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a b s t r a c t

Optical performance monitoring (OPM) is indispensable to guarantee stable and reliable operation
in few-mode fiber (FMF)-based transmission. OPM consists of measuring optical phenomena such
as generalized signal-to-noise ratio (GSNR) based on analytical models. GSNR comprises nonlinear
interference (NLI) noise which can be calculated either by exact analytical models e.g., enhanced
Gaussian noise (EGN) model which is accurate but computationally complex, or asymptotic analytical
models e.g., closed-form EGN model which are approximate but computationally fast. In this paper,
we employ deep learning (DL) as an accurate and fast alternative for OPM in FMF-based transmission.
However, DL-based OPM requires a large dataset to achieve proper performance whilst it is very
difficult and time-consuming to obtain a large field or synthetic dataset. Regarding this issue, we
develop deep transfer learning (DTL) for OPM in FMF to realize a fast response requiring a small
training dataset and a few training epochs despite various changes in system/link parameters such as
launched power, fiber type, and the number of modes. Results show root mean squared error of GSNR
estimation is less than 0.02 dB for DL and DTL-based OPM methods. Compared to DL-based OPM,
DTL-based OPM records 3 and 5 times reduction in required training dataset size and the number of
epochs, respectively which is beneficial for real-time applications

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Single-mode fiber (SMF) optical communication systems are
achieving their nonlinear capacity limits. Few-mode fiber (FMF)-
based transmission is a candidate for the next-generation optical
networks which enhances capacity by multiplexing parallel data
streams utilizing different spatial modes [1–4]. FMF systems suf-
fer from FMF linear and nonlinear effects. The FMF linear impair-
ments include attenuation, dispersion (chromatic and modal), and
linear coupling [5–9]. The linear coupling between modes results
in a power transfer from one mode to another mode [6]. Weak
coupling appears in short-range links [10,11] while the strong
coupling is more prone in long-range links [6,8]. In weak cou-
pling, each mode is processed separately without using complex
Multiple-Input Multiple-Output (MIMO) Digital Signal Processing
(DSP) [11] while in strong coupling MIMO DSP is required to
compensate FMF linear effects [5]. MIMO DSP complexity is low
in nearly equal group delays between the propagating modes
[12–15], and minimum differential mode group delay can be ob-
tained by Graded index fibers with a nearly parabolic index pro-
file [7]. FMF nonlinear interactions include Kerr-based nonlinear
effect and nonlinear coupling [13–19].
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FMF-based transmission is known for increased transparency
and data rate, these systems are accompanied by transmission
margins requiring the physical layer fault management capability.
This in turn collects attention focusing on optical performance
monitoring (OPM) as an important tool for managing FMF sys-
tems in applications such as amplifier gain control, signal health
evaluation, fault management, and mode identification [20]. OPM
assesses the signal quality by evaluating optical phenomena such
as the generalized signal-to-noise ratio (GSNR) or physical char-
acteristics including chromatic dispersion (CD), and polarization
mode dispersion (PMD) without directly measuring the transmit-
ted signal sequence. GSNR estimation can be formulated in terms
of amplified spontaneous emission (ASE) noise and nonlinear
interference (NLI) noise [20]. The ASE noise calculation is simple,
while the NLI noise computation is challenging.

FMF NLI noise can be predicted by solving the Manakov equa-
tion [8] using the split-step Fourier method (SSFM) through many
successive numerical simulation steps. SSFM method has good
accuracy along with computational complexity. By taking into
account the first-order perturbation approximation [21] while
solving the Manakov equation, the Gaussian noise (GN) model
[7,21] and enhanced GN (EGN) model [4,22,23] predict the NLI
noise with lower complexity compared with SSFM method. The
GN model considers Gaussian distribution for the transmitted
signal while the EGN model takes into account the modulation
format effect. The computational complexity of integral-form GN
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Table 1
Comparison between different works on DL/DTL for OPM in SMF and FMF systems.
Ref. SMF/ DL/ Algorithm Labels Features Performance Year Complexity

FMF DTL analysis

[32] SMF DL ANN OSNR, CD, and AH RMSE of OSNR 2012 No
PMD monitoring monitoring 0.1 dB

[33] SMF DL ANN MFI, OSNR and NLI ACH RMSE of OSNR 2021 No
noise power monitoring monitoring 0.37 dB

