℎ

𝑛1 ,𝑛2 ,𝑛3=1
𝑃𝑛1 ,𝑚𝑃𝑛2 ,𝑞𝑃𝑛3 ,𝑞𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞)

.

(20)

The SNR margin of the 𝑛th channel and the 𝑚th mode can be defined
as

𝑀𝑛,𝑚 =
𝑆𝑁𝑅𝑛,𝑚

𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚

, (21)

where 𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚 is the required SNR of the 𝑛th channel and the 𝑚th

mode. Therefore, the minimum SNR margin maximization problem can
be expressed as

max
𝑃𝑛,𝑚

min
𝑛,𝑚

𝑆𝑁𝑅𝑛,𝑚

𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚

, (22)

which is equivalent to

min
𝑃𝑛,𝑚

max
𝑛,𝑚

𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚

𝑆𝑁𝑅𝑛,𝑚
. (23)

Considering SNR formulation of (20), (23) is a non-convex opti-
mization problem. Dealing with non-convex optimization problems has

many barriers such as complexity and converging to local optimum.
To tackle this problem, by using the variable 𝑃𝑛,𝑚 ≜ 𝑙𝑜𝑔(𝑃𝑛,𝑚) in (20)
and noting that 𝑙𝑜𝑔(𝑥) is a monotonic function in 𝑥, the following
formulation is obtained with the same minimum as (23),

min
𝑃𝑛,𝑚

max
𝑛,𝑚

[

𝑙𝑜𝑔
(

𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚) + 𝑙𝑜𝑔(𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑛

+
𝐷
∑

𝑞=1

𝑁𝑐ℎ
∑

𝑛1 ,𝑛2 ,𝑛3=1
𝑃𝑛1 ,𝑚𝑃𝑛2 ,𝑞𝑃𝑛3 ,𝑞𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞)

)

− 𝑃𝑛,𝑚

]

. (24)

We define the slack variable 𝛽 and rewrite (24) as

min
𝛽,𝑃𝑛,𝑚

𝛽

𝑠.𝑡. 𝑙𝑜𝑔(𝑆𝑁𝑅𝑟𝑒𝑞
𝑛,𝑚) + 𝑙𝑜𝑔

(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑛

+
𝐷
∑

𝑞=1

𝑁𝑐ℎ
∑

𝑛1 ,𝑛2 ,𝑛3=1
𝑒𝑃𝑛1 ,𝑚+𝑃𝑛2 ,𝑞+𝑃𝑛3 ,𝑞𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞)

)

−𝑃𝑛,𝑚 ≤ 𝛽.

(25)

To solve (25), we use the gradient descent algorithm in vector form.
This is performed by introducing a vector 𝐩 of dimension 𝐷𝑁𝑐ℎ whose
elements 𝑃𝑙; 𝑙 = 1, 2,… , 𝐷𝑁𝑐ℎ are given by 𝑃𝑛,𝑚, 𝑛 = 1, 2,… , 𝑁𝑐ℎ, 𝑚 =
1, 2,… , 𝐷. In order to incorporate the values of 𝐵𝑛, we use a vector with
the same dimension as 𝐩 defined by 𝑩 = [𝐵1, 𝐵1,… , 𝐵1, 𝐵2, 𝐵2,… , 𝐵2,
… , 𝐵𝑁𝑐ℎ

, 𝐵𝑁𝑐ℎ
,… , 𝐵𝑁𝑐ℎ

] in which each 𝐵𝑛 has been repeated 𝐷 times.
In accordance with this change, the 𝐷𝑛,𝑚(𝑛1, 𝑛2, 𝑛3, 𝑞) changes to 𝐷𝑙(𝑙1,
𝑙2, 𝑙3) in different subscripts. It should be noted that the values are equal
and do not change. Then, by deploying the values of 𝐩 and 𝑩 in (25), we
get the following formulation which is a convex optimization problem
(see Appendix B),

min
𝛽,𝑃𝑙

𝛽

𝑠.𝑡. 𝑙𝑜𝑔(𝑆𝑁𝑅𝑟𝑒𝑞
𝑙 )

+ 𝑙𝑜𝑔
(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

− 𝑃𝑙 ≤ 𝛽,

(26)

Many methods can be used for solving constrained convex opti-
mization problems. The barrier method has been used for maximiz-
ing the minimum SNR margin in literature [37]. Another promis-
ing solution is the Bisection method [38,39]. This method is used
in Appendix C for solving the proposed optimization problem (26)
since it achieves convergence using fewer iterations without sacrificing
numerical accuracy.

4.2. Total capacity maximization

The total capacity of an MDM–WDM system is the sum of the
capacity of each channel and each mode which can be defined as [37]

𝐶 = 2
𝐷
∑

𝑚=1

𝑁𝑐ℎ
∑

𝑛=1
𝑅𝑛𝑙𝑜𝑔2

(

1 + 𝑆𝑁𝑅𝑛,𝑚

)

, (27)

which by using (20), can be expressed as

𝐶 = 2
𝐷
∑

𝑚=1

𝑁𝑐ℎ
∑

𝑛=1
𝑅𝑛𝑙𝑜𝑔2

×
(

1 +
𝑃𝑛,𝑚

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑛 +
∑𝐷

𝑞=1
∑𝑁𝑐ℎ

𝑛1 ,𝑛2 ,𝑛3=1
𝑃𝑛,𝑚1

𝑃𝑛,𝑚2
𝑃𝑛,𝑚3

𝐷𝑛(𝑛1, 𝑛2, 𝑛3)

)

.

(28)

To use the gradient ascent method for solving (28), 𝑛, 𝑚 should be
substituted by 𝑙, for the same reasons as discussed before. Therefore,
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Table 1
Nonlinear coupling coefficient (𝛾𝑓𝑝𝑞 (1∕W∕km)) [41].

mq LP01 LP11a LP11b LP02

LP01 0.73 0.36 0.36 0.36
LP11a 0.36 0.18 0.55 0.18
LP11b 0.36 0.18 0.18 0.55
LP02 0.36 0.36 0.18 0.18

Table 2
Attenuation (𝛼𝑝 (dB∕km)), and dispersion terms (𝛽1𝑝 (ps∕km), 𝛽2𝑝
(ps2∕km), and 𝛽3𝑝 (ps3∕km)) [41].

