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a b s t r a c t

Optical performance monitoring (OPM) is essential to guarantee the robust and reliable operation of
few-mode fiber (FMF)-based transmission. The available OPM methods including the analytical models
such as the enhanced Gaussian noise model provide high accuracy along with high computational
complexity which makes them improper for real-time implementations. As an alternative approach,
machine learning (ML)-based OPM removes this barrier at the cost of leveraging a large training
dataset. However, generating a field or synthetic dataset for FMF-based transmission is very hard and
time-consuming. As a specific ML deployment, active learning (AL) is designed to work with a small
training dataset, therefore, in this paper, we employ AL for OPM in FMF-based transmission. Results
indicate that the proposed AL-based OPM can properly estimate the generalized signal-to-noise ratio
by using a very small training dataset and achieve the root mean squared error similar to that obtained
by working on large training datasets.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Mode division multiplexing (MDM) through few-mode fibers
(FMFs) is a new multiplexing technique applicable for data rate
enhancement in optical fiber communications [1–3]. FMFs al-
ways have a substantial linear coupling among modes, especially
in long-range transmission, therefore, the receiver needs to be
equipped with multi-input multi-output (MIMO) digital signal
processing (DSP) like those widely used in radio frequency com-
munication [4]. The available FMFs are step-index or graded-
index where the second case is optimized to have the minimum
differential modal group delay and a simple receiver [5]. There
are special optical amplifiers used, mostly erbium-doped fiber
amplifiers (EDFAs), for maintaining launched power in FMFs,
and are optimized to have the minimum mode-dependent gain
variation [6]. The inter and intra-modal Kerr-based nonlinear
(coupling) effects severely degrade the performance of the FMF
system.

Optical performance monitoring (OPM) is essential for improv-
ing control of transmission and physical layer fault management
in high-capacity FMF-based transmission and switching [7,8].
OPM evaluates the signal quality by measuring optical phenom-
ena and physical characteristics such as generalized signal-to-
noise ratio (GSNR) without directly assessing the transmitted
data sequence. GSNR estimation can be formulated in terms of
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amplified spontaneous emission (ASE) noise and nonlinear in-
terference (NLI) noise [7]. The linear noise calculation is simple,
while the NLI noise computation is challenging. To predict the
NLI, the Gaussian noise (GN) model [9,10] and enhanced GN
(EGN) model [11–13] are the most popular methods which con-
sider the FMF nonlinearity as an additive Gaussian noise source.
The GN model assumes Gaussian distribution for the propagating
signal while the EGN model takes into account different mod-
ulation formats. These methods have computational complexity
which makes them inappropriate for real-time applications.

1.1. Literature review

Recently, machine learning (ML) has been widely used as a fast
and accurate GSNR estimation method [14–17]. ML models can
be trained to learn the relationship between GSNR and the FMF
system/link parameters such as transmitted power, span length,
number of spans, ASE noise power, polarization/mode-dependent
attenuation, mean attenuation, chromatic dispersion, and modal
dispersion. ML-based OPM requires a huge dataset which slows
down the training process, in addition, a lot of new training sam-
ples should be added when FMF system/link conditions change
which increases training epochs [18–20]. However, generating a
large field/synthetic dataset for FMF is very hard and consumes
a lot of time [14]. In this context, active learning (AL), a special
ML implementation, can be leveraged which explicitly requests
label-specified features to improve training performance. AL can
be adopted for cleverly choosing the training points to be ac-
quired for improving OPM accuracy by minimizing an acquisition
function tailored to the ML-based OPM model.
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Fig. 1. Schematic of the considered FMF system model.

1.2. Motivations, novelties, and contributions

FMFs encounter additional impairments to those that exist in
the single-mode fiber (SMF) including mode-dependent attenu-
ation, mode-dependent gain, modal dispersion, linear coupling,
and nonlinear coupling. Although FMF linear effects are reversed
by the MIMO DSP, they have a consistent impact on FMF nonlin-
earity. This impact and the nonlinear coupling are the specificities
of FMF nonlinearity that should be considered while designing
an AL model for FMF systems. Therefore, the trained AL model
for SMF transmission cannot be applied to FMF transmission and
need to be re-tuned and re-trained.