[34] SMF DL ANN Fiber nonlinear noise Amplitude noise Monitoring 2017 No
to signal ratio monitoring covariance error 0.6 dB

[35] SMF DL DNN OSNR AH RMSE of OSNR 2018 No
monitoring monitoring 0.2 dB

[36] SMF DL DNN MFI AH Accuracy of 2016 No
MFI 100%

[37] SMF DL CNN MFI AAH Accuracy of 2020 No
MFI 100%

[38] SMF DL CNN OSNR AH RMSE of OSNR 2021 No
monitoring monitoring 0.246 dB

[39] SMF DL CNN MFI and AH Accuracy of OSNR 2021 No
OSNR monitoring monitoring 97.6%

[40] SMF DL RNN Joint OSNR and NLI Frequency domain features Error of OSNR 2018 No
noise power monitoring of the input signal monitoring 1.0 dB

[41] SMF DL RNN Joint OSNR and AAH RMSE of OSNR 2023 No
CD monitoring monitoring 0.5 dB

[42] SMF DTL DNN OSNR AH RMSE of OSNR 2019 No
monitoring monitoring 0.1 dB

[30] SMF DTL DNN MFI and AH RMSE of OSNR 2020 No
OSNR monitoring monitoring 1.09 dB

[31] SMF DTL CNN Multi-impairment Eye diagram Accuracy 2019 No
diagnosis 99.88%

[43] FMF DL ANN MFI ACH Accuracy of 2019 No
MFI 98%

[44] FMF DL ANN OSNR, CD, and mode ATDH RMSE of OSNR 2022 No
coupling monitoring monitoring 0.0015 dB

[45] FMF DL CNN OSNR, CD, and mode ACH Accuracy of OSNR 2021 No
coupling monitoring monitoring 90%

[46] FMF DTL DNN MFI and Signal RMSE of OSNR 2022 No
OSNR monitoring constellation monitoring 0.1 dB

[47] FMF DTL CNN MFI Signal Accuracy of 2021 No
constellation MFI 97.8%

This FMF Both DNN GSNR System/link RMSE of GSNR 2023 Yes
work estimation parameters monitoring 0.02 dB

and EGN formulations makes them improper for real-time appli-
cations. In contrast, closed-form GN and EGN models are fast but
only applicable to rectangular-shaped Nyquist wavelength divi-
sion multiplexing (WDM) with channel spacing close to symbol
rate [22,24]. Deep learning (DL) has been presented as a quite fast
and accurate method to predict NLI noise [20]. DL-based OPM can
be trained in a supervised manner to find out the relationship
between the observed GSNR at the receiver and the link config-
uration in terms of system/link parameters such as transmitted
power, link length, number of spans, and ASE noise. However,
efficient deployment of DL-based OPM algorithms needs a large
dataset while generating a large field/synthetic dataset based
on FMF transmission is very difficult and time-consuming [25,
26]. Besides, in case the FMF system/link conditions change, a
lot of new training samples should be added and the DL algo-
rithm should be re-trained to manage the correct OPM opera-
tion [27–29]. In this context, deploying deep transfer learning
(DTL) in OPM, as a special DL implementation, can reduce re-
quired training samples/epochs by adjusting hyperparameters of
the DL algorithm based on prior knowledge rather than random
initialization [30]. In other words, DTL deploys hyperparameters
obtained while training the DL algorithm based on the source
dataset as the starting point for training the DNN based on the
target dataset [31].

1.1. Literature review

DL/DTL has recently appeared as a fast and accurate solution
for OPM in SMF systems while applying DL/DTL for OPM in FMF
systems is still in its infancy. Table 1 summarizes the literature

on DL/DTL-based OPM for SMF and FMF systems, in the following,
we review these works by dividing them into four categories.