LP01 LP11a LP11b LP02

𝛼𝑝 0.2 0.2 0.2 0.2
𝛽1𝑝 −0.29 −0.66 −0.66 −2.93
𝛽2𝑝 28.27 26.96 26.96 27.47
𝛽3𝑝 0.1452 0.1452 0.1452 0.1452

(28) can be rewritten as

𝐶 = 2
𝐷𝑁𝑐ℎ
∑

𝑙=1
𝑅𝑙𝑙𝑜𝑔2

(

1 +
𝑃𝑙

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
∑𝐷𝑁𝑐ℎ

𝑙1 ,𝑙2 ,𝑙3=1
𝑃𝑙1𝑃𝑙2𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

.

(29)

In this way, the non-convex power allocation problem for the MDM–
WDM link is given by

max
𝑃𝑙

𝐶. (30)

To deal with such problems, the Successive Convex Approximation
(SCA) algorithm has been used to successfully approximate the ob-
jective function at each iteration by a concave function. Then, the
respective parameters are used to update the approximated function
in the next iteration. This procedure continues until converging to the
optimum solution [40]. In this paper, SCA is used in Appendix D to
solve the proposed optimization problem (30).

5. Simulation results

In the first part of this section, we investigate the accuracy of
the proposed GN model in both weak and strong coupling regimes
by comparing with SSFM simulations, integral-form IGN model [4]
and closed-form IGN model [20]. Following, in the second part, we
present the optimized power allocation results considering a multi-
node nonlinear MDM–WDM network with strong coupling as the link
ranges are long. The following MDM–WDM link parameters are used
in simulations; the symbol rate is 32 𝐺𝐵𝑎𝑢𝑑, the channel spacing is
50 GHz, and the center frequency is 193.5 THz. The values for non-
linear coupling coefficient, dispersion, and attenuation are presented
by Tables 1 and 2. At each span, an EDFA with 5 dB noise figure
compensates for the FMF attenuation. It should be mentioned that
despite SMF, there is no standard on FMF parameters and different
values are being reported and used by literature which are of course
dedicated from experimental FMF transmission setups. However, as
shown in [21,22] the fiber type does not affect generality of GN model,
since the main assumptions of GN model are about propagating signal
and there is no assumption about link parameters. The provided GN
model is a general model wherein number of modes and channels
can be variable. The main assumptions of GN model are about signal
propagation and there is no assumption or limitation on number of
channels and number of modes [21,22]. Therefore, the presented GN
model works with any number of modes, however, it should be noted
that consideration of high number of modes is impractical due to the
produced large differential mode delay which results in high receiver
complexity.

5.1. Accuracy of proposed GN model

The SSFM simulation [42] is carried out in the Python/Tensorflow
environment [43], considering an MDM–WDM system with 𝐷 = 3, 𝑁𝑐ℎ =
9 [4,13,16,17,21,44]. The GN model assumes Gaussian distribution for
transmitted signal, therefore, we use Gaussian symbols taken from a
circular-symmetric Gaussian distribution to verify the proposed GN
model [45,46]. In addition, we use QPSK symbols for transmission to
compare the performance with a standard modulation format [45,46].
In SSFM, we numerically simulate signal transmission by approxi-
mating solving the Manakov equation via successive numerical steps
as explained in [20]. Note that the simulation parameters should be
defined before deploying SSFM in Tensorflow, and thereby we cannot
adjust step size adaptively based on maximum nonlinear phase rotation
while computations [43]. Besides, fixed step size value results in slow
and impractical SSFM computations. To have an SSFM with useful
results, the step size should be small enough such that the nonlinear
phase rotation does not exceed 0.05 radians, and the number of steps
should be defined accordingly. Due to the proportion of nonlinear phase
rotation and signal power (that is attenuated along each span), the step
sizes at the beginning of the span should be smaller than the ones at
the end, therefore, we use a logarithmic step size [42].

Figs. 2(a) and 2(b) plot the SNR of SSFM simulation-QPSK, SSFM
simulation-Gaussian, proposed GN model, and IGN model versus
launched power per channel-mode, respectively for weak coupling
(𝑁𝑠 = 1, 𝐿𝑠 = 70 km) and strong coupling (𝑁𝑠 = 6, 𝐿𝑠 = 80 km),
considering the central channel of LP01 and LP11a/b modes. The
proposed GN model matches the SSFM simulation-Gaussian in all cases.
As shown in Fig. 2(a), there is an agreement between the proposed GN
model, SSFM simulation-Gaussian, and the IGN model in the low power
region, since the linear effects are dominant in this region. However,
the IGN model overestimates SNR by nearly 1 dB in the weak coupling,
and 2 dB in the strong coupling, at the optimal (best equal) launched
power per channel-mode, for both LP01 and LP11a/b modes. The error
incurred by the IGN model is due to the incoherence assumption which
leads to underestimation of NLI noise power [21]. A fixed gap appears
between the SSFM simulation Gaussian and QPSK in nonlinear region,
since NLI noise power is higher in Gaussian constellation. During
the linear region, as opposed to the nonlinear part, a linear channel
like AWGN is considered, and thus the SNR is independent of the
modulation. A complete investigation over the effect of modulation
format on the NLI noise PSD is presented in [45,47].

Figs. 3(a) and 3(b) show the SNR of SSFM simulation-QPSK, SSFM
simulation-Gaussian, proposed GN model, and IGN model [4] versus
number of channels, respectively for weak coupling (𝑁𝑠 = 1, 𝐿𝑠 =
70 km) and strong coupling (𝑁𝑠 = 6, 𝐿𝑠 = 80 km). Fig. 4 depicts the
SNR of SSFM simulation-QPSK, SSFM simulation-Gaussian, proposed
GN model, and IGN model [4] versus the number of spans for strong
coupling with 𝐿𝑠 = 80 km span length. In Figs. 3 and 4, we consider
the optimum (best equal) launched power per channel-mode and plot
the curves of the central channel of LP01 and LP11a/b modes. The
proposed GN model matches the SSFM simulation-Gaussian in the dif-
ferent numbers of channels and spans. However, there is a 1 dB to 2 dB
difference between the IGN model and the SSFM simulation-Gaussian
in weak coupling and strong coupling regimes, respectively.

