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ABSTRACT
Nowadays, Brain Computer Interface has an important role in the life quality of paralyzed people.
However, this technique is mainly affected by the quality of the recorded signal in each trial. This
problem could be solved by rejecting low-quality trials. But developing the processing based on
the recorded signal from the brain, which is a mixture of the target signal plus noise and artifact,
wouldnot be favourable in situations that all trials have lowquality. This paper solves this problemby
presenting anew fast algorithm for separating recorded source signals. Results indicate the improve-
ment in classification accuracy of the proposed method compared with the well-known state of the
art works.
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1. INTRODUCTION

Brain Computer Interface (BCI) is a one-way informa-
tion flow that translates recorded brain signals to com-
mand signals [1,2]. This system mainly focuses on the
way of helping paralyzed people to move without taking
care of their disorders. The BCI does not use the normal
output pathways of peripheral nerves and muscles [3], it
only records the brain signals to prepare commands for
control of external devices [4,5]. In motorized prosthe-
ses, movement paralysis is the main consideration. BCI
provides a substitute form of communication for peo-
ple with motorized impairments and helps them to send
commands by using their brain activities.

Fortunately, disabled people can generate different men-
tal states, i.e. they can do motor imagery (MI) [6]. The
movement of different parts of the body triggers differ-
ent parts of the brain. In fact, subjects’ ability tomodulate
brain activities enables BCI to detect and fulfil subjects’
intentions [7], allowing paralyzed people to control a
robotic arm [4]. InMI, the user is asked tomake a special
motion, such as the left hand. These imaginations activate
some parts of the motor cortex. According to the acti-
vated area, BCI determines the imagined movement [8].

The Electroencephalography (EEG) signal often appears
in response to external stimulation in the form of an
electrical potential difference created by the neurons [8].
EEG is a non-invasive way to detect modulated brain sig-
nals [7,9], and suitable for real-time applications. The
sensorimotor rhythm appears as a power change in a
specific frequency range in the sensorimotor area at the

moment of motion imaging. For this reason, EEG signal
changes in conjunction with different movement imagi-
nations can be used in BCI.

EEG signal is very weak because it is recorded from the
scalp; besides, noise and artifacts, such as blinking or
scalp movement, affect it. Therefore, feature extraction
from the EEG signal and accurate classification of differ-
ent MIs are difficult [10]. Recorded EEG signal is a mix-
ture ofmany independent source signals including neural
oscillations, event potential, spectral perturbations, and
artifacts from eye movements, muscle activities, drifts,
and the electrodes. Separating source signals could help
to solve the problem. Independent Component Analysis
(ICA) is a well-known method for identifying indepen-
dent source signals from a recorded mixture signal [11].

Common Spatial Pattern (CSP) is a spatial filter for oscil-
latory EEG components [12]. It is the most commonly
used technique for feature extraction and very effective in
MI classification [10]. This technique seeks to find spatial
filters that maximize variance for one class and minimize
variance for another class [13]. CSP usually uses all avail-
able channels (brain areas) to estimate the covariance
matrix. In a specific MI task, each person has a different
activated channel, and choosing the proper channel is a
major challenge [14]. Actually, the recorded EEG signal
has a wide frequency-range, and the CSP processes the
whole range at once. However, for each person the acti-
vated channel is in a special frequency range. One solu-
tion for solving this problem is dividing the frequency
band into some sub-bands and then deploying the CSP
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on each band and finally selecting the appropriate sub-
band [15]. However, this solution is not promising, and
some better improvements have been applied in order
to remove its challenges. Among them, adjusting CSP
weights based on Tikhonov regularization [16], or based
on an l1−norm regularization [17] have shown better
performance. The idea of adjusting weights related to
some phenomena, which is discussed in details in the fol-
lowing, and actually the aim of this paper is to present a
better weight adjustment technique.

The CSP needs the covariance matrix of data. It is better
to repeat a specific trial several times to increase accu-
racy. Therefore, one covariancematrixwould be obtained
in each repetition. EEG signal corresponding to the same
task is a stationary process. Therefore, the total covari-
ance matrix is the average of all the covariance matrices
of the experiments. In EEG, averaging with equal weights
over all trials does not seem to be a good idea, because
different trials are contaminated by different amounts of
user in-concentration, eye blink, or muscle movement
artifacts.