DL-based OPM for SMF: In [32], artificial neural network
(ANN) is applied for the joint optical signal-to-noise ratio (OSNR),
CD, and PMD monitoring using asynchronously histograms (AHs).
In [33], authors employed ANN for joint modulation format iden-
tification (MFI), OSNR, and NLI noise power monitoring using
asynchronous complex histogram (ACH) features. ANN also is
deployed in [34] to monitor fiber nonlinear noise-to-signal ratio
based on amplitude noise covariance of received symbols. Deep
neural network (DNN) is trained in [35,36] by using AH features
to monitor the OSNR and MFI, respectively. Convolutional neural
network (CNN) is applied in [37] for MFI in SMF elastic optical
networks (EONs) considering asynchronous amplitude histogram
(AAH) features. In [38,39], authors employed CNN respectively for
OSNR monitoring and joint OSNR monitoring and MFI using AH
features. The long short-term memory network is utilized in [40]
for joint OSNR and NLI noise power monitoring using frequency
domain features of the input signal and in [41] for joint OSNR and
CD monitoring based on AAH features.

DTL-based OPM for SMF: Authors of [42] and [30] experi-
mentally demonstrated DNN-based DTL for OSNR monitoring and
joint OSNR monitoring and MFI using AH features, respectively.
DTL is employed in [31] for multi-impairment diagnosis based on
eye-diagram features.

DL-based OPM for FMF: In [43], ANN is applied for MFI
in FMF EONs using features extracted from the ACHs. Authors
of [44] and [45], respectively considered ANN and DNN for joint
OSNR, CD, and mode coupling monitoring in FMF networks using
asynchronous tap delay histogram (ATDH) and ACH features.

2



M.A. Amirabadi, M.H. Kahaei and S.A. Nezamalhosseini Physical Communication 60 (2023) 102157

Fig. 1. Schematic diagram of considered FMF link.

DTL-based OPM for FMF: Authors of [46] employed DNN-
based DTL in FMF EONs using signal constellation features for
joint OSNR monitoring and MFI. In [47], a CNN-assisted DTL
approach is applied for MFI in FMF EONs.

1.2. Motivations, novelties, and contributions

FMF-based transmission is encountered with additional im-
pairments to SMF, e.g., modal dispersion, mode-dependent at-
tenuation/gain, and linear/nonlinear coupling. FMF linear effects
are compensated by the MIMO DSP, however, these effects con-
sistently affect the FMF nonlinear effects. These impacts along
with the nonlinear coupling are the FMF nonlinearity specificities.
Therefore, the trained DL/DTL models for SMF systems are not
functional in the FMF case the model should be re-tuned and
re-trained considering these specifications. The potential devel-
opment of FMF-based transmission in future optical networks
necessitates investigating the applicability of DL/DTL-based OPM
or FMF systems. Despite this importance, few works are available
in this regard. Besides, there is a lack of complexity analysis
to show the complexity-performance trade-off considering the
DL/DTL-based OPM method and the well-known conventional
approaches.

In this paper, we present and develop DL and DTL-based
regressors for OPM in FMF-based transmission. In the DL-based
approach, we utilize physical layer parameters as the features and
the GSNR (calculated by the EGN model) as the label. To test the
feasibility of the proposed DTL-based method, we change the FMF
type, launch power, and the number of modes. The novelties and
contributions of this paper are as follows

• Presenting DL and DTL-based approaches for OPM in FMF-
based transmission, successfully estimating the OSNR within
0.02 dB of the root mean squared error (RMSE).

• Designing DTL-based method for OPM in FMF systems,
working efficiently even with small training dataset and few
training epochs despite a huge change in system/link pa-
rameters while transfer learning compared with re-training,
reducing the required training samples and epochs respec-
tively 3 and 5 times and providing 0.02 dB RMSE using 100
points training dataset.

• Designing ultra-fast DL/DTL-based OPMmethod truly proper
for real-time implementations, speeding-up GSNR estima-
tion 1e6 and 1e9 times compared with the well-known
closed-form and integral-form EGN models, respectively.

• Proposing DTL-based OPM in FMF transmission, having su-
perior capabilities of fast remodeling and data resource
reservation enabling the possibility for real-time implemen-
tations.

• Providing a comprehensive investigation over DL/DTL-based
OPM for FMF by presenting performance analysis consid-
ering scenarios, preparing complexity analysis considering
well-known conventional methods, investigating complexity-
performance trade-off between proposed algorithms and

well-known conventional methods, and discussing the prac-
tical aspect of the proposed techniques.

The rest of this paper is organized as follows; Section 2 de-
scribes the system model, and Section 3 presents the DL and DTL-
based OPM methods. Simulation results and discussions are pro-
vided in Sections 4 and 5, respectively. Section 6 is the conclusion
of this work.