The potential deployment of FMF in future optical networks
necessitates investigating the applicability of AL-based OPM for
FMF-based transmission. Despite this importance, the only exist-
ing works consider the quality of transmission estimation in SMF
networks [18–20] and there is no investigation over AL-based
OPM for FMF-based transmission. Therefore, in this paper, we
present and develop AL-based OPM for GSNR estimation in FMF-
based transmission by utilizing FMF system/link configurations as
features. The novelties and contributions of this work include

• Proposing AL-based OPM in FMF transmission, having supe-
rior capabilities of fast data resource reservation enabling
the possibility for real-time applications,

• Presenting a comprehensive investigation over AL-based
OPM considering different performance criteria, training
dataset length, acquiring dataset length, and ML hyperpa-
rameters.

The rest of this paper is organized as follows; Section 2 de-
scribes the system model, and Section 3 explains the proposed
AL-based OPM approach. Simulation results and discussions are
provided in Section 4, and Section 5 is the conclusion of this work.

2. System model

We consider the FMF system depicted by Fig. 1 composing
of Ns spans with EDFA at the end of each span for maintain-
ing signal power. The propagating signal is a multiplexing of
2 polarizations, D spatial modes, and Nch frequency channels.
The FMF propagation suffers from linear and nonlinear effects
such as modal dispersion, chromatic dispersion, linear coupling,
Kerr-based nonlinearity, and nonlinear coupling. At the receiver,
after the demultiplexer, the MIMO DSP compensates for linear
effects, and the carrier phase estimator (CPE) recovers the non-
linear phase rotation. Based on the well-known EGN model, the
received signal after CPE can be modeled as a summation of the
transmitted signal and ASE and NLI noise [11,21]. Therefore, the
GSNR of nth channel and pth mode after CPE can be formulated
as [11]

GSNRn,p =
Pn,p

σ 2
ASE,n,p + σ 2

NLI,n,p
, (1)

where Pn,p, σ 2
ASEn,p , and σ 2

NLI,n,p respectively are launched power,
ASE and NLI noise variances of nth channel and pth mode [11].

Demonstrating AL’s ability to learn a well-behaved summa-
tion of triplets (EGN) is not beyond the scope of original AL
demonstrations. Since EGN does not capture the stochastic per-
formance variability associated with the general case. Moreover,
using the EGN model in this form to propagate the optical signal
makes the problem to be a trivial solution for AL. Therefore,
here we consider the same approach as [22] and account for the
uncertainties by modeling the gain and noise figure ripples as
functions of mode-frequency and introducing randomization in
the amplifier gain and noise figure, to simulate uncertainties in
these parameters. In particular, we introduce a random offset and
tilt into the noise figure ripple samples while preserving their
correlation with the mode-frequency.

3. Proposed AL-based OPM approach

The proposed AL-based OPM relies on Gaussian process re-
gression (GPR) [23], here, we first bring preliminaries about GPR
and then explain the procedure of the proposed GPR-based AL
approach.

3.1. GPR preliminaries

GPR is a probabilistic non-parametric regression algorithm
that provides both a prediction and a quantification of prediction
uncertainty [23]. GPR reliability and fast-to-compute uncertainty
quantification are the two characteristics that make it proper for
AL. In particular, we assume that only a small training dataset
is available. The GPR observes a training set of l points Xl =

{x1, . . . , xl}, coupled with response values y = {y1, . . . , yl} where
yi = f (xi) + ϵ; i = 1, . . . , l and ϵ ∼ N(0, σ 2

noise). This observation
model expresses that the GSNRs calculated by the latent function
f are corrupted by measurement noise ϵ due to the randomization
in EDFA gain and noise figure. We denote the latent function
values by f = (f (x1), . . . , f (xl)). The observation model can be
summarized by p(y|f) = N(f, σ 2

noise) which permits to handle
dataset points wherein two observations with the same input fea-
tures generate slightly different GSNR values, to increase dataset
variability and produce uncertainty.

