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ABSTRACT
Process capability indices (PCIs) play a fundamental role in assessing and quantifying the capability of manufacturing processes
to meet customer specifications. To date, the majority of PCIs that are now in use have been examined through the use of novel
generalizations of PCIs with symmetric tolerances to check the performance of an industrial manufacturing process. In this paper,
we proposed new estimations of some indices with asymmetric tolerances in the presence of outliers. New robust and parametric
estimators of some PCIs are introduced to estimate and compare these indices for each normal distribution with the presence of
different outliers.Meanwhile, this paper discusses howwell the proposedmethod can be used for non-normal data. For illustration
purpose, the application example is presented.

1 Introduction

Over three recent decades, process capability indices (PCIs)
have become an essential tool for process improvement and
qualitymanagement in various industries. They have beenwidely
employed to assess the capability of manufacturing processes
by providing numerical metrics that specify whether a process
complies with the capability requirements set in industrial
manufacturing factories. Statistical process control (SPC) has
made process capability analysis (PCA) a vital component that
is used to improve the quality. Therefore, the manufacturing
department can enhance the process to raise the quality level and
meet customer requirements by analyzing PCIs. A well review
regarding the process capability analysis can be found in Kotz
and Johnson [1]. The four widely recognized PCIs have been
presented in the literatures as follows:

𝐶𝑝 = 𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎
,

𝐶𝑝𝑘 = min

{
𝑈𝑆𝐿 − 𝜇

3𝜎
,
𝜇 − 𝐿𝑆𝐿

3𝜎

}
,

𝐶𝑝𝑚 = 𝑈𝑆𝐿 − 𝐿𝑆𝐿

6
√
𝜎2 + (𝜇 − 𝑇)2

and

𝐶𝑝𝑚𝑘 = min

{
𝑈𝑆𝐿 − 𝜇

3
√
𝜎2 + (𝜇 − 𝑇)2

,
𝜇 − 𝐿𝑆𝐿

3
√
𝜎2 + (𝜇 − 𝑇)2

}

=
𝑑 − |𝜇 −𝑚|

3
√
𝜎2 + (𝜇 − 𝑇)2

,

in which 𝜇 is the process mean, 𝜎 is the process standard
deviation, 𝑈𝑆𝐿 and 𝐿𝑆𝐿 are the upper and lower specification
limits, 𝑇 is the target value, 𝑚 = (𝑈𝑆𝐿 + 𝐿𝑆𝐿)∕2 is the midpoint
of the specification limits, and 𝑑 = (𝑈𝑆𝐿 − 𝐿𝑆𝐿)∕2 is half of
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the length of the specification interval; see Kane [3]. The PCI
𝐶𝑝 measures the process variation related to the preset SLs.
Moreover, Boyles [4] proposed the PCI

𝑆𝑝𝑘 =
1

3
Φ−1

{
1

2
Φ

(
𝑈𝑆𝐿 − 𝜇

𝜎

)
+ 1

2
Φ

(
𝜇 − 𝐿𝑆𝐿

𝜎

)}
, (1)

for a normal process, in which Φ is the cumulative distri-
bution function of the standard normal distribution and Φ−1

represents its inverse function. These proposed PCIs aim to
monitor only the performance in processes with symmetric
tolerances (that is, 𝑇 = 𝑚), based on normal, independent, and
statistically controlled observations. It is essential to highlight
that a higher index value indicates a more capable process.
Although the common perception is that symmetric cases are
predominant, it is important to acknowledge that situations often
arise where the target value is not located at the midpoint of
the tolerance (i.e., 𝑇 ≠ 𝑚). This condition, known as asymmetric
tolerance, is a common occurrence in industrial production
factories. Examples of asymmetric tolerances occur in specific
situations. These differences are usually not exclusively related
to the form of the supplier’s process distribution. Rather, they
indicate that certain directions of departure from the target are
more acceptable than others; see Vännman [5]. Because of the
various quality characteristics of products, practitioners are not
restricted by the standard specification setting. Moreover, many
initially asymmetric tolerances stem from the initial condition
of symmetric tolerances, but as time progresses, the process
adheres to a distribution that is not normal. This is a rather
common way that asymmetric tolerances develop. Specifically,
transforming data to approximate normality can give rise to
asymmetric tolerances. Following this transformation, it becomes
feasible to convert symmetric tolerances into asymmetric ones.

There has been relatively little attention of the asymmetry of the
specification limits. Boyles [4] recommended the PCI 𝑆𝑝𝑚𝑘 as
an extension of PCI 𝐶𝑝𝑚𝑘 . A generalization of 𝐶𝑝𝑚𝑘, known as
𝐶

′′

𝑝𝑚𝑘
, was also presented by Pearn et al. [6] to cover processes

with asymmetric tolerances. In this paper, we proposed the
estimations of indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
in the presence of outliers.