The distraction and fatigue of subjects in the long
data collection process often produce mislabelled tri-
als. Locating the artifact data segments within a single
trial is a topic of some recent works. Two spatial fil-
ters namely, CSP and ICA are widely used in MI BCI.
CSP adopts a supervised algorithm that needs plenty of
labelled data to find a projection matrix for maximiz-
ing the differences between the variances of two-class
EEG data. Besides, the selected data are suggested to have
strong de-synchronization/synchronization. So, the CSP
method requires high-quality training data with accurate
labels [18]. Themain disadvantage of BCI is its sensitivity
to the quality of the recorded signal in each trial because,
in addition to the target signal, EEG is composed ofmany
other undesired source signals. There are many investi-
gations considered this issue. Recently [19] tried to solve
this problem; it first called trials contaminated by noise
and artifact as the low-quality trials, and presented a solu-
tion for rejecting the low-quality trials. All the processing
of this work was done on the recorded mixture signal
from the scalp, not on the target source signal. So, there
appears another problem; what would happen if the noise
and artifact sources would be dominant in all the trials.
With the previous method, in this situation, all the tri-
als would be considered as low quality and rejected. The
solution to this problem is developing all the processing
on the target source signal. Accordingly, this paper con-
cerns this issue and extends the previous work. Actually
in this paper selection is done on the source signals which
are separated by a new fast ICA algorithm. To the best of

the authors’ knowledge, this is the first time that a fast
approximate joint diagonalization is used in ICA-based
BCI applications. In comparison, the obtained improve-
ments in the experimental results over the previous work
confirm the sophistication of the above arguments.

2. METHOD

2.1 Description of BCI IV 1 and BCI IV 2a Datasets

The dataset 2a from BCI competition IV is an EEG data
recorded from 9 subjects for 4 different MI tasks, namely
the imagination ofmovement of the left hand, right hand,
both feet, and tongue. The data record was done for
each subject at two 288 trial sessions. Subjects sat in a
comfortable armchair looking at a monitor. At the begin-
ning (t = 0s), a fixation cross appeared on the monitor
with an acoustic warning. After two seconds (t = 2s),
an arrow pointing either to the left, right, down, or up
appeared. At this time subjects performed the MI task.
They should carry out the MI task until the disappear-
ance of the fixation cross. Twenty-two electrodes were
used to record EEG signals. All signals were recorded
monopolarly with reference to left mastoid and ground
of right mastoid. The signals were sampled with 250 Hz
and bandpass-filtered between 0.5 Hz and 100 Hz.

The dataset 1 from BCI competition IV is an EEG data
recorded from 59 channels of 4 subjects for 4 different
MI tasks, namely the imagination ofmovement of the left
hand, right hand, and feet. The recording experiment of
this dataset was performed in two sessions named cali-
bration and evaluation. In the calibration session, each
subject chose two MI tasks from three MI tasks. In this
session, each taskwas started by showing a visual cue, and
the task last for 4 s. Totally, each subject did 200 tasks bal-
anced between two MI tasks. After each task, there was a
4 s break. In the evaluation session, each task was started
by a soft voice command, and the task last between 1.5−
8 s. After each task, there was a break between 1.5- 8s.
For computational efficiency, the 100Hz version of the
dataset is used. Figure 1 shows the EEGwaveforms of the
1st channel of 1st, 50th, and 100th trial of subjects a, b, c,
d, and e, for BCI competition IV 1 dataset.

2.2 Problem Statement and Ideology of the
ProposedMethod

In this study, a novel strategy is proposed to solve the
mentioned problems. The rationale is to recognize low-
quality EEG trials. Rejecting low-quality trials in an
EEG-based MI BCI was previously investigated in [19].
However, in situations that all trials are contaminated
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Figure 1: EEG waveform of the 1st channel of trial 1(left column), trial 50 (middle column), and trial 100 (right column), of a. subject a,
b. subject b, c. subject c, d. subject d, e. subject e, for BCI competition IV 1 dataset

by noise or artifact, it is difficult to distinguish trials
based on the recorded EEG signal. In the following, this
paper tries to discuss this issue. As explained earlier,
the recorded signals in EEG-based MI BCI are mixtures
of some different source signals. Therefore, a solution
for the mentioned problem is to use the original source
signals, which could be done by separating the mixed