We present coherent GN model, and generally, GN model does not
capture the modulation format effect, since it originally assumes the
transmitted signal with Gaussian constellation. Although the modula-
tion format correction is provided by enhanced GN (EGN) model, this
formulation is very complicated takes too much time to estimate NLI
noise variance. As seen in Figs. 3, 3 and 4, the NLI noise variance
gap between GN and QPSK is fixed over different powers, number of
channels, and span lengths. As an alternative to use EGN model in
practical applications (e.g., network planning), one can use the GN
model with directly applying the modulation format corrections. Since,
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Fig. 2. SNR of SSFM simulation-QPSK, SSFM simulation-Gaussian, proposed GN model, and IGN model [4] versus launched power per channel-mode for (a) weak coupling
(𝑁𝑠 = 1, 𝐿𝑠 = 70 km) and (b) strong coupling (𝑁𝑠 = 6, 𝐿𝑠 = 80 km) regimes.

Fig. 3. SNR of SSFM simulation-QPSK, SSFM simulation-Gaussian, proposed GN model, and IGN model [4] versus number of channels for (a) weak coupling (𝑁𝑠 = 1, 𝐿𝑠 = 70 km)
and (b) strong coupling (𝑁𝑠 = 6, 𝐿𝑠 = 80 km) regimes.

Fig. 4. SNR of SSFM simulation-QPSK, SSFM simulation-Gaussian, proposed GN model,
and IGN model [4] versus number of spans for strong coupling regime with 𝐿𝑠 = 80 km
span length.

the NLI noise variance gap is related to the physical layer parameters,
therefore, it is enough to calculate it once for a deployed link, lightpath
or network.

Although the best way to verify GN model is by experiment, we
could not access to an experimental FMF setup, therefore, we provided
verifications using SSFM simulations. Note that the well-known SSFM is
verified by experiments in some works reflecting the real transmission

environment [21], and is the most reliable frequently used tool for
verifying GN model in SMF [12,21,22,35,36] and FMF [4,20] literature.
As a result, the proposed GN model is reliable and can be used for differ-
ent applications such as power allocation, spectrum allocation, routing,
quality of transmission estimation, network planning, etc [29,37,48].

Note that the presented GN model only works for FMF (and SMF)
not for other SDM media such as multicore fiber. This is because the
Manakov equation, which serves as the starting point in GN modeling,
is different for each media (see [9]).

Table 3 shows the complexity analysis of the proposed GN model,
SSFM, integral-form IGN model, and closed-form IGN model. The
SSFM simulator is composed of several processing blocks including;
MDM/WDM multiplexer and demultiplexer, EDFA at each span, dis-
persion compensation at receiver. Moreover, SSFM contains two blocks
for modeling FMF linear and nonlinear effects. Note that each span has
𝑁𝑠𝑡𝑒𝑝 steps. The dimension of the transmitted WDM multiplexed signal
is 2𝐷𝑁𝑠𝑦𝑚 where 𝑁𝑠𝑦𝑚 is the number of QPSK/16QAM symbols gen-
erated for each channel of each mode, thereby the FFT/IFFT in accor-
dance with dispersion has 2𝐷𝑁𝑠𝑦𝑚𝑙𝑜𝑔(2𝐷𝑁𝑠𝑦𝑚)
multiplications/summations. Note that 𝑒𝑥𝑝(𝑥) =

∑𝑛1
𝑖=0 𝑥𝑖∕𝑖! can be

computed by 2𝑛1 multiplications and 𝑛1 summations where 𝑛1 is an
integer. As a result, we achieve better accuracy with a larger 𝑛1. The
complexity analysis of the proposed GN model is based on (17). At
the first, second, and third dimensions of the 3D integration area,
𝑛2, 𝑛3 and 𝑛4 points with identical distances should be considered for
numerically solving a 3D integration. Therefore, the 3D integration area
becomes 𝑛2 ×𝑛3 ×𝑛4 small 3D areas over which taking a 3D summation
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Table 3
Number of multiplications/summations of different methods.
Methods Number of multiplications Number of summations

(𝑁𝑠𝑡𝑒𝑝𝑁𝑠)(8𝐷𝑁𝑠𝑦𝑚𝑙𝑜𝑔(𝐷𝑁𝑠𝑦𝑚)+ (𝑁𝑠𝑡𝑒𝑝𝑁𝑠)(8𝐷𝑁𝑠𝑦𝑚𝑙𝑜𝑔(𝐷𝑁𝑠𝑦𝑚)+
SSFM simulation 6𝐷𝑁𝑠𝑦𝑚 + 2𝑛1 + 1)+ 2𝐷𝑁𝑠𝑦𝑚 + 𝑛1 + 2)+

(4𝐷𝑁𝑠𝑦𝑚𝑙𝑜𝑔(𝐷𝑁𝑠𝑦𝑚) + 4𝐷𝑁𝑠𝑦𝑚 + 2𝑛1) (2𝐷𝑁𝑠𝑦𝑚𝑙𝑜𝑔(𝐷𝑁𝑠𝑦𝑚) + 4𝐷𝑁𝑠𝑦𝑚 + 𝑛1)

Proposed GN model 2𝐷𝑛2𝑛3𝑛4(2𝑛1 + 3) 2𝐷𝑛2𝑛3𝑛4(𝑛1 + 5)

Integral-form IGN model 𝐷𝑛2𝑛3(2𝑛1 + 3) 𝐷𝑛2𝑛3(𝑛1 + 5)

Closed-form IGN model 𝐷𝑁𝑐ℎ(8𝑛1 + 5) + 2 𝐷𝑁𝑐ℎ(4𝑛1 + 3)

Fig. 5. Contour plot of inter-modal phase-matching condition (5) versus frequency
separation (𝛥𝜔) normalized to the ratio of dispersion to dispersion slope (𝛽2∕𝛽3) (values
are in dB).

would be equivalent to a 3D integration over the whole 3D area. The
larger values selected for 𝑛2, 𝑛3, and 𝑛4, the higher accuracy can be
obtained at the cost of more complexity. The complexity analysis of
the integral-form IGN model is based on equation (15) of [4]. For
numerically solving a 2D integration, the same procedure as the 3D
integration should be considered despite that the summation over the
third dimension would not appear as this dimension does not exist.
The complexity analysis of the closed-form IGN model is as reported
by Table. V of [20]. The proposed GN model provides much less
complexity compared with SSFM simulation. Due to incoherency and
NLI noise power flatness assumptions made by the closed/integral-form
IGN model, it has less complexity compared with the proposed GN
model at the cost of less accuracy in modeling the nonlinear effect. It
should be noted that closed-form GN model provides the same accuracy
with much less complexity compared with integral-form IGN model
(see [20]).