2. System model

We consider signal transmission in the FMF link described
by Fig. 1 which is composed of Ns spans with ideal optical am-
plifiers at the end of each span for compensating attenuation
which in turn produces ASE noise [1,17]. The transmitted signal
is a multiplexing of D spatial modes and Nch wavelength chan-
nels. The signal propagation suffers from linear effects such as
modal dispersion, chromatic dispersion, and linear coupling, as
well as nonlinear effects including Kerr-based nonlinear effect
and nonlinear coupling [1,17]. An ideal de-multiplexer is used
at the receiver accompanied by MIMO DSP to compensate lin-
ear effects [1,17]. The nonlinear phase rotation is recovered by
carrier phase estimator (CPE) [4,48]. Based on the well-known
EGN model, the received signal after CPE can be modeled as a
summation of the transmitted signal and ASE and NLI noise [4].
Therefore, the GSNR of nth channel and pth mode after CPE can
be formulated as [4]

GSNRn,p =
Pn,p

σ 2
ASE,n,p + σ 2

NLI,n,p
, (1)

where Pn,p is the launched power of nth channel and pth mode,
σ 2
ASEn,p and σ 2

NLI,n,p respectively are ASE and NLI noise variances of
nth channel and pth mode [4].

3. Proposed DL and DTL-based OPM methods

The proposed DL-based OPM (Fig. 2(a)) and DTL-based OPM
(Fig. 2(b)) methods are composed of a DNN (Fig. 2(c)) with Nf
input neurons where Nf is number of features, Nhid hidden layers
each with Nneu hidden neurons, and one output neuron. Therefore,
the DNN has L = Nhid + 2 layers, the input vector of the lth
layer, rl−1; l = {1, 2, . . . , L}, is multiplied by a weight matrix,
added by a bias vector, and passed through an activation function
and a dropout layer. The GSNR calculated by the EGN model is
the true GSNR (label), GSNRn,p

true, and the DNN output represents
the predicted GSNR, GSNRn,p

pred. The aim is to adjust the DNN
hyperparameters such that GSNRn,p

pred becomes as close as possible
to GSNRn,p

true. The DNN input–output mapping function can be
expressed by

rL = f (r0; θ), (2)

where f (·) is the mapping function, r0 is DNN input vector, rL is
DNN output vector, θ = {θ1, . . . , θL} is the hyperparameters with
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Fig. 2. Structure of proposed (a) DL-based, (b) DTL-based OPM methods, and (c)
target/source DNN.

θl = {Wl, bl}, and Wl and bl are weight matrix and bias vector
of lth layer, respectively. Thus the following relationship can be
expressed for the lth layer

rl = fl(rl−1; θl) = αl(Wlrl−1 + bl), (3)

where fl(·) and αl(·) are respectively the mapping function and
activation function of lth layer. The following relationship can be
written between GSNRn,p

pred and θ

GSNRn,p
pred = fL(. . . (f2(f1(y; θ1); θ2) . . .); θL)

= αL(. . . α2(W2(α1(W1r0 + b1) + b2) . . .)). (4)

We define the following loss function for training the DNN

L(θ) =
1
k

K∑
k=1

lk(GSNRtrue,k
n,p ,GSNRpred,k

n,p ), (5)

where K is the batch size, lk(., .) is the loss function, and su-
perscript k refers to the kth batch of the training dataset. θ can
be obtained by minimizing the loss function. The most preva-
lent methods for this purpose are stochastic gradient descent
algorithms among which the Adam algorithm is a well-known
and widely used [49]. The Adam updates θ iteratively using the
following formulation

θ(j+1)
= θ(j)

− η∇θ L̂(θ(j)), (6)

Table 2
Considered system and link parameters.
Coefficient Value

Number of channels 66
Symbol rate 64 GBaud
Channel bandwidth 75 GHz
Span length Uniformly distributed between 80 and 120 km
Coupling length 80 km
Number of spans 1–8
Center frequency 193.5 THz

where η is the learning rate, j is the iteration number, and ∇θ L̂(·)
is the estimated gradient of L̂(·) which is fed back as an updating
guide in each iteration [49].