Numerous research papers have focused on addressing processes
with asymmetric specification limits for the 𝐶𝑝𝑚𝑘 index and two
alternative extensions of 𝐶𝑝𝑚𝑘, including

𝑆𝑝𝑚𝑘 =
1

3
Φ−1

{
1

2
Φ

(
𝑈𝑆𝐿 − 𝜇√
𝜎2 + (𝜇 − 𝑇)2

)

+ 1

2
Φ

(
𝜇 − 𝐿𝑆𝐿√

𝜎2 + (𝜇 − 𝑇)2

)}
(2)

and

𝐶
′′

𝑝𝑚𝑘
= 𝑑∗ − 𝐴∗

3
√
𝜎2 + 𝐴2

, (3)

where 𝐴 = max {𝑑(𝜇 − 𝑇)∕𝐷𝑢, 𝑑(𝑇 − 𝜇)∕𝐷𝑙}, 𝐴∗ =
max {𝑑∗(𝜇 − 𝑇)∕𝐷𝑢, 𝑑

∗(𝑇 − 𝜇)∕𝐷𝑙}, 𝐷𝑙 = 𝑇 − 𝐿𝑆𝐿, 𝐷𝑢 =
𝑈𝑆𝐿 − 𝑇, and 𝑑∗ = min {𝐷𝑙, 𝐷𝑢}. If 𝑇 = 𝑚, therefore the
index 𝐶

′′

𝑝𝑚𝑘
reduces to the index 𝐶𝑝𝑚𝑘 . Nevertheless, it might

underestimate or overestimate process capability in various

instances, contingent upon the relationship between 𝜇 and
𝑇. The findings indicated that 𝐶′′

𝑝𝑚𝑘
provides a more precise

assessment of process capability compared to the index 𝐶𝑝𝑚𝑘

and other current generalizations of 𝐶𝑝𝑚𝑘 for processes with
asymmetric tolerances; see Boyles [4] and Pearn et al. [6, 7].

Broadly, employing PCIs is essential to measure the extent
to which process outputs meet the predetermined capability
standards. The presence of outliers can obscure the identifiable
sources of variation, potentially leading to unreliable resultswhen
utilizing PCIs. Moreover, 𝜇 and 𝜎 are unknown parameters in
the PCIs, and therefore we require a random sample to estimate
the unknown parameters. Hence, 𝜇 and 𝜎 must be estimated for
estimating the PCI. Inmany studies, such as Iranmanesh et al. [8–
10] and Parchami et al. [11, 12], it is common to use the natural
estimator of the considered PCI. It should be noted that the
natural estimator of the considered PCI is created by substituting

�̄� =
∑𝑛

𝑖=1 𝑋𝑖∕𝑛 and 𝑆𝑛−1 =
√∑𝑛

𝑖=1(𝑋𝑖 − �̄�)2∕𝑛 − 1 instead of the
unknown parameters 𝜇 and 𝜎 in the considered PCI, respectively.
Moreover, the existence of outliers can significantly impact on
statistical analyses. Lu and Chang [13] proposed a robust proce-
dure for solving multiphase regression problems that is efficient
enough to deal with data contaminated by atypical observations
due to measurement errors or those drawn from heavy-tailed
distributions. Performances of two robust PCIs formultiple linear
profiles in comparison with the classical PCIs in the absence
and presence of contamination were evaluated in [14]. A few
robust estimators for the capability index 𝑆𝑝𝑘 were defined by
Iranmaneshet al. [15]. In Prasad and Bramorski [16], resilient time
series methodologies were explored to establish novel collections
of PCIs applicable to a diverse array of industrial processes. The
motivation for estimating the PCIs on the basis of the parametric
model of outliers was discussed in Jabbari Nooghabi [17].

The intention of this paper is presenting new estimators for the
generalizations of 𝐶𝑝𝑚𝑘 with asymmetric tolerances to evaluate
the performance of the manufacturing process in the presence of
outliers. For this intention, new parametric and robust estimators
of the indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
are introduced to estimate and com-

pare these indices with the presence of different outliers. Hence,
these indices are estimated on the basis of the robust, maximum-
likelihood (ML), and method of moment (MM) estimators of the
unknown parameters of the normal distribution contaminated
by outliers. It has been observed that parametric estimations
have better performances than the robust estimations. This paper
is organized in the following structure. Section 2 contains the
preliminaries and presents some new estimations of PCIs in the
presence of outliers. Section 3 incorporates a comparison study
between the parametric and robust estimation procedures. Also,
this section discusses how well the proposed procedures can be
used for non-normal data. The illustrative results are detailed in
Section 4. Lastly, conclusions and future works are provided.

2 New Estimations of the PCIs in the Presence of
Outliers

In the last 30 years, the term “outlier” has been a topic of
continuous discussion in academic literature. An observation in
a dataset that substantially differs from the remaining recorded

2 of 14 Quality and Reliability Engineering International, 2024



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

data points is called an outlier; see Jabbari Nooghabi [17]. When
a dataset contains one outlier or just a few of them, we encounter
a substantial challenge in estimating parameters. In this context,
parametric/robust estimation procedures can be highly suitable
for measuring the capability of the process.

There has been extensive discussion about how the existence
of outliers can negatively impact on statistical analyses and
decision-making processes; see more details in Dixit [18], Dixit
and Jabbari Nooghabi [19, 20], and Jabbari Nooghabi [17]. In this
regard, we proposed new parametric and robust estimators of
the indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
to estimate and compare these indices

in the presence of different outliers. Herein, by inspiration of
Iranmanesh et al. [15], we define new robust estimators of the
indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
to measure the performance the manu-

facturing process for processes with asymmetric tolerances for
every normal distribution. Additionally, we apply the proposed
parametric method by Jabbari Nooghabi [17] to estimate the
proposed indices as more useful estimation method than the
robust estimation methods in the presence of outliers. In this
section, we intend to introduce some new estimations of process
capability indices with the presence of outliers.