signals properly using many algorithms such as ICA.
Here appears the second issue that this paper wants to
discuss. Assuming the source signal to be S, the recorded
signal would be X = AS, where A is mixture matrix. The
ICA multiplies A−1 by X to find S. But matrix inversion
of high dimensional matrices has heavy processing and
in low-cost applications comprises the main cost.
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In this paper, both rejecting the low-quality trials by sep-
arating independent components of the recorded signal
and reducing the high computation ofmatrix inversion in
ICA are addressed. Generally speaking, the diagonaliza-
tion of a matrix is the best way to reduce the complexity
of its inversion. Because the inverse of a diagonal matrix
is just the inverse of its diagonal elements. However, the
diagonalization of a matrix is not so easy. Therefore,
this paper presents an approximate joint diagonaliza-
tion algorithm [20]. Generally speaking, the diagonaliza-
tion of symmetric matrixes is easier than non-symmetric
matrixes. Therefore, instead of X, its covariance matrix is
used for diagonalization. So, the proposedmethodwould
be faster than common ICA algorithms, because, in addi-
tion to using diagonalization before matrix inversion, the
proposed fast diagonalization algorithm (see Appendix
A) reduces the complexity of diagonalization.

The block diagram of the proposed method is shown in
Figure 2. The first block records EEG signals from the
brain for each trial. The recorded signals are mixtures
of different source signals. The second block transforms
them back to the original source signals by using a fast
ICA algorithm. At the third block, a fast diagonaliza-
tion algorithm measures criteria for within trial quali-
ties. According to these criteria, this block devotes sparse
weights to each trial and calculates a weighted averaged
covariance matrix of the recorded signal. At the fourth
block, the obtained covariance matrix is fed to a CSP
filter. The output of this block is used as a feature for clas-
sification by Support Vector Machine (SVM) in the last
block. In this section, the above processing is explained
in detail.

2.3 Mathematical Analysis of the Proposed
Method

Consider Xk = ASk to be the recorded signal at trial k;
k = 1, . . . ,K, whereXk = [xk1, x

k
2, . . . , x

k
N]; x

k
i ∈ RM .

The goal is to estimate both A and S from X. Let
the within-trial covariance matrix be Ck. Theoretically

diagonalization process of this matrix would be Ck =
E(XkXkT) = AE(SkSkT)AT = AQkAT . Because the
source signals are independent, and the cross-correlation
terms that form the off-diagonal part of Qk are zero.
When more than two matrices are to be diagonalized,
exact diagonalizationmay be possible if thematrixes pos-
sess a certain common structure. Otherwise only approx-
imate joint diagonalization could be used. An efficient
algorithm for approximate joint diagonalization is Fast
Frobenius Diagonalization [19], which is based on the
second-order approximation of a cost function for the
simultaneous diagonalization problem. The Fast Frobe-
nius Diagonalization algorithm tries to find matrix V
(whereV = A−1) that diagonalizes the given covariance
matrix in the following form:

Qk = VCkVT , (1)

Fast Frobenius Diagonalization Algorithm iteratively
finds an approximate solution for the following optimiza-
tion problem:

min
V

K∑
k=1

∑
i�=j

((VCkVT)ij)
2 (2)

In each iteration, matrix V is updated in the following
form:

Vn+1← (I +Wn)Vn (3)

where I denotes the identity matrix, Wn is the update
matrix, constrained to have zeroes on the main diagonal,
and n is the iteration number.

Implementing Algorithm 1 derives the diagonalized
covariance matrix (Q = {Q1, . . . ,QK}). Therefore, the
covariance matrix of source signals could be obtained by
multiplyingQ−1 by X. Algorithm 2 summarizes this step
(see Appendix B) [20].

In the next step, the total covariance matrix is estimated
by a weighted averaging over within trial covariance

Figure 2: Block diagram of the proposed method
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matrices of the separated source signals. The assigned
weights conserve the following constraints:

C1 : wT1 = 1;C2 : wTek ≥ 0, (4)

where w is the weight vector. Actually, low-quality tri-
als should be rejected by assigning weights obtained by
solving the following l1-normoptimization problem [19]:

min
w

1
tr(D)

Dw1

S.t. wT1 = 1;wTek ≥ 0,
(5)

where D = diag[p1, p2, . . . , pK], and pkis a scalar related
to the quality of each trial. The underlying assumption
behind the diagonalization is that the residue result-
ing from the diagonalization with respect to a low-
quality trial is large. Considering Ek as the diagonaliza-
tion residue, pk can take the form of pk = EkF , where Ek
could be derived by Algorithm 1.