The phase-matching criterion has been previously approximated by
ignoring the dispersion slope and chromatic dispersion while evaluating
at the central frequency. Fig. 5 shows the contour plot of inter-modal
phase-matching condition (5) versus frequency separation (𝛥𝜔) normal-
ized to the ratio of dispersion to dispersion slope (𝛽2∕𝛽3), for 80 km
link length. Weak phase matching (poor FWM efficiency) is shown in
green, whereas strong phase matching (𝛥𝛽 ≈ 0) is shown in blue. Note
that without considering 𝛽3 only one strong phase matching occurs
(see [4] Figs. 1b and 2b). The appearance of an additional strong
phase matching area (diagonal yellow peak), the modification of phase
matching in the region bounded by the three strong phase matching
areas, and a slight change in the decay rate of the weak phase matching
region are the three main effects of considering dispersion slope. All
three phase matching peaks are expected to produce additional strong
phase matching products within the area 2𝛽2∕𝛽3 < 𝛥𝜔. As a result,

Fig. 6. DTG multi-node nonlinear network.

dispersion slope must be included in ultra wide-band MDM–WDM
systems.

We should mention that we had access to an Intel Xeon CPU with
32 cores and 64 GB RAM by which we were limited to consider 3
spatial modes with 9 WDM channels (0.45 THz) bandwidth [4,16,17]
in model validation of Figs. 2, 3, and 4. Because of the limitations of
our computing resources, the scenarios we examined did not allow for
the excitation of 𝛽3-induced phase matching. Thus, Figs. 2, 3, and 4
highlight only the difference between the GN and IGN models. How-
ever, as shown in Fig. 5, 𝛽3 is expected to contribute additional phase
matching conditions and needs to be accounted for when designing and
analyzing the performance of MDM–WDM systems.

5.2. Optimized power allocation

The presented optimized power allocation results are based on
‘‘minimum SNR margin maximization’’ and ‘‘total capacity maximiza-
tion’’ problems, and included two case scenarios; (a) the best equal
power allocation, and (b) the optimized power. In the first scenario,
equal powers are allocated to each channel and each mode. In the
second situation, the powers assigned to various channels and modes
may differ.

The DTG multi-node nonlinear network shown in Fig. 6 is con-
sidered in this paper for testing the advantages of optimized power
allocation [49]. Any potential scaling of the minimum SNR margin
improvement available from power allocation is detected by optimizing
over a random lightpath of the network by selecting a random node pair
as source–destination [29]. Random traffic demand is considered with a
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Fig. 7. The considered EDFA gain profile to model the gain tilt and ripple in
MDM–WDM system.

uniform demand distribution between each node pair, satisfied by using
random channel/mode indices. Routes are assigned by shortest-path
computation to the destination node [29]. At each node, an add/drop
section is considered wherein the dropped channel/mode is not added
again [37]. In multi-node nonlinear networks, different channels-modes
may propagate at different distances thus accumulate different NLI
noises, experience fragmentation/partial utilization thereby see differ-
ent interacting channels-modes with different modulation formats and
may observe different EDFA gains [29].

The SNR margin and the total capacity formulations are dependent
on the ASE noise that depends on the EDFA gain. In the Flat EDFA Gain
(FG) scenario, all channels and modes are amplified by the same gains
at EDFA, whereas in the Non-Flat EDFA Gain (NFG) scenario, various
gains are allocated [48,50,51]. Moreover, the SNR margin depends on
the required SNR of each channel and mode. In the Equal Required
SNR (ERS) scenario, all channels and modes have the same modulation
format, whereas, in the Non-Equal Required SNR (NERS) scenario,
different modulation formats are employed [29]. Note that the EDFA
gain is practically non-flat and a flattening filter should be used to make
it flat [52]. Although the focus of this paper is on nonlinearity, the
EDFA gain flatness influences NLI noise power; for instance, at higher
ASE noise powers, the allocated power is higher which enhances the
NLI noise power. Thereby, to have a better discussion and conclusion,
we investigate both FG and NFG scenarios. The employment of a
discrete data-rates set that falls below and above the highest feasible
continuous communication data rates, as well as the integration of
different communication hardware generations, are all practical aspects
of using different SNR requirements [32–55].

The simulation results for the minimum SNR margin maximiza-
tion problem include the FG-ERS, FG-NERS, NFG-ERS, and NFG-NERS.
Moreover, we consider the FG and NFG scenarios for the total capacity
maximization problem. In the FG and NFG, we include the EDFA gain
profiles shown in Fig. 7. In the NFG profiles, 0.4 dB tilt is considered
along 31 WDM channels [48] and 0.8 dB tilt for 3 FMF modes [51].
The gain ripples are randomly selected within [−0.05, 0.05] dB [48].
In the ERS, PM-QPSK modulation is used, and in NERS, PM-QPSK
and PM-16QAM are respectively used for odd and even channels of
LP01 mode and vise versa for odd and even channels of LP11a/b.
The required SNRs of PM-QPSK and PM-16QAM are 7 and 11.48 dB,
respectively [44]. We consider 𝐷 = 3 modes and 𝑁𝑐ℎ = 31 channels [4,
9]. These are the maximum possible mode-channel numbers with our
accessible hardware.

Fig. 8 represents Cumulative Distribution Function (CDF) of SNR
margin improvement obtained by optimized power allocation over

Fig. 8. CDF of obtained SNR margin improvement of optimized power allocation over
best flat power allocation in MDM–WDM system, for ERS-FG, ERS-NFG, NERS-FG, and
NERS-NFG scenarios.

best flat power allocation in MDM–WDM system, for ERS-FG, ERS-
NFG, NERS-FG, and NERS-NFG scenarios. Each plot is based on the
results of 200 different sets of randomized traffic demands (random
channel-mode distributions), which have been defined at the beginning
of this section. The obtained minimum SNR margin improvements are
in 99% more than 1 dB, 1.2 dB, 2.4 dB and 2.8 dB for ERS-FG, ERS-
NFG, NERS-FG, and NERS-NFG scenarios, respectively. The best flat
power allocation is a 1 dimensional optimization method while in this
case, the optimized power allocation is a 93 dimensional optimization
method. The obtained gains are due to the higher degree of freedom
of optimized power allocation. The ASE/NLI noise spectrum is not flat
in the NFG and NERS scenarios, and the required SNR (modulation
format) is not equal among channels/modes in the NERS scenario. As
a result, ERS-NFG, NERS-FG, and NERS-NFG scenarios show a much
more efficient deployment of power allocation by min SNR margin
maximization. This is due to higher optimization degrees of freedom of
ERS-NFG, NERS-FG, and NERS-NFG scenarios comparing with FG-ERS.