2.1 Estimation Based on Robust Procedures

Typically, two straightforward robust estimators for the scale
and location parameters are the median absolute deviation
(MAD) and the median, respectively. The MAD serves as one
of the substitutes to the robust estimation of the standard
deviation. Consequently, a definition of the MAD is provided by
Hampel [21]:

MAD = median
𝑖

|𝑋𝑖 −𝑀|, (4)

in which 𝑀 represents the sample median, serving as a robust
estimator for 𝜇. Herein, 1.4826 MAD, often referred to the stan-
dardized MAD, is employed as a consistent robust estimator of
𝜎 under the normal distribution; see Rousseeuw and Croux [22].
Additionally, the less robust but simpler estimate for the scale
parameter is the interquartile range (IQR).

Definition 2.1. Consider IQR to be the difference between the
third quartile and the first quartile of the sample data (IQR =
𝑄3 − 𝑄1). Subsequently, a threshold based on IQR is defined as
follows: {

𝑇𝑚𝑖𝑛 = 𝑄1 − 1.5 IQR,

𝑇𝑚𝑎𝑥 = 𝑄3 + 1.5 IQR,
(5)

where 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 represent the minimum and maximum
thresholds for identifying outliers. Typically, a data point falling
outside the interval [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] is classified as an outlier in Yang
et al. [23].

Following the ideas presented in Iranmanesh et al. [15], we
introduce two new robust estimators for the indices 𝑆𝑝𝑚𝑘 and
𝐶

′′

𝑝𝑚𝑘
to estimate them effectively, particularly in the presence

of outliers. The IQR- and MAD-based estimators of 𝑆𝑝𝑚𝑘 to
handle the processes with asymmetric tolerances are introduced

as follows:

𝑆
IQR

𝑝𝑚𝑘
= 1

3
Φ−1

{
1

2
Φ

(
𝑈𝑆𝐿 −𝑀

𝜏IQR

)
+ 1

2
Φ

(
𝑀 − 𝐿𝑆𝐿

𝜏IQR

)}
(6)

and

𝑆MAD
𝑝𝑚𝑘

= 1

3
Φ−1

{
1

2
Φ

(
𝑈𝑆𝐿 −𝑀

𝜏MAD

)
+ 1

2
Φ

(
𝑀 − 𝐿𝑆𝐿

𝜏MAD

)}
, (7)

where 𝜏IQR =
√
(IQR∕3)2 + (𝑀 − 𝑇)2, 𝜏MAD =√

(1.4826 MAD)2 + (𝑀 − 𝑇)2, in which 𝑇, IQR, 𝑀, and
1.4826 MAD represent the target value, the sample IQR, the
sample median, and the sample standardizedMAD, respectively.
Also, the MAD- and IQR-based estimators of 𝐶′′

𝑝𝑚𝑘
to assess the

performance of the processes with asymmetric tolerances are
defined as follows:

𝐶
′′MAD
𝑝𝑚𝑘

=
𝑑∗ − 𝐴∗

𝑀

3
√
(1.4826 MAD)2 + 𝐴2

𝑀

, (8)

and

𝐶
′′IQR

𝑝𝑚𝑘
= 𝑑∗−𝐴∗

𝑀

3
√

(IQR∕3)2+𝐴2
𝑀

, (9)

where 𝐴𝑀 = max {𝑑(𝑀 − 𝑇)∕𝐷𝑢, 𝑑(𝑇 −𝑀)∕𝐷𝑙}, 𝐷𝑙 =
𝑇 − 𝐿𝑆𝐿, 𝐷𝑢 = 𝑈𝑆𝐿 − 𝑇, 𝑑∗ = min {𝐷𝑙, 𝐷𝑢}, and 𝐴∗

𝑀 =
max {𝑑∗(𝑀 − 𝑇)∕𝐷𝑢, 𝑑

∗(𝑇 −𝑀)∕𝐷𝑙}.

2.2 Estimation Based on Parametric Procedures

By inspiration of Jabbari Nooghabi [17], we are going to a presen-
tation of the parametric procedures with the presence of outliers
generated from the normal distribution. Outliers could originate
from the identical distribution with different parameters. The
normal distribution is characterized by the following two param-
eters: the mean and standard deviation. Hence, we intend to
consider that the distribution of outliers differs specifically in
terms of the mean, indicating a shift in the mean. Suppose that
there are𝑛 observed data,where𝑘 data have a normal distribution
with parameters 𝜇 + 𝛿 and 𝜎2 and the remaining 𝑛 − 𝑘 out of 𝑛
observed data follow a normal distribution as 𝑁(𝜇, 𝜎2). Hence,
applying the general probability rule, the probability density
function (pdf) of the normal distribution with the presence of
𝑘 outliers for one observation 𝑥 can be expressed as follows; see
more details in Jabbari Nooghabi [17]:

𝑓(𝑥; 𝜇, 𝛿, 𝜎2) = 𝑏𝑁(𝜇 + 𝛿, 𝜎2) + �̄�𝑁(𝜇, 𝜎2), 𝑥, 𝜇, 𝛿 ∈ ℝ, 𝜎2

> 0, 0 < 𝑏, �̄� < 1, (10)
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where 𝑏 = 𝑘∕𝑛 and �̄� = 1 − 𝑘∕𝑛. Therefore, the joint density of
𝑋1, 𝑋2, … , 𝑋𝑛 is as follows:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜇, 𝛿, 𝜎
2) = (2𝜋𝜎2)−𝑛∕2

𝐶(𝑛, 𝑘)
exp

{
−1
2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2

}

exp

{
−𝑘𝛿
𝜎2

(
𝛿

2
+ 𝜇

)} ∑
𝑖1,𝑖2,…,𝑖𝑘

𝑘∏
𝑗=1

exp

{
𝛿

𝜎2
𝑥𝑖𝑗

}
.

(11)
in which 𝐶(𝑛, 𝑘) = 𝑛!