The ideal covariance matrix could be the equal weight
average of within-trial covariance matrices. Considering
this assumption, l1-norm optimization changes to the
following regularized l1-norm optimization [19]:

min
w

α

tr(D)
Dw1 + 1

2
1∑
kQk2

F

∑
k

(
1
K
− wk

)
Qk2

F

S.t. wT1 = 1;wTek ≥ 0,
(6)

where α is the regularization parameter. After some
mathematical manipulation (6) becomes as

min
w

α

tr(D)
Dw1 + 1

2
1

tr(G)

(
w − 1

K

)T
G
(
w − 1

K

)
S.t. wT1 = 1;wTek ≥ 0,

(7)

Where

G =

⎡
⎢⎢⎣
tr[Q1Q1T] · · · tr[Q1QKT]
...

. . .
...

tr[QKQ1T] · · · tr[QKQKT]

⎤
⎥⎥⎦ .

The projected gradient method is known as a solution
for convex optimization problems, which is extensively
investigated over the last decades [21]. AlternatingDirec-
tion Method for Multipliers (ADMM) algorithm is used
to blend the decomposability of dual ascent with the
superior convergence properties of the method of mul-
tipliers. The ADMM solves the following optimization

problem [22]:

min
w,v

f (w)+ g(v)

s.t. Aw + Bv = c,
(8)

where w ∈ Rn and v ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, c ∈
Rp, and f and g are convex functions. The Lagrangian
form of the above problem is as follows:

Lρ(w, v, y) = f (w)+ g(v)+ yT(Aw + Bv − c)

+
(ρ

2

)
Aw + Bv − c22, (9)

where ρ > 0. The ADMM can solve the above problem
by the following iterations:

wn+1 = min
w

Lρ(w, vn, yn) (10)

vn+1 = min
v

Lρ(wn+1, yn, v) (11)

yn+1 = yn + ρ(Awn+1 + Bvn+1 − c) (12)

Therefore, in order to solve (7) usingADMM, first should
write its Lagrangian equivalent. The Lagrangian equiva-
lent of (7) is in the following form:

α

tr(D)
Dw1 + 1

2
1

tr(G)

(
w − 1

K

)T
G
(
w− 1

K

)

+ lC1(w)+ lC2(w), (13)

where lC is the indicator function. Furthermore, com-
paring (7) with (8), the following equivalencies would
exit:

f (w) = α

tr(D)
Dw1

+ 1
2

1
tr(G)

(
w − 1

K

)T
G
(
w− 1

K

)
+ lC1(w)

(14)

g(v) = lC2(v). (15)

Considering (10), and (13) obtains:

wn+1 = min
w

Lρ(w, vn, yn) (16)

Differentiating the objective function of (16) with respect
to w and finding its root obtains:

wn+1 =
(

ρ
G

tr(G)
+ I

)−1

×
[
zn − yn + ρ

(
G1

Ktr(G)
− α

tr(D)
D1− ξ1

)]
.

(17)
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Substituting (17) to constraint C1 in (4), and after some
mathematical manipulations obtains:

ξ =
(

ρ1T
(

ρG
tr(G)

+ I
)−1

1

)−1 [
1T
(

ρG
tr(G)

+ I
)−1

×
[
zn − yn + ρ

(
G1

Ktr(G)
− α

tr(D)
D1
)]
− 1

]
.

(18)

Considering (11), and (13) obtains:

vn+1 = min
v

lC1(v)+
1
2ρ

v − (wn+1 + yn)22 .

= min
w

α

tr(D)
Dw1

+ 1
2

1
tr(G)

(
w − 1

K

)T
G
(
w − 1

K

)

+ 1
2ρ

vn − w − yn22 + ξ(wT1− 1). (19)

According to the definition of the indicator func-
tion, v should be in the domain of C2; i.e. v ≥ 0.
Accordingly,wn+1 + yn should be positive to minimize
the objective function. In fact wn+1 + yn should be pro-
jected to the domain of C2, i.e.

vn+1 = PC2(w
n+1 + yn). (20)

Considering (12), can write

yn+1 = yn + wn+1 − vn+1. (21)

Therefore, the target sparse weights can be obtained by
choosing initializing points of w0, v0, y0 and then repeat-
ing (17), (20), (21).