GPR considers f as a realization of a GP, therefore, in a Bayesian
sense, we can assume that the f has a prior distribution given
by p(f) = N(m(Xl), K ) with m(Xl) = (m(x1), . . . ,m(xl)) and K
where Ki,j = k(xi, xj) is a positive definite kernel. The mean and
kernel functions should be selected before observing any data
and encoding prior knowledge. The prior mean encodes trends
of the latent function known before observing the data, and the
prior kernel defines the smoothness of the GPR fit. Note that,
GSNR does not have a priori specific properties, we select zero
mean with a kernel from a stationary family, to have a depen-
dency on a few hyperparameters to be tuned based on the input
dataset. Based on the Bayes theorem, we combine the prior and
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Algorithm 1: Proposed AL-based OPM approach.
Initialization: iteration counter l = 0, and training dataset
T0 = T ;

while The number of acquirable samples is exhausted do
Train regressor model with Tl ;
Build acquisition function based on the observation
model and prior variance;

Find next input xl+1 maximizing accusation function;
Update training set with Tl+1 = Tl

⋃
{(xl+1, yl+1)};

Update l = l + 1;
end

observation model to obtain the posterior distribution p(f|y) =

p(f)p(y|f)/p(y) which is normally distributed with analytical mean
and covariance expressions (see [23], chapter 2).

3.2. GPR-based AL

The AL-based OPM adaptively (not randomly) increases both
training dataset size and regressor confidence by adding new
dataset points from the pooling dataset by minimizing an ac-
quisition function. The training and pooling datasets respectively
include the labeled points and the potential points to query for a
label. The acquisition function provides an uncertainty measure of
a pooling dataset point, and is the variance in GPR. GPR associates
with any new untried input the posterior variance of the GP,
assuming this new point is added to the training set. For more
details about GPR-based AL, we refer to [24,25].

Given a training set Xl and a new point xl+1, we can compute
the posterior variance s2l+1(x) at any input location x and define
the acquisition function with the formula

s2l+1(x) = s2l (x) −
kl(x, xl+1)2

kl(xl+1, xl+1) + σ 2
noise

, (2)

where s2l (.) and kl(., .) are respectively the posterior variance and
covariance kernel given (Xl, yl). Here, we do not need the value
of the latent function f at xl+1, thus, s2l+1(x) can be computed
before measuring GSNR. Then we select the next input location
xl+1 by minimizing the acquisition function. To do so, we envision
a strategy that improves the training set by adding instances in
such a way that the future uncertainty (GPR variance over the
pooling dataset) is minimized. Thus, at each step, we find (and
add) only one point with the highest uncertainty (variance) from
the pooling dataset to the training dataset. In other words, we
pre-select a pool of possible points and calculate s2l+1 at these
points and select the maximizer point as xl+1. The proposed
AL-based OPM approach is summarized in Algorithm 1.

4. Simulation results and discussions

In this section, we first explain dataset generation and GPR
hyperparameter tuning. Then, we provide the performance and
complexity analysis of the proposed AL-based OPM approach for
FMF-based transmission. Simulations are done in Python environ-
ment [26,27], Scikit-learn library [28].

4.1. Dataset generation

FMF system and link configuration: Dataset generation is the
main issue while training an ML model for OPM in FMF. Since
generating a large field dataset is quite hard while considering
different system and link configurations, also generating a large
synthetic dataset by split-step Fourier method (SSFM) simulation

Table 1
Simulation parameters.
Parameter Value

Number of modes 3
Number of channels 66
Center frequency 193.5 THz
Symbol rate 64 GBaud
Channel bandwidth 75 GHz
Launched power −5 dBm to 5 dBm
Number of spans 1–8
Span length 80–120 km
Coupling length 80 km

Table 2
Nonlinear coupling coefficient between pth and qth mode for FMF type 1 [30]
and 2 [31].
Type 1 Type 2

pq LP01 LP11a LP11b pq LP01 LP11a LP11b

LP01 1 0.661 0.661 LP01 0.73 0.36 0.36
LP11a 0.660 1.053 1.053 LP11a 0.36 0.55 0.18
LP11b 0.660 1.053 1.053 LP11b 0.36 0.18 0.55

is impractical while dealing with a few modes and the whole
C-band [29]. For instance, in our case, we had access to an Intel
Xeon CPU with 32 cores and 64 GB RAM by which we were able
to apply SSFM simulation considering only 3 spatial modes and 9
channels (0.45 THz bandwidth).