𝑘! (𝑛−𝑘)!
and

∑
𝑖1,𝑖2,…,𝑖𝑘

=
∑𝑛−𝑘+1

𝑖1=1
∑𝑛−𝑘+2

𝑖2=𝑖1+1
…∑𝑛

𝑖𝑘=𝑖𝑘−1+1
.

Notation 2.2. Recognize that the number of outliers, 𝑘, is
a known parameter in the model as well as the sample size.
However, in practical terms, the number of outliers is unknown
and determining the exact number of outliers is challenging.
Consequently, when faced with this uncertainty, the value of 𝑘
can be determined by assessing the likelihood function across
various 𝑘 values and selecting the one that maximizes the
likelihood function.

Herein, by adapting from Jabbari Nooghabi [17], we intend to esti-
mate the parameters of the normal distribution in the presence
of outliers. These parameters are estimated with respect to the
mean shifted, and are taken into consideration in the following
points on the basis of the MM and ML procedure. Define all the
parameters of the normal distribution contaminatedwith outliers
are unknown. Then, for the instance where themeanwas shifted,
three parameters 𝜇, 𝛿, and 𝜎 are unknown.

1. MM procedure: Based on considering the first, second,
and third moments of the normal distribution in the pres-
ence of outliers, one can estimate the unknown parame-
ters [17]. Therefore, the sample moments are shown by 𝑥𝑎 =∑𝑛

𝑗=1 𝑥
𝑎
𝑗 ∕𝑛, for 𝑎 = 1, 2, 3, and according to the MM, we have

the following equations:

⎧⎪⎪⎨⎪⎪⎩
𝛿𝑀𝑀 = 3

√
2�̄�3 − 3�̄�𝑥2 + 𝑥3

2𝑏3 − 3𝑏2 + 𝑏
,

𝜇𝑀𝑀 = �̄� − 𝑏𝛿𝑀𝑀,

𝜎2𝑀𝑀 = −�̄�2 + 𝑏2𝛿2𝑀𝑀 − 𝑏𝛿2𝑀𝑀 + 𝑥2.

(12)

2. ML procedure: From Equation (11), the log-likelihood func-
tion for the observed values 𝑥1, … , 𝑥𝑛 is as the following form:

𝑙(𝜇, 𝛿, 𝜎2) = −𝑛
2
ln(2𝜋𝜎2) − ln(𝐶(𝑛, 𝑘)) − 1

2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2

−𝑘𝛿
𝜎2

(
𝛿

2
+ 𝜇

)
+ ln

( ∑
𝑖1,𝑖2,…,𝑖𝑘

𝑘∏
𝑗=1

exp

{
𝛿

𝜎2
𝑥𝑖𝑗

})
.

(13)
Hence, by inspiration of Jabbari Nooghabi [17], the ML
estimators for the parameters are acquired through differenti-
ation with respect to them. Consequently, the ML estimators
for the parameters 𝜇, 𝛿, and 𝜎, denoted as 𝜇𝑀𝐿, 𝛿𝑀𝐿, and 𝜎𝑀𝐿,
respectively, are determined by solving the following three

equations:

1

𝜎2𝑀𝐿

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇𝑀𝐿) −
𝑘𝛿𝑀𝐿

𝜎2𝑀𝐿

= 0, (14)

−
𝑘𝛿𝑀𝐿

𝜎2𝑀𝐿

−
𝑘𝜇𝑀𝐿

𝜎2𝑀𝐿

+

∑
𝑖1,𝑖2,…,𝑖𝑘

∑𝑘

𝑗=1 𝑥𝑖𝑗 exp

{
𝛿𝑀𝐿

𝜎2
𝑀𝐿

𝑥𝑖𝑗

}
𝜎2𝑀𝐿

∑
𝑖1,𝑖2,…,𝑖𝑘

exp

{
𝛿𝑀𝐿

𝜎2
𝑀𝐿

∑𝑘

𝑗=1 𝑥𝑖𝑗

} = 0

(15)
and

−
𝑛𝜎2𝑀𝐿

2
+ 1

2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇𝑀𝐿)
2 +

𝑘𝛿2𝑀𝐿

2
+ 𝑘𝛿𝑀𝐿𝜇𝑀𝐿

−
𝛿𝑀𝐿

∑
𝑖1,𝑖2,…,𝑖𝑘

∑𝑘

𝑗=1 𝑥𝑖𝑗 exp

{
𝛿𝑀𝐿

𝜎2
𝑀𝐿

𝑥𝑖𝑗

}
∑

𝑖1,𝑖2,…,𝑖𝑘
exp

{
𝛿𝑀𝐿

𝜎2
𝑀𝐿

∑𝑘

𝑗=1 𝑥𝑖𝑗

} = 0,

(16)

Herein, employing mathematical techniques does not allow
for the derivation of a closed form solution. Therefore, theML
estimators of the parameters 𝜇, 𝛿, and 𝜎 (i.e., 𝜇𝑀𝐿, 𝛿𝑀𝐿, and
𝜎𝑀𝐿, respectively) are obtained by using numerical methods.

Notation 2.3. Inmaximum likelihood estimation, the likelihood
function is derived from the probability model representing the
data, and numerical optimization methods are employed to find
the parameter values that maximize this likelihood function. The
process of parameter initialization and its effect on convergence
and final estimates is critical, especially when using iterative
numerical methods. The initialization of parameters in MLE
plays a crucial role in the success of numerical optimization
methods. It should be noted that we use the multiroot func-
tion, available in the “rootSolve” package in R [24], to solve
Equations (14)–(16). To address this, we present the following
step-by-step guide on how initial values are chosen for numerical
methods:

1. First, the initial guess for the parameter 𝜇 used as the starting
value for the multiroot function is determined as the sample
mean, 𝜇∗ = �̄�.