3. EXPERIMENTAL RESULTS

This section presents the results of deploying the pro-
posed methods on two available well-known datasets,
namely BCI competition IV 1 and 2a. The conducted
experiment of BCI competition IV is the recording of
EEG signals during different MI tasks. The purpose is to
classify the recorded EEG signals of different MI tasks.
According to section 2, the following CSP basedmethods
are used for feature extraction:

(1) Proposed ICA-CSP with equal weights (wk = 1/K).
The idea is to give equal weights to trials.

(2) Proposed ICA-CSP with quality related weights
(wk = ηEk−1F , where η is a normalization factor).
The idea is to give a small weight to a large residue
(low quality) trial.

(3) Proposed ICA-CSP with sparse weights. The idea is
to give sparse weights to trials.

Furthermore, in order to clarify the improvement of the
proposed methods, they are compared with some well-
known related methods presented in [16,17,19,23–25].
The following CSP based methods are presented in these
references for feature extraction:

(1) CSP with the sparse weights [19]. The idea is to give
sparse weights to trials, this method was presented
in [19].

(2) CSPwith equal weights (CSP) [23]. The idea is to use
the simple form of CSP, this method was presented
in [23].

(3) CSP with weights adjusted based on Tikhonov regu-
larization (TRCSP) [16]. The idea is to use Tikhonov
regularization for adjusting weights, this method
was presented in [16].

(4) CSP with weights adjusted based on an l1−norm
regularization (WLCSP) [17]. The idea is to use
l1−norm optimization for adjusting weights, this
method was presented in [17].

(5) CSP with filter banks (FBCSP) [24]. The idea is to
use a filter bank with equal frequency bandwidths
to divide the frequency range of 0− 40 Hz into 8
equal parts to compose 9 different non-overlapping
frequency bands with 4 Hz bandwidth. This method
was presented in [24].

(6) CSP with filter banks (FBCSP) [25]. The idea is
to use a filter bank with different frequency band-
widths to divide the frequency range of 8− 32 Hz
into 8 parts with centre frequencies of 8, 9.57, 10.09,
11.89, 15.75, 21.71, 22, 27.27 Hz. This method was
presented in [25].

In order to have a fair comparison, the log-variance of
the output of these CSP based methods is used as the
feature vector. The features are classified by SVM Tool-
box of MATLAB software (version 2015a). The Radial
Basis Function kernel with unit kernel parameter is used
for classification. From the SVMToolbox, the svmtrain(.)
function is used for derivation the model of the training
data. The inputs of this function are labels and extracted
features of the training data. Then the svmclassify(.)
function of SVMToolbox is used for predicting the labels
of the testing data. Inputs of this function are the obtained
model and the extracted features of testing data. How-
ever, new versions of MATLAB software, the fitcsvm(.)
and predict(.) functions are substituted for svmtrain(.)
and svmclassify(.) functions, respectively. The inputs of
these two functions are the same as mentioned the previ-
ous functions.
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Table 1: Classification accuracy for different values of α for each subject in datasets BCI IV 1, and BCI IV 2a
α