The total capacity formulation does not the include required SNR
term, therefore, only FG and NFG scenarios are applicable. The ob-
tained total capacity improvements are on average 15 Gbits∕s and
23 Gbits∕s for FG and NFG scenarios, respectively, which is negligible.
Therefore, a flat power allocation can effectively maximize the total
capacity for a flat/non-flat noise spectrum. This is further supported by
(27) which shows that capacity and SNR have a logarithmic relation-
ship. Thus, different channels/modes have almost the same capacity
values even if the SNRs of channels and modes become different from
each other which in turn results in low optimization degrees of freedom
in optimized power allocation.

6. Conclusion

The FMF nonlinearity has been modeled by an additive GN source.
The available GN models in MDM–WDM investigations assume that
the NLI noise created at each span is summed up in power incoher-
ently at the receiver which leads to underestimating the NLI noise
power. Furthermore, these models neglect the dispersion slope, which
is important in dealing with large bandwidths. In the first part of
this paper, a coherent GN model has been derived considering the
dispersion slope and compared with SSFM simulations and the IGN
model considering both weak coupling and strong coupling regimes.
The proposed GN model provides an acceptable accuracy with much
less complexity than the SSFM. On the other hand, the IGN model
overestimates the SNR by around 1 dB and 2 dB in weak coupling and
strong coupling, respectively, considering the optimum launched power
per channel and mode. Therefore, the significance of this paper in the
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first part include; presenting a coherent GN model for MDM–WDM sys-
tem with better accuracy than IGN model in weak and strong coupling,
considering dispersion slope in GN model formulation for MDM–WDM
system and describing the impact of dispersion slope induced inter-
modal phase-matching on NLI noise in MDM–WDM system, presenting
a GN model formulation with a clear relation between NLI noise
and per channel-mode launched power, making it proper for power
allocation in link, lightpath and network level. Note that the proposed
GN model formulation can be applied beyond the addressed power
allocation problems, in applications such as quality of transmission
estimation, optical performance monitoring, routing, wavelength and
mode allocation, etc.

In the second part of this paper, based on the obtained GN model,
the total capacity maximization, as well as the minimum SNR margin
maximization problems have been presented and solved. An MDM–
WDM multi-node nonlinear network under different scenarios including
ERS/NERS, and FG/NFG has been considered in the simulation. Con-
sidering 200 different sets of randomized traffic demands (random
channel-mode distributions) the CDF of minimum SNR margin im-
provement in optimized power allocation compared with the best flat
power allocation was in 99% more than 1 dB, 1.2 dB, 2.4 dB, and 2.8 dB,
for ERS-FG, ERS-NFG, NERS-FG, and NERS-NFG scenarios, respectively.
Thereby, the significance of the second part of this paper contains;
deploying optimized power allocation in MDM–WDM network, provid-
ing comprehensive investigation over optimized power allocation for
different MDM–WDM network scenarios.
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Appendix A. NLI noise variance of 𝒏th channel and 𝒎th mode

The PSD of the NLI noise of 𝑥 polarization of 𝑚th mode can be
expressed as

𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) = ∫

∞

−∞
𝐸[𝑛𝑚,𝑥(𝑧, 𝑡1)𝑛∗𝑚,𝑥(𝑧, 𝑡2)]𝑒

−𝑗2𝜋𝑓𝜏𝑑𝜏, (A.1)

where 𝜏 = 𝑡1− 𝑡2. By substituting (14) in (A.1) the PSD of the NLI noise
of 𝑥 polarization of 𝑚th mode can be written as in Eq. (A.2) given in
Box I. (A.2) can be expressed as

𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) = 𝐺(𝑚,𝑥)

𝐺𝑁,1(𝑓 ) + 𝐺(𝑚,𝑥)
𝐺𝑁,2(𝑓 ) + 𝐺(𝑚,𝑥)

𝐺𝑁,3(𝑓 ) + 𝐺(𝑚,𝑥)
𝐺𝑁,4(𝑓 ), (A.3)

where 𝐺(𝑚,𝑥)
𝐺𝑁,𝑖(𝑓 ); 𝑖 = 1, 2, 3, 4 is the integration by considering 𝐺𝑖 terms.

The terms of 𝐺(𝑚,𝑥)
𝐺𝑁,1(𝑓 ), 𝐺(𝑚,𝑥)

𝐺𝑁,2(𝑓 ), 𝐺(𝑚,𝑥)
𝐺𝑁,3(𝑓 ) , and 𝐺(𝑚,𝑥)

𝐺𝑁,4(𝑓 ) contain

summations over six indices of 𝑘, 𝑙, ℎ, 𝑘′, 𝑙′, ℎ′. However, most of the
combinations of these indices can be removed, since 𝜉𝑖,𝑞 , 𝜁𝑖,𝑞 are in-
dependent Gaussian random variables with 𝐸[𝜉𝑖,𝑞] = 0, 𝐸[𝜁𝑖,𝑞] = 0,
and 𝐸[|𝜉𝑖,𝑞|

2] = 1, 𝐸[|𝜁𝑖,𝑞|
2] = 1, and 𝐸[𝜉𝑖,𝑞𝜉∗𝑗,𝑞] = 0, 𝐸[𝜁𝑖,𝑞𝜁∗𝑗,𝑞] = 0.

Furthermore, as explained earlier, the GN modeling only considers the
FWM-like interactions between frequency components, not the SPM-
like and XPM-like terms [35]. Note that here, the ‘‘SPM-like’’ and
‘‘XPM-like’’ refer to phase shifts between frequency components of
the transmitted signal, not between WDM channels. The transmitted
signal in GN modeling is treated as a single broadband signal without
any division into channels and the individual channels are never seen
in the final results. Accordingly, in calculating 𝐺(𝑚,𝑥)

𝐺𝑁,1(𝑓 ) only index
combinations 𝑘 = 𝑘′, 𝑙 = 𝑙′, ℎ = ℎ′ and 𝑘 = 𝑙′, 𝑙 = 𝑘′, ℎ = ℎ′ remain
which results in

𝐺(𝑚,𝑥)
𝐺𝑁,1(𝑓 ) = 2∫

∞

−∞

[

𝑓 3
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ
�̃�2𝑚𝑞|𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)|

2𝑒𝑗2𝜋(𝑘𝑓0+𝑙𝑓0−ℎ𝑓0−𝑓 )𝜏

× 𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)

]

𝑑𝜏.