2. In the second step, consider using the initial guess for the
parameter 𝛿 as the starting value for the multiroot function,
based on the following formula:

𝛿∗ = max

{|�̄� − max
𝑖=1,…,𝑛

𝑥𝑖|, |�̄� − min
𝑖=1,…,𝑛

𝑥𝑖|}. (17)

3. In the third step, the initial guess for the parameter
𝜎 used as the starting value for the multiroot function
is considered to be the sample standard deviation, 𝜎∗ =√∑𝑛

𝑖=1(𝑥𝑖 − �̄�)2∕(𝑛 − 1).

4. Finally, the initial values (𝜇∗, 𝛿∗, and 𝜎∗) are used to solve
Equations (14)–(16) to obtain the ML estimators of the
parameters 𝜇, 𝛿, and 𝜎 (i.e., 𝜇𝑀𝐿, 𝛿𝑀𝐿, and 𝜎𝑀𝐿, respectively).

In the presence of outliers, the parametric model of outliers is
taken into consideration to define the parametric estimators of
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𝑆𝑝𝑚𝑘 and 𝐶
′′

𝑝𝑚𝑘
, which are more useful than the presented robust

estimators; see Jabbari Nooghabi [17].

Definition 2.4. Let 𝜇𝑀𝑀 , 𝜎𝑀𝑀 , 𝜇𝑀𝐿, and 𝜎𝑀𝐿 be the method
of moment estimators (MMEs) and the maximum-likelihood
estimators (MLEs) of the unknown parameters 𝜇 and 𝜎, respec-
tively. Then, the parametric estimators, denoted as the ML- and
MM-based estimators of 𝑆𝑝𝑚𝑘 , are introduced as follows:

𝑆𝑀𝑀
𝑝𝑚𝑘

= 1

3
Φ−1

⎧⎪⎨⎪⎩
1

2
Φ

⎛⎜⎜⎜⎝
𝑈𝑆𝐿 − 𝜇𝑀𝑀√

𝜎2𝑀𝑀 + (𝜇𝑀𝑀 − 𝑇)2

⎞⎟⎟⎟⎠
+ 1

2
Φ

⎛⎜⎜⎜⎝
𝜇𝑀𝑀 − 𝐿𝑆𝐿√

𝜎2𝑀𝑀 + (𝜇𝑀𝑀 − 𝑇)2

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ , (18)

and

𝑆𝑀𝐿
𝑝𝑚𝑘

= 1

3
Φ−1

⎧⎪⎨⎪⎩
1

2
Φ

⎛⎜⎜⎜⎝
𝑈𝑆𝐿 − 𝜇𝑀𝐿√

𝜎2𝑀𝐿 + (𝜇𝑀𝐿 − 𝑇)2

⎞⎟⎟⎟⎠
+ 1

2
Φ

⎛⎜⎜⎜⎝
𝜇𝑀𝐿 − 𝐿𝑆𝐿√

𝜎2𝑀𝐿 + (𝜇𝑀𝐿 − 𝑇)2

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ . (19)

Definition 2.5. Let 𝜇𝑀𝑀 , 𝜎𝑀𝑀 , 𝜇𝑀𝐿, and 𝜎𝑀𝐿 be the MMEs and
MLEs of the unknownparameters𝜇 and𝜎, respectively. Then, the
ML- andMM-based estimators of 𝐶′′

𝑝𝑚𝑘
are introduced as follows:

𝐶
′′𝑀𝑀
𝑝𝑚𝑘

=
𝑑∗ − 𝐴∗

𝑀𝑀

3

√
𝜎2𝑀𝑀 + 𝐴2

𝑀𝑀

, (20)

and

𝐶
′′𝑀𝐿
𝑝𝑚𝑘

=
𝑑∗ − 𝐴∗

𝑀𝐿

3

√
𝜎2𝑀𝐿 + 𝐴2

𝑀𝐿

, (21)

where

𝐴𝑀𝑀 = max {𝑑(𝜇𝑀𝑀 − 𝑇)∕𝐷𝑢, 𝑑(𝑇 − 𝜇𝑀𝑀)∕𝐷𝑙},

𝐴∗
𝑀𝑀 = max {𝑑∗(𝜇𝑀𝑀 − 𝑇)∕𝐷𝑢, 𝑑

∗(𝑇 − 𝜇𝑀𝑀)∕𝐷𝑙},

𝐴𝑀𝐿 = max {𝑑(𝜇𝑀𝐿 − 𝑇)∕𝐷𝑢, 𝑑(𝑇 − 𝜇𝑀𝐿)∕𝐷𝑙},

𝐴∗
𝑀𝐿 = max {𝑑∗(𝜇𝑀𝐿 − 𝑇)∕𝐷𝑢, 𝑑

∗(𝑇 − 𝜇𝑀𝐿)∕𝐷𝑙},

𝐷𝑙 = 𝑇 − 𝐿𝑆𝐿, 𝐷𝑢 = 𝑈𝑆𝐿 − 𝑇 and 𝑑∗ = min {𝐷𝑙, 𝐷𝑢}.