Subject 100 50 10 5 1 0.2 0.02 0

Dataset IV 2a
1 0.7295±0.022 0.707±0.020 0.707±0.025 0.707±0.028 0.707±0.018 0.707±0.027 0.707±0.022 0.707±0.024
2 0.7003±0.063 0.628±0.067 0.628±0.067 0.627±0.069 0.657±0.059 0.652±0.061 0.672±0.070 0.728±0.061
3 0.6519±0.044 0.639±0.049 0.643±0.049 0.632±0.048 0.620±0.041 0.626±0.041 0.643±0.041 0.661±0.046
4 0.6422±0.039 0.593±0.035 0.592±0.031 0.587±0.049 0.632±0.035 0.644±0.035 0.654±0.042 0.632±0.036
5 0.5880±0.066 0.521±0.069 0.513±0.061 0.540±0.071 0.589±0.061 0.581±0.062 0.603±0.069 0.596±0.063
6 0.6736±0.039 0.615±0.037 0.615±0.046 0.621±0.041 0.651±0.034 0.669±0.034 0.660±0.043 0.665±0.043
7 0.6928±0.055 0.666±0.059 0.671±0.055 0.678±0.051 0.704±0.051 0.700±0.051 0.724±0.059 0.704±0.059
8 0.6265±0.054 0.591±0.059 0.590±0.054 0.599±0.059 0.631±0.051 0.631±0.059 0.627±0.059 0.650±0.051
9 0.6541±0.039 0.653±0.033 0.652±0.046 0.647±0.030 0.646±0.032 0.647±0.037 0.687±0.033 0.703±0.046
Ave 0.6621± 0.047 0.624±0.046 0.623± 0.048 0.627± 0.049 0.649±0.042 0.651±0.045 0.664±0.048 0.672±0.046
Dataset IV 1
a 0.839 ± 0.124 0.834±0.121 0.849±0.119 0.778±0.118 0.688±0.108 0.698±0.115 0.702±0.125 0.682±0.109
b 0.741 ± 0.064 0.741±0.067 0.726±0.063 0.762±0.069 0.761±0.075 0.772±0.070 0.617±0.062 0.576±0.075
c 0.736 ± 0.091 0.736±0.093 0.741±0.090 0.716±0.088 0.576±0.099 0.525±0.096 0.496±0.097 0.597±0.088
d 0.763 ± 0.103 0.763±0.098 0.768±0.105 0.733±0.115 0.755±0.099 0.691±0.098 0.495±0.101 0.514±0. 106
e 0.949 ± 0.049 0.949±0.054 0.949±0.046 0.945±0.061 0.955±0.051 0.96±0.054 0.909±0.059 0.874±0.053
f 0.865 ± 0.107 0.865±0.099 0.845±0.101 0.740±0.095 0.845±0.101 0.860±0.102 0.833±0.097 0.792±0.102
g 0.908 ± 0.065 0.913±0.072 0.933±0.071 0.853±0.069 0.737±0.073 0.702±0.061 0.54±0.059 0.535±0.067
Ave 0.829±0.086 0.829±0.086 0.830±0.085 0.79± 0.087 0.759± 0.084 0.744±0.085 0.656±0.085 0.653±0.085

Table 1 shows the classification accuracy for different val-
ues of α (sparsity parameter) for each subject in datasets
BCI IV 1 and IV 2a. 10-fold cross validation is done,
accordingly, results are reported as mean± standard
deviation. α is the sparsity parameter, increasing α pro-
motes sparsity. As seen, the α value related to the best
accuracy of each dataset is different, actually, the dataset
that was recorded better (with fewer low quality trials)
has smaller α. In dataset IV 1, the accuracy decreases
with increasing sparsity, which means that there are
few low quality trials in this dataset. However, in the
dataset IV 2a, increasing sparsity results in better per-
formance, which means that this dataset has more low
quality trials. In addition, it can be seen that different
subjects in a dataset have the same α value related to
their best accuracy, and a clear relationship could be
seen between α and accuracy. Accordingly, α = 0.2 and
α = 10.2 would be used respectively for classification
accuracies in datasets BCI IV 1 and IV 2a, in Tables 2
and 3.

Table 2 compares the proposed methods with each
other and with [19], because it is the main reference
of this paper, and the improvements compared with
this reference should be clarified and discussed deeply.
Results of the classification accuracy, for 10-fold cross
validation and γ = 10−5, are reported in Table 2 as
mean± standard deviation. The proposed ICA-CSP
with sparse weight has the highest classification accu-
racy. The proposed ICA-CSP with quality related weight
shows a little better classification accuracy compared
with proposed ICA-CSP with equal weight. This shows
the weight coefficients obtained by residue matrices are

Table 2: Classification accuracy of the proposed methods
and the main reference of this paper ([19]) for each subject
in datasets BCI IV 1, and BCI IV 2a

Method

Subject

CSP with
the sparse
weight [19]