(A.4)

In calculating 𝐺(𝑚,𝑥)
𝐺𝑁,2(𝑓 ) and 𝐺(𝑚,𝑥)

𝐺𝑁,3(𝑓 ) no index combination remains,
therefore, these terms are not parts of the final results. In calculating
𝐺(𝑚,𝑥)
𝐺𝑁,4(𝑓 ) only the index combination 𝑘 = 𝑘′, 𝑙 = 𝑙′, ℎ = ℎ′ remains

which results in

𝐺(𝑚,𝑥)
𝐺𝑁,4(𝑓 ) = ∫

∞

−∞

[

𝑓 3
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ
�̃�2𝑚𝑞|𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)|

2𝑒𝑗2𝜋(𝑘𝑓0+𝑙𝑓0−ℎ𝑓0−𝑓 )𝜏

× 𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)

]

𝑑𝜏.

(A.5)

Accordingly, by substituting (A.4) and (A.5) in (A.3), the PSD of the
NLI noise of 𝑥 polarization of 𝑚th mode can be written as

𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) = ∫

∞

−∞

[

3𝑓 3
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ
�̃�2𝑚𝑞|𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)|

2𝑒𝑗2𝜋(𝑘𝑓0+𝑙𝑓0−ℎ𝑓0−𝑓 )𝜏

× 𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)

]

𝑑𝜏

= 3𝑓 3
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ
�̃�2𝑚𝑞|𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)|

2𝛿(𝑗2𝜋(𝑘𝑓0 + 𝑙𝑓0 − ℎ𝑓0 − 𝑓 ))

× 𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0).

(A.6)

As discussed earlier, the obtained PSD of the NLI noise is discrete
which is related to the discrete assumption of the transmitted signal.
However, the transmitted signal has a continuous spectrum, and 𝑓0 →
0, therefore, the PSD of the NLI noise of 𝑥 polarization of 𝑚th mode
becomes equal to

𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) = 3

𝐷
∑

𝑞=1
∬

∞

−∞
�̃�2𝑚𝑞|𝜂(𝑓1, 𝑓2, 𝑓 )|

2𝐺(𝑚,𝑥)
𝑇𝑥 (𝑓1)

× 𝐺(𝑞,𝑥)
𝑇𝑥 (𝑓2)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑓1 + 𝑓2 − 𝑓 )𝑑𝑓1𝑑𝑓2.

(A.7)

Note that in the MDM–WDM link, 𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) = 𝐺(𝑚,𝑦)

𝐺𝑁 (𝑓 ), and 𝐺(𝑚)
𝐺𝑁 (𝑓 ) =

𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 )+𝐺(𝑚,𝑦)

𝐺𝑁 (𝑓 ). Accordingly, the PSD of the NLI noise of 𝑚th mode
becomes equal to

𝐺(𝑚)
𝐺𝑁 (𝑓 ) = 3∕4

𝐷
∑

𝑞=1
∬

∞

−∞
�̃�2𝑚𝑞|𝜂(𝑓1, 𝑓2, 𝑓 )|

2𝐺(𝑚)
𝑇𝑥 (𝑓1)𝐺

(𝑞)
𝑇𝑥(𝑓2)

× 𝐺(𝑞)
𝑇𝑥(𝑓1 + 𝑓2 − 𝑓 )𝑑𝑓1𝑑𝑓2.

(A.8)
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𝐺(𝑚,𝑥)
𝐺𝑁 (𝑓 ) =

∫

∞

−∞
𝑓 3
0

𝐷
∑

𝑞=1

∑

𝑘,𝑙,ℎ,𝑘′ ,𝑙′ ,ℎ′
�̃�2𝑚𝑞𝜂(𝑘𝑓0, 𝑙𝑓0, ℎ𝑓0)𝜂

∗(𝑘′𝑓0, 𝑙′𝑓0, ℎ′𝑓0)𝑒𝑗2𝜋(𝑘+𝑙−ℎ)𝑓0𝑡1𝑒−𝑗2𝜋(𝑘
′𝑓0+𝑙′𝑓0−ℎ′𝑓0)𝑡2𝑒−𝑗2𝜋𝑓𝜏

[

𝐸[𝜉𝑘,𝑞𝜉∗𝑘′ ,𝑞𝜉𝑙,𝑞𝜉
∗
ℎ,𝑞𝜉𝑙′ ,𝑞𝜉

∗
ℎ′ ,𝑞]

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑚,𝑥)
𝑇𝑥 (𝑘′𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙′𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ′𝑓0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺1

+

𝐸[𝜉𝑘,𝑞𝜉∗𝑘′ ,𝑞𝜉𝑙,𝑞𝜉
∗
ℎ,𝑞𝜁𝑙′ ,𝑞𝜁

∗
ℎ′ ,𝑞]

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑚,𝑥)
𝑇𝑥 (𝑘′𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (𝑙′𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (ℎ′𝑓0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺2

+

𝐸[𝜉𝑘,𝑞𝜉∗𝑘′ ,𝑞𝜁𝑙,𝑞𝜁
∗
ℎ,𝑞𝜉𝑙′ ,𝑞𝜉

∗
ℎ′ ,𝑞]

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑚,𝑥)
𝑇𝑥 (𝑘′𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (ℎ𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (𝑙′𝑓0)𝐺

(𝑞,𝑥)
𝑇𝑥 (ℎ′𝑓0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺3

+

𝐸[𝜉𝑘,𝑞𝜉∗𝑘′ ,𝑞𝜁𝑙,𝑞𝜁
∗
ℎ,𝑞𝜁𝑙′ ,𝑞𝜁

∗
ℎ′ ,𝑞]

√

𝐺(𝑚,𝑥)
𝑇𝑥 (𝑘𝑓0)𝐺

(𝑚,𝑥)
𝑇𝑥 (𝑘′𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (𝑙𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (ℎ𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (𝑙′𝑓0)𝐺

(𝑞,𝑦)
𝑇𝑥 (ℎ′𝑓0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺4

]

𝑑𝜏.

(A.2)

Box I.