3 A Comparison Study Between Parametric and
Robust Estimation Procedures

We intend to present a comparative analysis of the mean square
error (MSE) criterion on the basis of the IQR-, MAD-, MM-, and

ML-based estimators in this section. In order to evaluate how the
robustness of various estimation methods is to outliers, we take
into consideration 𝑚 random samples, each with 𝑛 observations
taken from a normal distribution. These samples encompass
different numbers of outliers denoted by 𝑘. The MSE of the
parametric and robust estimators of 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
for various

numbers of outliers are provided in Tables 1 and 2. Also, Figures 1
and 2 are the representations of the intuitive understanding of
Tables 1 and 2. It must be noted that the MSE by utilizing 𝑚

replications, is computed as follows:

MSE = 1

𝑚

𝑚∑
𝑖=1

(𝜃𝑖 − 𝜃)2, (22)

where 𝜃𝑖 is the estimator of 𝜃 for 𝑖 = 1, … ,𝑚.

Notation 3.1. In a comparative study between the proposed
parametric and robust estimation procedures, the MSE criterion
is used to demonstrate that the proposed parametric estimators
are more suitable for estimation tasks involving the presence
of outliers. The lower MSE value of the proposed estimator
indicates that it performs better than other estimators. To clarify
the computational complexity, we present the following step-
by-step guide on how the MSE values are calculated for the
proposed parametric and robust estimators of 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
(see

more details about this computation in Algorithm 1). Herein,
we suppose that the outliers follow the same distribution with
different parameters in this investigation. For a sample with
size 𝑛 in the presence of 𝑘 outliers, we generate 𝑚 = 1000

samples, each of size 𝑛 − 𝑘 from the normal distribution𝑁(𝜇, 𝜎2)
(𝑋1,𝑖 , … , 𝑋𝑛−𝑘,𝑖

𝑖.𝑖.𝑑.
∼ 𝑁

(
𝜇, 𝜎2

)
for each 𝑖 = 1, … , 1000), and for hav-

ing 𝑘 outliers in the sample data, we generate 1000 samples,
each of size 𝑘 from the normal distribution with different
parameters (𝑋𝑛−𝑘+1,𝑖 , 𝑋𝑛,𝑖∼𝑁

(
𝜇 + 𝛿, 𝜎2

)
for each 𝑖 = 1, … , 1000).

Therefore, the MSE values of the proposed parametric and
robust estimators of 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
based on the sample data{

𝑋1,𝑖 , … , 𝑋𝑛−𝑘,𝑖 , 𝑋𝑛−𝑘+1,𝑖 , … , 𝑋𝑛,𝑖

}
for 𝑖 = 1, … , 1000 are calculated

by the following formulas in this investigation:

∙ Computation of the MSE values of robust estimators:
The MSE criterion for the IQR-based and MAD-based esti-
mators of 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
for the considered sample of size 𝑛

in the presence of 𝑘 outliers is computed using the following
formulas:

MSE = 1

1000

1000∑
𝑖=1

(
𝑆
IQR

𝑝𝑚𝑘,𝑖
− 𝑆𝑝𝑚𝑘

)2
,

MSE = 1

1000

1000∑
𝑖=1

(
𝑆MAD
𝑝𝑚𝑘,𝑖

− 𝑆𝑝𝑚𝑘

)2
,

MSE = 1

1000

1000∑
𝑖=1

(
𝐶

′′IQR

𝑝𝑚𝑘,𝑖
− 𝐶

′′

𝑝𝑚𝑘

)2
,

and

MSE = 1

1000

1000∑
𝑖=1

(
𝐶

′′MAD
𝑝𝑚𝑘,𝑖

− 𝐶
′′

𝑝𝑚𝑘

)2
,
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TABLE 1 Results of the MSE of the PCI 𝑆𝑝𝑚𝑘 based on𝑁(𝜇 = 3, 𝜎2 = 42), for various estimators with different numbers of outliers on the basis of
the preset SLs (𝐿𝑆𝐿 = 0, 𝑇 = 6,𝑈𝑆𝐿 = 10).

Robust procedure Robust procedure Parametric procedure Parametric procedure
𝒏 𝒌 IQR-based estimator MAD-based estimator MM-based estimator ML-based estimator

16 1 0.0137 0.0089 0.0049 0.0047
2 0.0123 0.0111 0.0048 0.0048
3 0.0130 0.0123 0.0048 0.0058

22 1 0.0129 0.0061 0.0033 0.0032
2 0.0128 0.0066 0.0036 0.0037
3 0.0116 0.0069 0.0034 0.0038

28 1 0.0127 0.0044 0.0024 0.0023

2 0.0115 0.0056 0.0026 0.0025
3 0.0111 0.0052 0.0024 0.0025

34 1 0.0127 0.0039 0.0020 0.0020
2 0.0125 0.0038 0.0020 0.0020
3 0.0120 0.0042 0.0021 0.0022

40 1 0.0126 0.0035 0.0017 0.0017
2 0.0119 0.0033 0.0018 0.0018
3 0.0119 0.0038 0.0018 0.0019

75 1 0.0127 0.0017 0.0009 0.0009
2 0.0128 0.0017 0.0009 0.0009
3 0.0126 0.0017 0.0009 0.0010

100 1 0.0127 0.0013 0.0007 0.0007
2 0.0126 0.0013 0.0007 0.0007
3 0.0122 0.0014 0.0007 0.0007

136 1 0.0133 0.0008 0.0005 0.0005
2 0.0127 0.0009 0.0005 0.0005

3 0.0125 0.0009 0.0005 0.0005

where 𝑆𝑝𝑚𝑘 and 𝐶
′′

𝑝𝑚𝑘
are calculated using Equations (2)

and (3), respectively, and also 𝑆
IQR

𝑝𝑚𝑘,𝑖
, 𝑆MAD

𝑝𝑚𝑘,𝑖
, 𝐶

′′IQR

𝑝𝑚𝑘,𝑖
, and

𝐶
′′MAD
𝑝𝑚𝑘,𝑖

for 𝑖 = 1, … , 1000 are computed by Equations (6)–(9),
respectively.