Proposed
ICA-CSP

with sparse
weight

Proposed
ICA-CSP
with
quality
related
weight

Proposed
ICA-CSP
with equal
weight

Dataset
IV 2a

1 0.7339±0.018 0.7295±0.022 0.7035±0.025 0.7050±0.026
2 0.6491±0.044 0.7003±0.063 0.6377±0.052 0.616±0.043
3 0.6272±0.034 0.6519±0.044 0.6294±0.024 0.6044±0.027
4 0.6461±0.047 0.6422±0.039 0.5874±0.048 0.5786±0.042
5 0.5803±0.116 0.5880±0.066 0.5076±0.059 0.5205±0.048
6 0.6706±0.054 0.6736±0.039 0.5679±0.051 0.5795±0.056
7 0.6992±0.0493 0.6928±0.055 0.6657±0.057 0.6661±0.058
8 0.6283±0.063 0.6265±0.054 0.6019±0.070 0.5950±0.068
9 0.6507±0.047 0.6541±0.039 0.6472±0.043 0.6503±0.038
Ave 0.6539± 0.052 0.6621± 0.047 0.6165± 0.048 0.6129± 0.045
Dataset
IV 1

a 0.8544±0.104 0.8544±0.112 0.7877±0.093 0.8344±0.102
b 0.7466±0.079 0.7527±0.064 0.7377±0.068 0.7327±0.063
c 0.7316±0.090 0.7816±0.091 0.7461±0.104 0.7616±0.098
d 0.7683±0.142 0.8072±0.103 0.7872±0.103 0.7872±0.101
e 0.9494±0.061 0.9644±0.049 0.9544±0.037 0.9444±0.040
f 0.890± 0.066 0.910±0.107 0.930± 0.075 0.890±0.081
g 0.9188±0.0645 0.9183±0.079 0.9133±0.072 0.9183±0.076
Ave 0.8370± 0.087 0.8555± 0.087 0.8366± 0.079 0.8384± 0.080

designed in a sophisticated manner. However, as sparse
weight performs better than non-sparse weight (deter-
mined by error matrices obtained from joint diagonal-
ization), so, in a future work, the error matrices should
be used for designing weights in a more sophisticated
way. Compared with [19] (CSP with the sparse weight),
the proposed ICA-CSP with sparse weight shows better
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Table 3: Classification accuracy of the proposed ICA-CSP with sparse weight method and the well-known state of the art
methods for each subject in datasets BCI IV 1

Method

Subject

CSP with
the sparse
weight [19] CSP [23] TRCSP [16] WLCSP [17] FBCSP [24] FBCSP [25]

Proposed
ICA-CSP

with sparse
weight

a 0.8544±0.104 0.61611±0.177 0.834 ± 0.061 0.74778±0.085 0.743 ± 0.107 0.61722 ± 0.180 0.8544±0.112

b 0.7466±0.079 0.79778±0.100 0.787 ± 0.108 0.79778±0.089 0.758 ± 0.121 0.86389 ± 0.052 0.7527±0.064
c 0.7316±0.090 0.76833±0.084 0.773 ± 0.084 0.77833±0.079 0.751 ± 0.127 0.85222 ± 0.073 0.7816±0.091
d 0.7683±0.142 0.77944±0.157 0.794 ± 0.133 0.84333±0.095 0.893 ± 0.072 0.89944 ± 0.084 0.8072±0.103
e 0.9494±0.061 0.96444±0.053 0.964 ± 0.047 0.97444±0.051 0.938 ± 0.033 0.97 ± 0.034 0.9644±0.049
f 0.89±0.066 0.58667±0.153 0.798 ± 0.136 0.89±0.083 0.696 ± 0.082 0.88389 ± 0.057 0.91±0.107
g 0.9188±0.0645 0.738±0.091 0.913 ± 0.068 0.908±0.096 0.767 ± 0.106 0.792 ± 0.129 0.9183±0.079
Ave 0.8370± 0.087 0.750± 0.116 0.838±0.091 0.8486± 0.082 0.792±0.093 0.839±0.087 0.8555± 0.087

classification accuracy in both datasets, and this clarifies
the superiority of the proposed method.

Considering the classification accuracy for each subject,
again the proposed ICS-CSPwith sparse weight performs
better and proves that there exist low quality trials in each
dataset. So, the assumed ideology in section 2.1 is correct.
For example, subject 2 shows more than 7% accuracy
improvement using the proposed ICS-CSP with sparse
weight comparing with proposed ICA-CSP with equal
weight.

It has worth to mention that all the quality of a trial is
somehowdependent on the subject that is performing the
MI tasks. For example, subject 9 shows the same accu-
racy at each of the proposed methods, and no trial was
rejected. This indicates that this subject did the MI tasks
well, and there is almost no low quality trial in recording
its dataset.