In this paper, we synthetically generated a dataset based on
the EGN model [11] considering system and link parameters de-
fined in Tables 1, 2, and 3. At each realization, we randomly select
one of the two FMF types reported in the Tables 2 and 3. and
then consider a random 0.1 variation for each of the reported FMF
parameters (i.e. mode-dependent attenuation, modal dispersion,
chromatic dispersion, and nonlinear (coupling) coefficients), to
produce more variability in the dataset and prevent the proposed
AL-based model to be highly specific to these FMF types. We
consider 3 spatial modes and 66 channels (5 THz bandwidth,
C-band). Transceivers operate at 193.5 THz center frequency,
64 Gbaud symbol rate, and 75 GHz optical bandwidth. We use
polarization multiplexed-quadrature phase shift keying modula-
tion format. Transmission adopts launched powers per channel
and mode uniformly selected between −5 dBm to 5 dBm. Fiber
spans are assumed to be uniformly selected between 1–8 in the
range 80–120 km (with 1 m granularity). Both weak and strong
linear coupling regimes are considered with a coupling length
of 80 km (i.e., after 80 km propagation the spatial modes are
strongly coupled together). It should be noted that linear coupling
accommodates continuously along spans while propagation, in
the sense that after 80 km propagation, all spatial modes en-
counter strong coupling even if all spans have 80 km length. At
the end of each span, an EDFA compensates for mode-dependent
attenuation. We calculate EDFA gain by considering 0.8 dB EDFA
gain tilt between LP01 and LP11a/b modes [32–35]. We consider
EDFA gain ripples randomly chosen between [−0.1, 0.1] dB [36].
Then, we compute the noise figure by F = (2nsp(G−1)+1)/G [37]
with nsp = 1.58 [37,38]. The motivation behind the randomiza-
tion in gain and noise figure is to simulate uncertainties in these
parameters.

Feature vector: The feature vector contains launched power,
modal dispersion, chromatic dispersion, nonlinearity coefficient,
nonlinear coupling coefficient, span length, number of spans,
mode-dependent attenuation, noise figure, EDFA gain, as well
as indices of channel and mode under test. We selected these
features as they affect the GSNR value (label) through the EGN
model. The GSNR calculation is replicated 50 times per FMF
system/link configuration, and the GSNR value at each realization
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Table 3
Nonlinearity coefficient, attenuation, modal dispersion, and chromatic dispersion for FMF type 1 [30] and 2 [31].
Type 1 Type 2

Parameter LP01 LP11a LP11b Parameter LP01 LP11a LP11b

Nonlinearity coefficient [1/(Watt km)] 1.3 1.3 1.3 Nonlinearity coefficient [1/(Watt km)] 1 1 1
Mode dependent attenuation [dB/km] 0.221 0.226 0.226 Mode dependent attenuation [dB/km] 0.201 0.206 0.206
Modal dispersion [ps/km] 0 6.5 6.5 Modal dispersion [ps/km] −0.29 −0.66 −0.66
Chromatic dispersion [ps2/km] 31.9 34.8 34.8 Chromatic dispersion [ps2/km] 28.3 28.2 28.2

Table 4
Considered kernel formulations and their selected hyperparameter values.
Kernel Formula Parameter

RBF k(xi, xj) = exp(− |xi−xj |2

2l2
) l = 1

Matern k(xi, xj) =
1

Γ (ν)2ν−1 (
√
2ν
l |xi − xj|2)νKν (

√
2ν
l |xi − xj|2) l = 1, ν = 1.5

White kernel k(xi, xj) = c1δ(xi, xj) c1 = 1
Constant kernel k(xi, xj) = c2 c2 = 1

is different due to the introduced randomization. We generate
2000, 1000, and 10 000 training, pooling, and test dataset points.
We used different random seeds while dataset generation and
shuffled them at the end to have statistically independent dataset
points.

Feature preprocessing: The ML models tend to weight higher
the features with bigger variances, i.e. the features with variances
orders of magnitude higher than the other features prohibit learn-
ing from others. Thus, these features should be presented in a
fixed range, e.g. by normalization scales each feature to have a
unit norm. Here, we employ Min–Max normalization as a widely
used method for scaling the features between 0 and 1. Min–
Max normalization scales the ith feature, xi ∈ [xi,min, xi,max] into
x̄i ∈ [0, 1] as x̄i = (xi − xi,min)/(xi,max − xi,min) with xi,min, xi,max as
minimum and maximum of ith feature.