∙ Computation of MSE values of the parametric estima-
tors:TheMSE criterion for theMM- andML-based estimators
of 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
for a given sample of size 𝑛 with 𝑘 outliers is

determined using the following formulas:

MSE = 1

1000

1000∑
𝑖=1

(
𝑆𝑀𝑀
𝑝𝑚𝑘,𝑖

− 𝑆𝑝𝑚𝑘

)2
,

MSE = 1

1000

1000∑
𝑖=1

(
𝑆𝑀𝐿
𝑝𝑚𝑘,𝑖

− 𝑆𝑝𝑚𝑘

)2
,

MSE = 1

1000

1000∑
𝑖=1

(
𝐶

′′𝑀𝑀
𝑝𝑚𝑘,𝑖

− 𝐶
′′

𝑝𝑚𝑘

)2
,

and

MSE = 1

1000

1000∑
𝑖=1

(
𝐶

′′𝑀𝐿
𝑝𝑚𝑘,𝑖

− 𝐶
′′

𝑝𝑚𝑘

)2
,

where 𝑆𝑝𝑚𝑘 and 𝐶
′′

𝑝𝑚𝑘
are computed using Equations (2) and

(3), respectively. Additionally, 𝑆𝑀𝑀
𝑝𝑚𝑘,𝑖

, 𝑆𝑀𝐿
𝑝𝑚𝑘,𝑖

, 𝐶′′𝑀𝑀
𝑝𝑚𝑘,𝑖

, and 𝐶′′𝑀𝐿
𝑝𝑚𝑘,𝑖

for 𝑖 = 1, … , 1000 are determined using Equations (18)–(21),
respectively.

To clarify the steps involved in calculating the MSE values
provided in Tables 1 and 2, we use Algorithm 1, which gener-
ates sample data sets based on the following parameters: 𝑚 =
1000, 𝐿𝑆𝐿 = 0, 𝑈𝑆𝐿 = 10, 𝑇 = 6, 𝜇 = 3, 𝜎 = 4, and 𝛿 = 2. This is
done for various sample sizes (𝑛 = 16(6)40 and 75, 100, 136) with
different numbers of outliers (𝑘 = 1, 2, 3).

For example, in the sixth column of Table 1, for 𝑛 = 16 with
the presence of two outliers (𝑘 = 2), we generate 𝑚 = 1000

samples, each of size 𝑛 − 𝑘 = 16 − 2 = 14 from the normal dis-
tribution 𝑁(𝜇 = 3, 𝜎2 = 42) (𝑋1,𝑖 , … , 𝑋14,𝑖

𝑖.𝑖.𝑑.
∼ 𝑁

(
3, 42

)
for each

6 of 14 Quality and Reliability Engineering International, 2024



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

TABLE 2 Results of the MSE of the index 𝐶′′

𝑝𝑚𝑘
based on 𝑁(𝜇 = 3, 𝜎2 = 42), for various estimators with different numbers of outliers on the basis

of the preset SLs (𝐿𝑆𝐿 = 0, 𝑇 = 6,𝑈𝑆𝐿 = 10).

Robust procedure Robust procedure Parametric procedure Parametric procedure
𝒏 𝒌 IQR-based estimator MAD-based estimator MM-based estimator ML-based estimator

16 1 0.0499 0.0083 0.0053 0.0049

2 0.0705 0.0122 0.0068 0.0056

3 0.0699 0.0111 0.0068 0.0042

22 1 0.0314 0.0051 0.0033 0.0030

2 0.0475 0.0086 0.0047 0.0041

3 0.0487 0.0071 0.0045 0.0032

28 1 0.0287 0.0046 0.0028 0.0026

2 0.0323 0.0047 0.0031 0.0027

3 0.0328 0.0049 0.0031 0.0025

34 1 0.0253 0.0039 0.0023 0.0022
2 0.0264 0.0039 0.0024 0.0022
3 0.0300 0.0041 0.0025 0.0021

40 1 0.0216 0.0032 0.0019 0.0018

2 0.0228 0.0033 0.0022 0.0020

3 0.0248 0.0034 0.0022 0.0018

75 1 0.0127 0.0015 0.0010 0.0009
2 0.0147 0.0017 0.0011 0.0010
3 0.0144 0.0016 0.0011 0.0010

100 1 0.0112 0.0011 0.0008 0.0008
2 0.0120 0.0012 0.0008 0.0008
3 0.0121 0.0012 0.0008 0.0008

136 1 0.0094 0.0008 0.0006 0.0005

2 0.0098 0.0008 0.0006 0.0005

3 0.0101 0.0008 0.0006 0.0006

𝑖 = 1, … , 1000), and for having two outliers in the sample data,
we generate 1000 samples, each of size two from the normal
distribution with different parameters (𝑋15,𝑖 , 𝑋16,𝑖∼𝑁

(
𝜇 + 2, 𝜎2

)
for each 𝑖 = 1, … , 1000). Therefore, by performing Algorithm 1
based on employing the ML-based estimator of 𝑆𝑝𝑚𝑘 (𝑆𝑀𝐿

𝑝𝑚𝑘
) on

the basis of the sample data
{
𝑋1,𝑖 , … , 𝑋14,𝑖 , 𝑋15,𝑖 , 𝑋16,𝑖

}
for 𝑖 =

1, … , 1000, theMSE of 𝑆𝑀𝐿
𝑝𝑚𝑘

is calculated by the following formula
in this investigation:

MSE = 1

1000

1000∑
𝑖=1

(
𝑆𝑀𝐿
𝑝𝑚𝑘,𝑖

− 𝑆𝑝𝑚𝑘

)2
= 0.0048,

where 𝑆𝑝𝑚𝑘 is calculated by the following:

𝑆𝑝𝑚𝑘 =
1

3
Φ−1

{
1

2
Φ

(
10 − 3√

42 + (3 − 6)2

)

+ 1

2
Φ

(
3 − 0√

42 + (3 − 6)2

)}
= 0.3083.