Comparing the results over datasets IV 1 and IV 2a, by
using the proposed ICS-CSP with sparse weight, dataset
IV 2a shows more classification accuracy improvement,
which indicates that dataset IV 2a more low-quality tri-
als than IV a. For example, in dataset BCI IV 1, subject
g has no classification accuracy improvement, and the
maximum classification accuracy improvement in this
dataset is 2%. But in dataset BCI IV 2a, subject 9 has 9%
classification accuracy improvement.

Table 3 presents a comparison between the proposed
ICA-CSP with sparse weight with some of the well-
known related methods presented in [16,17,23–25]. The
explanation about the details of these methods is out
of the purpose of this paper, and the interested reader
may refer to [16,17,23–25]. The classification accuracy is
deployed on dataset BCI IV 1.As seen, the proposed ICA-
CSP with sparse weight has the best performance among
all the referred methods. It becomes more interesting

while considering that these are well-known state of the
art methods in BCI MI classification task. This proves
the main idea of this paper that separating the mixed
signals and then removing the low quality trials by pro-
viding sparse weights would really improve classifica-
tion accuracy in different datasets and different users.
As seen, after the proposed ICA-CSP with sparse weight,
WLCSP has better performance and after that TRCSP
and CSP with the sparse weight have better performance
than other methods. Because, these methods also solve
an optimization problem to find the optimum weights,
and they find it. However, they do not separate dif-
ferent mixed source signals; that’s why they could not
achieve the performance of the proposed ICA-CSP with
sparse weight method. As seen, the FBCSP methods
have better performance than CSP method. Because, the
effectiveness of CSP depends on the subject-specific fre-
quency band. However, FBCSP tries to find more effec-
tive subject-specific frequency bands, and improves the
CSP performance. It should be noted that [25] divided
the frequency bands in a more sophisticated manner
than [24] and could achieve a better performance.

4. CONCLUSION

The classification accuracy of MI BCI could be degraded
by low-quality trials. So, rejecting such trials is a promis-
ing solution for improving classification accuracy. But
processing should be done on the source signals, not
on the recorded signals because in the worst case sce-
nario where all the trials are low quality, processing the
recorded signal results in rejecting all the trials. In this
paper, a new fast approach was presented for rejecting
low-quality trials. Actually, a new fast ICA algorithmwas
presented for separating the source signals, and then the
rejection was developed on the source signal. Results
indicated the improvement of classification accuracy of
the proposed methods in comparison with some of the
well-known related works.
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APPENDICES

APPENDIX A: ALGORITHM 1, FAST
APPROXIMATE JOINT DIAGONALIZATION

Input C = {C1, . . . ,CK }, ;
W1 = 0,V1 = I;

while error > epsilon & n < 1000
% Compute W

For k= 1:K
z(i,j) = z(i,j)+C(i,i,k)*C(j,j,k);
y(i,j) = y(i,j)+ 0.5*C(j,j,k)*(C(i,j,k)+conj(C(j,i,k)));

end

W(i,j) = (z(j,i)*y(j,i)-z(i,i)*y(i,j))/(z(j,j)*z(i,i)-z(i,j)ˆ2);
W(j,i) = ((z(i,j)*y(i,j)-z(j,j)*y(j,i))/(z(j,j)*z(i,i)-z(i,j)ˆ2));
[f,e] = log2(norm(W,’inf’));
s = max(0,e-1);
W = W/(2ˆs);

% Compute update

V = (I+W)*V;
V = diag(1./sqrt(diag(V*V’)))*V;

C = A*C*V’;

for k= 1:K
f = f+ trace((V*C(:,:,k)*V’)’* V*C(:,:,k)*V’) -

trace (V*C(:,:,k)*V’.*V*C(:,:,k)*V’);
end

% convergence

error = abs(f(n)-f(n-1));
n = n+1;

end

APPENDIX B: ALGORITHM 2, ICA

Input X
% tau – array of time-delays, default: tau = [ 0 1];

X = X - mean(x);
C = zeros(N, N, 2);

for t= 1:2
C0= x(:,1:T-tau(t))*x(:,1+tau(t):T)’ / (T-tau(t)−1);
C(:,:,t)= (C0+C0’)/2;

end

Q = Algorithm 1(C)
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