Feature space: The feature space sweeps an infinite area,
in the following we explain more. The channel and the mode
indices, and the number of spans take 66, 3, and 8 integer values,
respectively. The span length and launched power of the chan-
nel and mode under test are uniformly distributed and impose
infinite values. Mode-dependent attenuation takes 198(3 × 66)
different values. Each of the modal dispersion, chromatic dis-
persion, nonlinearity coefficient, nonlinear coupling coefficients,
noise figure, and EDFA gain are fully randomized and take infinite
values. Calculating GSNR for each FMF system/link configuration
takes almost half an hour using the EGN model, besides, a small
change in FMF system/link configuration changes the GSNR value
(see [1,6]). In conclusion, substituting the EGN model with even
a huge look-up table based on pre-calculated EGN values is not
practical.

4.2. Hyperparameter tuning

Optimizing GPR hyperparameters: Although GPR is a non-
parametric ML method, it is specified by mean and kernel func-
tions which should be defined before GPR deployment. As ex-
plained in Section 3.1, GSNR does not have a priori specific
properties, therefore, we select zero mean with a kernel from a
stationary family which has a dependency on a few hyperparam-
eters. The kernel hyperparameters are optimized while training
by maximizing the log marginal likelihood by using an optimizer
(gradient-based optimizers are typically used for efficiency). The
log marginal likelihood may have different local optima, there-
fore, the optimization should be done repeatedly from different
starting points. Here, we optimize kernel hyperparameters during
training by Limited memory Broyden Fletcher Goldfarb Shanno
(L-BFGS or LM-BFGS) optimizer [39,40].

Considered kernel: In this paper, we consider standard ker-
nels including the radial basis function (RBF), the product of RBF

and constant kernel, the sum of RBF and constant kernel, the
sum of RBF and White kernel, and Matern kernel [23,41]. The
considered kernel formulations and hyperparameter values are
presented in Table 4. The RBF is the most popular kernel which
enforces infinite smoothness on the function and thus is suitable
if the data is very smooth. The kernels are closed under sum
and product operations, i.e., two base kernels can be combined
into a new kernel. Therefore, other convenient selections are the
product of RBF and constant kernel to scale the RBF magnitude,
and the sum of RBF and constant kernel to modify the mean
value. Moreover, the sum of RBF and White kernel can be used
to explain the noise component of the signal. The Matern kernel
is a generalization of RBF which represents a very flexible and
general family of distributions and does not assume quite as
much smoothness as the RBF kernel. For more details, we refer
to chapter 4 of [23], and for guidance on how to best combine
different kernels, we refer to [41].

Noise level: The noise level in the labels can be specified by
passing it through parameter α. A moderate noise level can also
help deal with numeric issues while training since it is effectively
implemented as Tikhonov regularization, i.e., by adding it to the
diagonal of the kernel matrix. As an alternative for specifying the
noise level, a White kernel component can be included in the ker-
nel for predicting the global noise level from data. Here, we add
α = 10−10 to the kernel matrix diagonal during training. It can
prevent a potential numerical issue during training, by ensuring
that the calculated values form a positive definite matrix, and also
can be interpreted as the variance of measurement noise.

4.3. Performance analysis

We provide the performance analysis of the proposed AL-
based OPM approach in terms of R2 and root mean square error
(RMSE) as defined in [28]. Figs. 2(a) and 2(b) respectively depict
RMSE and R2 values obtained by AL-based OPM approach versus
query iteration, for Matern kernel, RBF kernel, the sum of RBF and
White kernel, the sum of RBF and constant kernel, and product
of RBF and constant kernel. Here, we start with 500 training
samples and then increase the training dataset size by quarrying
the next points from the pooling dataset by using the AL-based
OPM approach. Matern kernel provides the best performance at
all query iterations which shows the adaptability of this kernel
to the distribution of our dataset. As explained in Section 4.2,
RBF assumes a little too smoothness for data which might not
be always true, however, the ν parameter in the Matern kernel
controls the smoothness of the resulting function. The smaller
ν the less smooth approximated function. Note that the Matern
kernel becomes equivalent to RBF when ν → ∞. RBF performs
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Fig. 2. (a) RMSE and (b) R2 values obtained by AL-based OPM approach versus query iteration, considering 500 training samples, for Matern kernel, RBF kernel, the
sum of RBF and White kernel, the sum of RBF and constant kernel, and product of RBF and constant kernel.