Note that in DL-based OPM we train and test the DNN based
on the target dataset while in DTL-based OPM the DNN training
is based on the source dataset and then the trained DNN weights
and biases are used as the starting point for DNN training and
testing based on target dataset.

4. Simulation results

In this section, we first explain dataset generation and DNN
hyperparameter tuning. Then, we provide the performance and
complexity analysis of the proposed DL/DTL-based OPM method.
The simulations are done in the Python environment, scikit-learn
library [50].

4.1. Dataset generation

FMF system and link configuration: A Large dataset is re-
quired for proper training DL/DTL-based algorithm for OPM in
FMF. However, gathering large field datasets is very hard consid-
ering different number of spans and span lengths. Furthermore,
generating a large synthetic dataset using the SSFMmethod is im-
practical considering the whole C-band and few modes [52]. We
should mention that our accessible Intel Xeon CPU with 32 cores
and 64 GB RAM limits SSFM simulation to 9 channels (0.45 THz
bandwidth) and 3 modes. Therefore, we generate source and
target datasets synthetically based on the EGN model considering
system and link parameters described by Table 2. We utilize
the whole C-band with 5 THz bandwidth, 66 channels working
at 193.5 THz center frequency with 64 GBaud symbol rate and
75 GHz channel spacing (28% overhead). The standard polar-
ization multiplexed quadrature phase-shift keying modulation is
employed for each channel and mode. The signal propagation is
on 1 to 8 spans with span length uniformly distributed between
80 to 120 km. At each span, an ideal amplifier with 5 dB noise
figure compensates attenuation. Both weak and strong linear
coupling regimes are considered with a coupling length of 80 km.
The parameter setting for source and target datasets is presented
in Table 3. In the source dataset, we consider 0 dBm launched
power, 1 spatial mode (LP01) propagating in fiber type 1. In
the target dataset, the launched power is uniformly distributed
between −5 dBm to 5 dBm, and 3 spatial modes are considered
propagating in fiber type 2. One can consider the source domain
as a simplified scenario of the target domain. The nonlinear
coupling coefficients for fiber type 2 are presented in Table 4.
The nonlinearity coefficient, attenuation, modal dispersion, and
chromatic dispersion for fiber types 1 and 2 are presented in
Table 5.

Feature set: The proposed DL/DTL-based OPM method aims
to predict the GSNR values calculated by the EGN model. The
channel-mode under test indices, number of spans, span length,
and launched power of channel-mode under test are parame-
ters affecting the GSNR calculation while using the EGN model,
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Table 3
Parameter setting of source and target datasets.
Parameter Source dataset Target dataset

Power 0 dBm Uniformly distributed between −5 and 5 dBm
Fiber type Type 1 Type 2
Number of modes 1(LP01) 3(LP01, LP11a, LP11b)

Table 4
Nonlinear coupling coefficient between pth and qth mode for fiber
type 2 [51].
pq LP01 LP11a LP11b

LP01 0.73 0.36 0.36
LP11a 0.36 0.55 0.18
LP11b 0.36 0.18 0.55

therefore, it is useful to consider them as features. For dataset
generation, we provide three ‘‘for loops’’ for sweeping different
spans (8 spans), modes (1 mode in source and 3 modes in tar-
get dataset), and channels (66 channels). At each iteration, we
randomly select span length and launched power, and repeat the
whole procedure 300 times for SMF and 100 times for FMF to
generate a 300 × 8 × 1 × 66 = 158400 point source dataset and
a 100 × 8 × 3 × 66 = 158400 point target dataset.

Feature space: The channel index includes integer values be-
tween 1 to 66, and can take 66 different values, the mode index
has integer values between 1 and 3, thus it can take 3 values.
The number of spans is compromised between 1 to 8 with 8
integer values. The span length is uniformly distributed between
80 to 120 km (with 1 m granularity) which provides infinite
values. The launched power of the channel and mode under
test is uniformly distributed between −5 dBm to 5 dBm and
imposes infinite values. Hence, the feature space sweeps limited
dimensions each with an unlimited area. Therefore, utilizing a
look-up table generated by pre-calculated values using the EGN
model instead of DL/DTL models is impractical. Since, in our case,
calculating each value by the EGN model takes almost half an
hour, and even a small change in system/link (see [1–4]) which
makes even a huge look-up table not functional. Besides, a look-
up table can only cover the limited available cases while DL/DTL
aims to cover the non-available cases by learning the information
of available cases.