(A.8) represents different types of nonlinear interaction between differ-
ent channels/modes which can be categorized into inter and intra chan-
nel nonlinearity, considering frequency channel interactions, and inter
and intra modal nonlinearity, considering spatial mode interactions.

At the receiver side, the detector performs demodulation, matched
filtering, zero-forcing equalization, and sampling. The matched filtering
operation can be described by

∫

∞

−∞
�̃�(𝑓 )𝑅𝑛𝑔

∗
𝑛,𝑚(𝑓 )𝑑𝑓 , (A.9)

where 𝑔𝑛,𝑚(𝑓 ) is the spectral shape of transmitted pulse on the 𝑛th
channel and the 𝑚th mode which has been normalized such that
∫ ∞
−∞ 𝑔𝑛,𝑚(𝑓 )𝑑𝑓 = 1, and 𝑅𝑛 is the symbol rate of the 𝑛th channel.

Therefore, the variance of the NLI noise of the 𝑛th channel and the
𝑚th mode can be written as

𝜎2𝐺𝑁𝑚,𝑛
= 3∕4

𝐷
∑

𝑞=1
∭

∞

−∞
�̃�2𝑚𝑞|𝜂(𝑓1, 𝑓2, 𝑓 )|

2𝐺(𝑚)
𝑇𝑥 (𝑓1)𝐺

(𝑞)
𝑇𝑥(𝑓2)

× 𝐺(𝑞)
𝑇𝑥(𝑓1 + 𝑓2 − 𝑓 )𝑅𝑛𝑔

∗
𝑛,𝑚(𝑓 )𝑑𝑓1𝑑𝑓2𝑑𝑓 .

(A.10)

The three-dimensional integration in (A.10) should be solved to ob-
tain the NLI noise variance which has high computational complexity.
Following, consideration of such an integral-form formulation in power
allocation problems is not effective, as the iterative optimizer algorithm
should calculate the whole integration at each iteration once [29]. In
this situation, a discrete-form GN model is appropriate [29]. Discrete-
form GN model can be obtained by rewriting the PSD of the transmitted
WDM signal in terms of its discrete frequency components. Therefore,
the launched powers can be factored out from the integral. The first
step towards discretization of GN model is describing the PSD of the
transmitted signal in the 𝑛th channel and the 𝑚th mode in the following
form

𝐺(𝑚)
𝑇𝑥 (𝑓 ) =

𝑁𝑐ℎ
∑

𝑛=1
𝑃𝑛,𝑚𝑔𝑛,𝑚(𝑓 ), (A.11)

where 𝑃𝑛,𝑚 is the transmitted power on the 𝑛th channel and the 𝑚th
mode, and is fixed versus 𝑓 . 𝑔𝑛,𝑚(𝑓 ) is variable versus 𝑓 , and can take
different shapes in 𝑓 , its center frequency is 𝑓𝑐𝑛 and its bandwidth is
𝐵𝑛.

Substituting (A.11) in (A.10), the variance of NLI noise of the 𝑛th
channel and the 𝑚th mode takes the form of (17).

Algorithm 1: Bisection method to solve convex optimization
problem (26).
Initialization: upper bound 𝑢 = 100, and lower bound 𝑙 = −10 ;
𝛽 ← 𝑢;
Solve convex problem (26) by Lagrangian method;
if P̂∗(𝑡) == 𝑁𝐴𝑁 then

break;
end
𝛽 ← 𝑙;

Solve convex problem (26) by Lagrangian method;
if P̂∗(𝑡) == 𝑁𝐴𝑁 then

break;
end
while 𝑢 − 𝑙 ≤ 𝜖 do

𝛽 ← (𝑢 + 𝑙)∕2;
Solve convex problem (26) by Lagrangian method;
if P̂∗(𝑡) == 𝑁𝐴𝑁 then

𝑙 ← 𝛽;
else

𝑢 ← 𝛽;
end

end

Appendix B. Convexity proof of optimization problem (26)

The expression
𝑙𝑜𝑔

(

𝑒𝑙𝑜𝑔(𝑁𝑠𝐹 (𝐺−1)ℎ𝜈𝐵𝑙 ) +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

, (B.1)

is convex in 𝑃𝑙, since 𝑙𝑜𝑔(
∑

𝑙 𝑒
𝑥𝑙 ) is a convex function in 𝑥𝑙 [56]. The

constraint function of (26) the summation of some convex functions,
therefore, it is convex. The objective and constraint functions of (26)
are convex, therefore, (26) is a convex optimization problem.

Appendix C. Bisection method to solve convex optimization prob-
lem (26)

In the Bisection method, a region is selected for the objective
function of (26), and a candidate for 𝛽 is selected and fixed. Then,
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Algorithm 2: Lagrangian duality method to solve convex problem
(26).
initialization: iteration counter 𝑡 = 0, step size parameter 𝑎 > 0,
and 𝜆(0)𝑙 ≥ 0;
while achieving convergence do

Solve convex problem (26) with fixed 𝜆𝑙, and obtain optimal
power P̂∗(𝑡);

𝜆(𝑡+1)𝑙 =
[

𝜆(𝑡)𝑙 − 𝑎𝛥𝑙

]+
;

Update 𝑡 = 𝑡 + 1;
end

Algorithm 3: SCA algorithm.
Inputs: iteration counter 𝑡 = 0, 𝜉(0)𝑙 = 1 ,𝜁 (0)𝑙 = 0, 𝜖 = 10−10;
Output: optimal power 𝑃 ∗

𝑙 ;
while achieving convergence do

Solve (D.1) by the gradient ascent method and obtain P̂∗(𝑡);
Calculate 𝑥∗(𝑡+1)𝑙 using (D.3);
if 𝑥∗(𝑡+1)𝑙 ≤ 𝜖 then

Set 𝜁 (𝑡+1)𝑙 = 0 and 𝜉(𝑡+1)𝑙 = 0;
else

Update 𝜁 (𝑡+1)𝑙 and 𝜉(𝑡+1)𝑙 ;
end
Update 𝑡 = 𝑡 + 1;

end

the feasibility problem is solved using the Lagrangian method [38]. It
should search about the optimum 𝛽 in the defined region, accordingly,
at each step, it updates the region boundaries based on the obtained
solution for the feasibility problem in the last step. The same procedure
repeats until achieving a convergence.