Fig. 3. (a) RMSE and (b) R2 values versus query iteration, considering 500 training samples, for GPR with max-var, min-var, and random query strategies.

close to Matern with a little degradation. The RBF and sum of
RBF with the White kernel have the same RMSE at low query
iterations then a gap appears between them. There are two ways
to specify the noise level for GPR, specifying α which just adds
values to the diagonal as expected, or incorporating the noise
level in the White kernel, in other words, specifying α is equiv-
alent to adding a White kernel with c1 = α. Note that in RBF
the α = 10−10, and we consider c1 = 1 in the sum of RBF and
white kernel. At low query iterations, the noise level (variance) is
high, then by the proposed AL-based approach this level reduces
where c1 = 1 is no more a good choice. Even though the sum and
product of RBF and constant kernel do not have good performance
at the beginning they get close to the Matern kernel at high query
iterations. Actually, in practice, the sum and product of RBF with
the constant kernel can be used instead of shifting the mean and
scaling the variance of the dataset. In conclusion, we use the
Matern kernel in the following.

Defining overfitting as the situation where the training per-
formance is better than testing performance: we do not observe
any overfitting in any case as the train and test performance are
almost the same. Moreover, the obtained train/test performance
is quite well which means we neither encounter underfitting.
This in turn indicates that the GPR hyperparameters are properly
tuned.

Figs. 3(a) and 3(b) respectively describe the obtained RMSE
and R2 values versus query iteration, considering 500 training

samples, for GPR with maximum variance (max-var), minimum
variance (min-var), and random query strategies. The RMSE value
decreases in max-var and random strategies and increases in the
min-var case and vice-versa for R2 value. Considering the max-
var strategy, AL-based OPM, in an iterative process, minimizes the
acquisition function and in turn minimizes the uncertainty (GPR
variance) which leads to performance improvement. However,
considering the min-var strategy, AL-based OPM, in an itera-
tive process, minimizes the acquisition function which does not
change the GPR variance since the data points with maximum
variance are remaining in the pooling dataset. Considering the
random selection, AL-based OPM, in an iterative process, updates
the training dataset by randomly selecting points from the pool-
ing dataset. Note that the variance (uncertainty) of the generated
dataset is not so high, since we do not consider artifacts or
additional noise sources. R2 is the fraction of variance explained
by the model with respect to the total variance of the test data,
RMSE is also a measure of model accuracy which unlike R2 is
dependent on the scale of the label. In other words, 0 < R2 < 1
and 0 < RMSE < ∞, thereby, the difference between different
strategies is more in terms of RMSE rather than R2. In conclusion,
we use the max-var query approach in this paper.

Figs. 4(a) and 4(b) respectively demonstrate RMSE and R2

values versus query iteration, for 10, 100, 500, 1000, and 2000
training dataset sizes. Here, we start with 10, 100, 500, 1000,
and 2000 training dataset sizes, and then we increase the training
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Fig. 4. (a) RMSE and (b) R2 values versus query iteration, for 10, 100, 500, 1000, and 2000 training dataset sizes.

dataset size by quarrying the next points from the pooling dataset
by the AL-based OPM approach. The performance improvement
by increasing training dataset size is more observable in small
query iterations rather than high query iterations, in terms of
both RMSE and R2. Although we can see the effect of train-
ing dataset size even at high query iterations, this difference
is negligible and the obtained results show the AL-based OPM
approach works properly even at low training dataset size. The
RMSE difference between 10 and 100, and between 10 and 500
is 0.01 dB and 0.02 dB, respectively, and the RMSE difference
of 10 with respect to 1000 and 2000 is 0.03 dB and 0.04 dB,
respectively. The same as Figs. 2 and 3, the difference between
different cases is more obvious in RMSE than R2 metric. Both
RMSE and R2 quantify how well a regression model fits a dataset,
and it is useful to calculate both the RMSE and R2 for a given
model because each metric gives us different useful information.
The first one tells us how well a regression model can predict
the value of the response variable in absolute terms while the
second one tells us how well a model can predict the value of
the response variable in percentage terms. For instance, consid-
ering training datasets larger than 100, the RMSE tells us that
the average deviation between the predicted GSNR made by the
model and the true GSNR is 0.1 dB, and the R2 value tells us
that the predictor variables in the model can explain 99% of the
variation in the GSNRs. Moreover, for training datasets larger than
100 the R2 result looks the same which means that with 100
point the predictor variables in the model can explain 99% of
the variation in the GSNRs. Considering obtained RMSE and R2