4.2. Tuned DNN structure

The DNN hyperparameter tuning is done based on instructions
provided by [49]. The tuned DNN structure is composed of an
input layer with 5 neurons, 2 hidden layers with 5 and 500
neurons, and an output layer with 1 neuron. The linear activation
function is employed at the input and output layers. The rectified
linear unit (Relu) activation function is used at hidden layers, as
Relu avoids the gradient saturation problem. Adam optimizer is
employed with a learning rate of 0.001. To prevent overfitting,
initial normalization, and batch normalization are established [53,
54].

4.3. Performance analysis

Fig. 3 depicts RMSE of GSNRpred versus the number of epochs
for DL and DTL-based OPM methods, considering 211 samples.
DTL-based OPM method converges after a few epochs which
shows efficient knowledge transfer between source and target
domains. DTL and DL-based OPM methods converge at 50 and
250 epochs, respectively. Therefore, the DTL-based OPM reduces
the required training epochs by around 5 times in comparison
with DL-based OPM.

Fig. 3. RMSE of GSNRpred versus the number of epochs for DL and DTL-based
OPM methods.

Fig. 4. RMSE of GSNRpred versus training size for DL and DTL-based OPM
methods.

We also compare the required training dataset size for the
DL and DTL-based OPM methods in Fig. 4 in terms of RMSE of
GSNRpred versus training size. The RMSE reduces by increasing the
training dataset size in both methods, however, DTL-based OPM
has a faster steep. DL and DTL-based OPM methods converge to
the same RMSE, since they have the same DNN structure and
learn the same information while training. DTL and DL-based
OPM methods converge to 0.02 dB RMSE of GSNRpred with 25%
and 75% of training dataset size, respectively. Therefore, the DTL-
based OPM method reduces the required dataset size 3 times
in comparison with DL-based OPM which in turn decreases the
training time.

In the case of source and target dataset independence, the
knowledge taken from the source model has no impact on the
learning of the target model. In other words, retraining and
transfer learning would have the same results. However, the FMF
channel is relatively stable or slowly varied which makes source
and target datasets to be partially correlated [1,17]. As a result
(and as seen in Fig. 4), utilizing the knowledge taken from the
source model can speed up the training based on the target. In
fact, DTL-based OPM learns the target model using a superior
trained starting point which is beneficial for fast remodeling [47].
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Table 5
Nonlinearity coefficient, attenuation, modal dispersion, and chromatic dispersion for fiber types 1 [6]
and 2 [51].

Type 1 Type 2

Parameter LP01 LP01 LP11a LP11b

Nonlinearity coefficient [1/watt/km] 1.3 1 1 1
Attenuation [dB/km] 0.226 0.2 0.2 0.2
Modal Dispersion [ps/km] 0 −0.29 −0.66 −0.66
Chromatic dispersion [ps2/km] 31.9 28.3 28.2 28.2

Fig. 5. Scatterplot of GSNRpred and GSNRtrue for (a) DL-based and (b) DTL-based OPM methods.

Fig. 6. R2 , MAE (in dB), MAPE, ME (in dB), and MSE values for DTL-based QoT estimation method.

Figs. 5(a) and 5(b) respectively demonstrate scatterplots of
GSNRpred and GSNRtrue for DL and DTL-based OPM methods, con-
sidering 200 epochs. The scatterplots of both methods are prop-
agated along the x = y line which indicates good performance.
DTL-based OPM provides a denser scatterplot, and a better per-
formance, compared with DL-based OPM.

Fig. 6 demonstrates R2, mean absolute error (MAE), mean
absolute percentage error (MAPE), maximum error (ME), and
MSE, as defined in [50], for DL/DTL-based OPM, considering 200
epochs. The R2 value measures how well a statistical model can
predict the outcome, as seen, DL/DTL-based OPM method can
predict quite well. The MAE measures the mean of the absolute
differences between the predicted and reference outputs while
the MAPE measures the mean of the absolute differences between
the predicted and reference outputs divided by the reference
output. A little better value for ME is obtained for DLT compared
with DL. The obtained low MSE value is indicative of a proper
GSNR estimation in the DL/DTL-based OPM method.