Algorithm 1 summarizes the Bisection method used for solving the
convex optimization (26). The first step is defining a search region for
𝛽 by choosing the upper (𝑢) and lower (𝑙) bounds. The upper bound
is assigned to 𝛽, and the problem (26) is converted to a feasibility
problem. Next, the feasibility problem is solved using the Lagrangian
method. If the feasibility problem does not have a solution, it means
that the feasible set is empty and the selected upper bound is lower
than the optimal solution, therefore, a higher upper bound should be
used. The defined lower bound should be tested/adjusted in the same
way. Now, the search region boundaries are finalized and the main loop
of the Bisection method starts.

The second step is solving the feasibility problem using the La-
grangian method. In this step, (𝑢 + 𝑙)∕2 value is assigned to 𝛽 and the
feasibility problem is solved. If the feasibility problem does not have
a solution, it means that the feasible set is empty, and the assigned
value to 𝛽 is the lower bound of the feasible set. If the feasibility
problem has a solution, it means that the assigned value to 𝛽 is the
upper bound of the feasible set. Therefore, the updated upper/lower
bound is updated and the second step is repeated until the convergence.
Algorithm 2 summarizes the Lagrangian method used for solving the
feasibility problem, the explanation is provided in the following.

The Lagrangian function for (26) is given by

𝛽 +
𝐷𝑁𝑐ℎ
∑

𝑙=1
𝜆𝑙

(

𝑙𝑜𝑔(𝑆𝑁𝑅𝑟𝑒𝑞
𝑙 )

+ 𝑙𝑜𝑔
(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

− 𝑃𝑙 − 𝛽

)

,

(C.1)

where 𝜆𝑙 ∈ 𝑅+ is the Lagrangian multiplier. Hence, the Lagrangian dual
function of (26) takes the following form

inf
𝑃𝑙

𝛽 +
𝐷𝑁𝑐ℎ
∑

𝑙=1
𝜆𝑙

(

𝑙𝑜𝑔(𝑆𝑁𝑅𝑟𝑒𝑞
𝑙 ) + 𝑙𝑜𝑔

(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙

+
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

−𝑃𝑙 − 𝛽

)

.

(C.2)

The dual problem is a convex optimization problem [38], therefore,
the optimization problem (C.2) is a convex optimization problem with
respect to 𝑃𝑙 for a fixed 𝜆𝑙. Note that at each iteration of Algorithm 2,
𝜆𝑙 is updated based on the derivative of (C.2) with respect to 𝜆𝑙 which
can be expressed as

𝛥𝑙 = 𝑙𝑜𝑔(𝑆𝑁𝑅𝑟𝑒𝑞
𝑙 )

+ 𝑙𝑜𝑔
(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

− 𝑃𝑙 − 𝛽.

(C.3)

Remark 1.
In Algorithm 2, (C.2) is solved at each iteration as a function of

𝑃𝑙 using the gradient descent algorithm which will converge to its
optimum solution due to the convexity of the problem. This procedure
is repeated by Algorithm 1 in the ‘‘While loop’’ by which the minimum
SNR margin is improved until convergence to the maximum value. Note
that Algorithm 1 will stop when the difference between upper and
lower bounds becomes less than 𝜖.

Appendix D. SCA method to solve convex optimization problem
(30)

To deal with optimization problem (30), we use SCA as summarized
in Algorithm 3. More specifically, we first define an auxiliary variable
𝑃𝑙 = 𝑙𝑛(𝑃𝑙), by which (30) can be expressed as

max
𝑃𝑙

2
𝐷𝑁𝑐ℎ
∑

𝑙=1
𝑅𝑙𝑙𝑜𝑔2

(

1 + 𝑒𝑃𝑙

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
∑𝐷𝑁𝑐ℎ

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1

+𝑃𝑙2
+𝑃𝑙3 𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

.

(D.1)

The objective function of (D.1) is of the form ∑

𝑙 𝑙𝑜𝑔2(1 + 𝑥𝑙) which
can be approximated by the concave function ∑

𝑙 𝜁𝑙 + 𝜉𝑙𝑙𝑜𝑔2(𝑥𝑙) where
𝜁𝑙 = 𝑙𝑜𝑔2(1 + 𝑥∗𝑙 ) − 𝑥∗𝑙 ∕(𝑥

∗
𝑙 + 1)𝑙𝑜𝑔2(𝑥∗𝑙 ), and 𝜉𝑙 = 𝑥∗𝑙 ∕(𝑥

∗
𝑙 + 1), with 𝑥∗𝑙

denoting the optimal point computed in the previous iteration [40]. In
this way, (D.1) can be approximated by a convex model as

max
𝑃𝑙

2
𝐷𝑁𝑐ℎ
∑

𝑙=1
𝑅𝑙

[

𝜁𝑙 + 𝜉𝑙

(

𝑃𝑙

− 𝑙𝑜𝑔2

(

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

) )]

,

(D.2)

where

𝑥∗𝑙 = 𝑒𝑃
∗
𝑙

𝑁𝑠𝐹 (𝐺 − 1)ℎ𝜈𝐵𝑙 +
∑𝐷𝑁𝑐ℎ

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

, (D.3)

where 𝑃 ∗
𝑙 is the optimal power obtained by solving (D.2) using the

gradient ascent method.
Note that the expression

𝑙𝑜𝑔2

(

𝑒𝑙𝑜𝑔(𝑁𝑠𝐹 (𝐺−1)ℎ𝜈𝐵𝑙 ) +
𝐷𝑁𝑐ℎ
∑

𝑙1 ,𝑙2 ,𝑙3=1
𝑒𝑃𝑙1+𝑃𝑙2+𝑃𝑙3𝐷𝑙(𝑙1, 𝑙2, 𝑙3)

)

, (D.4)

is convex in 𝑃𝑙, since 𝑙𝑜𝑔(
∑

𝑙 𝑒
𝑥𝑙 ) is a convex function in 𝑥𝑙 [38].

Accordingly, the objective function of (D.1) is concave, since it is a
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sum of some concave functions, and thus problem (D.1) is a convex
optimization problem.

Remark 2.
In Algorithm 3, (D.1) is solved at each iteration as a function of 𝑃𝑙

using the gradient ascent algorithm which will converge to its optimum
solution due to the convexity of the problem. This procedure is repeated
by the SCA algorithm in the ‘‘While loop’’, by which the total capacity
is improved successively until convergence to the maximum value [38].
Note that, since the power allocation is limited due to the nonlinearity
effects, the SCA algorithm will stop searching if by increasing the
power, the total capacity starts decreasing.
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