values, we conclude that a training dataset with 100 points is
enough. We report 1000 query iterations meaning that at the
end, additional 1000 training data points have been added to the
dataset. Regarding this, the performance of training data sets 500,
1000, and 2000 with 0 query iterations are respectively equal to
the performance of training datasets 100 with 350 queries, 500
with 120 queries, and 1000 with 350 queries. In that sense, the
total required training dataset is reduced, i.e. the total amount
of generated data in AL is smaller than the dataset required for
classical ML at the same prediction performance.

4.4. Complexity analysis

Table 5 shows the complexity analysis of the AL-based OPM
method, SSFM, and EGN model. The proposed AL-based OPM
method deploys the GPR algorithm at each iteration. As ex-
plained by [42], the complexity of GPR is mainly the calculation

complexity of finding the kernel inverse defined by N3
train mul-

tiplications/summations where Ntrain is the number of training
samples. As explained by [6,11], the SSFM simulation processing
blocks include MDM and WDM multiplexer and de-multiplexer,
EDFA at each span where each span has Nstep steps, FMF linearity
and nonlinearity implementation at each step, and dispersion
compensation at receiver. The transmitted signal at each WDM
comb has 2D dimensions with Nsym symbols at each dimen-
sion, therefore, the fast Fourier transform (FFT)/inverse FFT for
dispersion implementation/compensation has 2DNsymlog(2DNsym)
multiplications/summations. The exp(x) =

∑n1
i=0 x

i/i! can be cal-
culated by 2n1 multiplications and n1 summations, and the larger
integer n1 the better accuracy. The EGN model complexity anal-
ysis is based on equation (25) of [11]. The EGN model has four
3-dimensional (3D) integration, to calculate them numerically, n2,
n3 and n4 points with identical distances should be considered for
the first, second, and third dimensions. Therefore, n2 × n3 × n4
3D areas appear, taking a 3D summation over these areas is
equivalent to the principal 3D integration. The larger n2, n3, and
n4 the better accuracy. In sum, the complexity orders of the AL-
based OPM method and EGN model are respectively O(N3

train) and
O(n2n3n4). Considering the fact that n2n3n4 ≫ N3

train, the AL-based
OPMmethod provides much less complexity than the EGN model.

4.5. Discussion

To give an intuition on the practical relevance of the obtained
results, we mention that the absolute error values (|GSNRpred −

GSNRtrue|) are below 0.1 dB, 0.25 dB, and 0.75 dB in 58, 95,
and 100% of cases, respectively. The GSNRpred values are obtained
using small training and pooling datasets while GSNRtrue values
are based on the EGN model which is an accurate analytical
model. The proposed AL-based OPM approach and EGN model
predict each GSNR value in 10−6 s and 103 s. Therefore, the
proposed AL-based OPM speed-up the procedure 109 times and
is proper for real-time GSNR estimation. Although we need to
run the EGN model at each query to obtain the next query point,
this does not change anything as here we refer to real-time GSNR
estimation.

5. Conclusions

In this paper, we have presented a specific ML-based OPM ap-
proach relying on AL for GSNR estimation in FMF-based transmis-
sion. Results indicate that the proposed AL-based OPM method
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Table 5
Computational complexity of AL-based OPM method, SSFM, and EGN model.
Methods Number of multiplications Number of summations

AL-based OPM N3
train N3

train

(NstepNs)(8DNsymlog(DNsym)+ (NstepNs)(8DNsymlog(DNsym)+
SSFM simulation 6DNsym + 2n1 + 1)+ 2DNsym + n1 + 2)+

(4DNsymlog(DNsym) + 4DNsym + 2n1) (2DNsymlog(DNsym) + 4DNsym + n1)

Integral-form EGN model 8Dn2n3n4(2n1 + 4) 8Dn2n3n4(n1 + 6)

is well designed to work with small training dataset, i.e. starting
from a limited training dataset achieves capability similar to that
obtained by working on large training datasets. The proposed AL-
based OPM approach can achieve an RMSE value of 0.1 dB for
GSNR estimation utilizing a few pooling dataset points without
any training dataset.
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