Fig. 7(a) illustrates cumulative distribution function (CDF) of
|∆GSNR| with ∆GSNR = GSNRpred − GSNRtrue for DL and DTL-
based OPMmethods, considering 200 epochs. The CDF of |∆GSNR|

is 99% below 0.2 dB and 0.1 dB for DL and DTL-based OPM,
respectively which indicates that the proposed OPM methods
properly predict the GSNR. Fig. 7(b) describes the probability
density function (pdf) and CDF of ∆GSNR for the DL/DTL-based
OPM approach, considering 200 epochs. The quite small mean and
variance values verify the prediction performance of the DL/DTL-
based OPM method. DTL-based OPM provides a smaller mean
and variance compared with DL-based OPM. Besides, DTL-based
OPM NLI noise overestimation is more than DL-based OPM which
shows that DTL-based OPM is on the safer side.

4.4. Complexity analysis

Table 6 shows the complexity analysis of DL/DTL-based OPM
method, SSFM, integral-form EGN, and GN models, as well as
closed-form EGN and GN models. The training of the DL/DTL-
based OPM method is done offline and once, therefore, we do
not need to consider training complexity. Moreover, we take into
account only the forward propagation, since the backward prop-
agation happens just while training. The presented complexity
of the DL/DTL-based OPM in Table 6 is equal to the number of

6
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Fig. 7. (a) CDF of |∆GSNR| and (b) pdf and CDF of ∆GSNR for DL and DTL-based OPM methods.

Table 6
Computational complexity of proposed DL/DTL-based OPM method, SSFM, integral-form EGN, and GN models, as
well as closed-form EGN and GN models.
Methods Number of multiplications Number of summations

DL/DTL-based OPM (Nneu(NhidNneu + Nf + 1))/2 (Nneu(Nhid(Nneu + 1) + Nf + 1))/2
(NstepNs)(8DNsymlog(DNsym)+ (NstepNs)(8DNsymlog(DNsym)+

SSFM simulation 6DNsym + 2n1 + 1)+ 2DNsym + n1 + 2)+
(4DNsymlog(DNsym) + 4DNsym + 2n1) (2DNsymlog(DNsym) + 4DNsym + n1)

Integral-form EGN model 8Dn2n3n4(2n1 + 4) 8Dn2n3n4(n1 + 6)
Integral-form GN model 2Dn2n3n4(2n1 + 3) 2Dn2n3n4(n1 + 5)
Closed-form EGN model 4DNch(8n1 + 6) + 2 4DNch(4n1 + 4)
Closed-form GN model DNch(8n1 + 5) + 2 DNch(4n1 + 3)

multiplications and summations of the DNN which is composed
of an input layer with Nf neurons, Nhid hidden layers each with
Nneu hidden neurons, and an output layer with 1 neuron. The
SSFM simulation includes several processing such as MDM and
WDM multiplexer and de-multiplexer, EDFAs (at each span),
and dispersion compensation (at the receiver). Note that each
span has Nstep steps, and at each step, there are two blocks
implementing FMF linear and nonlinear effects. The transmitted
WDM signal dimension is 2DNsym with Nsym as the number of
symbols of each channel-mode, thus the fast Fourier transform
(FFT)/inverse FFT related to dispersion implementation/removal
has 2DNsym log(2DNsym) multiplications/summations. The exp(x) =

∑n1
i=0 xi/i! term can be calculated using 2n1 multiplications and

n1 summations where n1 is an integer, the larger n1 the better
accuracy. The complexity analysis of the integral-form EGN and
GN models are based on equations (25) of [4] and (17) of [2],
respectively. The integral-form EGN and GN models respectively
include four and one 3D integration which for numerically cal-
culating, n2, n3 and n4 points with identical distances should
be considered for the first, second and third dimensions. By so
doing, n2 × n3 × n4 small 3D areas appear over which taking
a 3D summation is equivalent to the 3D integration over the
main 3D area. The larger n2, n3, and n4 the better accuracy can
be obtained. The complexity analysis of closed-form EGN and
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GN models are based on equations (6) of [1] and (13) of [3],
respectively. The complexity orders of the DL/DTL-based OPM
method, integral-form EGN/GN model, and closed-form EGN/GN,
are respectively O(N2

neu), O(n1n2n3n4), and O(n1). Considering the
fact that n1n2n3n4 ≫ n1 ≫ N2

neu, the DL/DTL-based OPM method
provides much less complexity in comparison with the other
methods.

The difference between the closed-form and integral-form
GN model is about 0.2 dB as reported by [55]. However, the
integral/closed-form GN model considers Gaussian modulation
for the transmitted signal which results in around 1 dB over-
estimation of NLI noise power in practical applications with
modulation formats such as quadrature phase shift keying [4].
Besides, the closed-form GN/EGN model is only applicable to
rectangular-shaped Nyquist WDM with channel spacing close to
symbol rate [1,3]. However, DTL-based OPM provides ∆GSNR
respectively below 0.1 dB, 0.05 dB, and 0.03 dB in 99%, 95%,
and 90% of trials without any specific system/link assumption,
considering a very wide range of system/link configurations. We
remark that the GSNR estimation times of the DL/DTL-based
OPM method, closed-form GN/EGN, and integral-form GN/EGN
are about 1e − 6 s, 1 s, and 1e3 s, respectively. In other words,
DL/DTL-based OPM method speeds up GSNR estimation 1e6 and
1e9 times compared with integral-form GN/EGN and closed-form
GN/EGN models, respectively.

5. Discussions

The use of DL/DTL-based OPM can provide many benefits
either to the current or the future adaptive and autonomous FMF
networks. Here, we discuss some notes on the applicability aspect
of this technology and the associated enablers.

• Real-time applicability: DL/DTL-based OPM helps in the
real-time utilization of information about FMF network sta-
tus and results in designing proactive FMF networks using
constantly adaptive models. DL/DTL-based OPM predicts the
fault occurrence probability even if FMF system/link param-
eters are varying, thus ensuring a reliable operation which is
crucial in applications such as medicine wherein diagnosis
and treatment times should be short enough. FMF network
can monitor performance changes, send feedback to adapt
the transmission parameters automatically, reduce down-
time and increase network availability. Therefore, DL/DTL-
based OPM can be helpful in future FMF networks which are
dynamic and flexible with adaptable system/link parameters
regarding customer requirements and link status.

• Security guarantee: There is no accurate model for phys-
ical layer impairments under attacks while DL/DTL-based
OPM can continuously monitor optical parameters in regard
to any attack and be helpful for recognizing and detect-
ing unpredictable and detrimental attacks targeting FMF
networks.

• Intelligent resource utilization: Building intelligent nodes
with the OPM function helps to use FMF network resources
efficiently. To achieve the maximum of the said efficiency,
the OPM functions should be able to improve their perfor-
mance and efficiency over time as in DL/DTL-based OPM. It
is difficult to provide a closed-form formulation in FMF EONs
which handle a large number of tunable parameters. How-
ever, DL/DTL-based OPM can deal with complex nonlinear
relationships and result in better resource utilization.

• Cost effectiveness: Although DL/DTL-based OPM deploy-
ment in FMF networks is along with building and integrat-
ing costs, the so-called re-learning ability enhances cost-
effectiveness compared to conventional approaches. In a

cost-limited OPM scenario, only simple hardware compo-
nents can be deployed and partial signal features can be ob-
tained for monitoring of parameters. As a consequence, the
input–output mapping of parameters would be intractable
from underlying physics/mathematics. However, DL/DTL-
based OPM is the real-time acquisition of information about
impairments and is not affected by this. Typically, OPM col-
lects parameters at various points, increasing the number of
monitors and costs. Therefore, it is required to deploy OPM
in the proper locations. In this regard, DL/DTL-based OPM
can be used to learn the mapping between the system/link
parameters and the signal properties.

6. Conclusions

In this paper, we have proposed and demonstrated DL and
DTL-based methods for OPM in FMF. The proposed DL and DTL-
based OPM methods guarantee the GSNR estimation RMSE of
0.02 dB. We have done the feasibility test of the proposed DTL-
based OPM method considering a transfer from SMF to FMF with
completely different fiber types and power regimes. Results show
the robustness of the DTL-based OPM method. In addition, the
proposed DTL-based OPM reduces the training dataset size and
epoch respectively around 3 and 5 times in comparison with the
proposed DL-based OPM.
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