The outcomes from Tables 1 and 2 (Figures 1 and 2) indicate a
significant influence of sample size on the MSE for the para-
metric and robust estimation procedures. Upon comparing these
methodologies, it becomes evident that the optimal results stem
from utilizing ML- and MM-based estimators. This is attributed
to the minimal impact of varying outlier quantities on the MSE
for these estimators. Consequently, in the context of the MSE
value derived from this simulation study, one can infer that the
proposed ML- and MM-based estimators are more suitable for
estimation tasks involving the presence of outliers.

Remark 3.2. In general, robust methods typically require more
computational effort because they involve iterative procedures,
numerical solutions, or more complex algorithms to handle
outliers or deviations from assumptions. Parametric methods, on
the other hand, tend to be faster and computationally simpler
because they rely on specific distributional assumptions and often
have closed-form solutions. However, in this case, our proposed
parametric estimators (𝑆𝑀𝑀

𝑝𝑚𝑘
, 𝐶′′𝑀𝑀

𝑝𝑚𝑘
, 𝑆𝑀𝐿

𝑝𝑚𝑘
, and 𝐶

′′𝑀𝐿
𝑝𝑚𝑘

) require
more computational effort than the robust estimators (𝑆IQR

𝑝𝑚𝑘
,

𝐶
′′IQR

𝑝𝑚𝑘
, 𝑆MAD

𝑝𝑚𝑘
, and 𝐶

′′MAD
𝑝𝑚𝑘

) because solving Equations (12)–(16)
necessitates the use of numerical methods.
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FIGURE 1 The MSE of the index 𝑆𝑝𝑚𝑘 for various estimators with different numbers of outliers (𝑘 = 1, 2, 3).

Remark 3.3. Note that the proposed procedure of the indices
estimation is provided for the normal distribution of the process
output. Herein, by inspiration of Slifker and Shapiro [25], we
use a procedure based on sample percentiles for fitting Johnson
distributions to data. This procedure is especially helpful when
the collected data are non-normal, but one desires to apply
a methodology that requires the underlying distribution to be
normal. Under the non-normality assumption, to transform
the variable 𝑋 to a standard normal variable 𝑍, we propose
the Johnson’s system of distributions which is generated by
transformation of the form Slifker and Shapiro [25]

𝑍 = 𝛾 + 𝜂𝑓𝑖(𝑋; 𝜆, 𝜖), (23)

where three functions 𝑓𝑖(𝑋; 𝜆, 𝜖), for 𝑖 = 1, 2, 3, associate with
the Johnson’s system. The parameters 𝜆, 𝜂, and 𝜖 are estimated
using the Johnson transformation procedure; see more details
about Johnson’s system of distributions in Bowman and Shen-

ton [26], Hahn and Shapiro [27], Johnson et al. [28], Slifker and
Shapiro [25], and Kendall et al. [29].

The following section presents the obtained results correspond-
ing to the application of the novel estimations of PCIs with
asymmetric tolerances to check the performance of an industrial
manufacturing process using a real dataset.

4 Illustrative Example and Interpretation of the
Implications for Process Improvement

4.1 Numerical Results

A real-world example is used in this section to demonstrate how
well PCIs estimate when there are outliers. It is emphasized that,
according to the definition, outliers are observations that deviate
from the presumptive model.
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FIGURE 2 The MSE of the index 𝐶′′

𝑝𝑚𝑘
for different estimators with various numbers of outliers (𝑘 = 1, 2, 3).

An electronic circuit or device that amplifies the strength of a
signal applied to its input is called an amplifier. Small signal
amplifiers are frequently used devices in the field of electronics
because of their capacity to amplify relatively small input signals,
such as those from photo-devices or relays, into much larger
output signals that can be used to power loudspeakers, lamps,
or other devices. An ideal signal amplifier has the following
three key characteristics: input resistance (𝑅𝐼𝑁), output resistance
(𝑅𝑂𝑈𝑇), and the gain of an amplifier. The gain of an amplifier
refers to the increased difference between the input and output
signals. Essentially, gain measures the extent to which an ampli-
fier boosts the input signal. It can be expressed either in decibel
(dB) or in numbers and represents howmuch an amplifier is able
to amplify a signal given to it. Figure 3 indicates a type of an
amplifier and Figure 4 shows an amplifier gain of the input signal.

The example presented in the following concerns with the capa-
bility of a process, which produces electronic telecommunication
amplifiers. The following example relates to the capability of an
electronic telecommunication amplifier production process. The
Juran Institute [2] provides the original data. The gain amplifier is
the quality characteristic of interest. The design of the amplifiers
had called for a gain of 10 dB and allowed the amplifiers to be
considered acceptable if the gain fell between 7.75 and 12.25 dB,
that is, (𝐿𝑆𝐿, 𝑇,𝑈𝑆𝐿) = (7.75, 10, 12.25).

The quality improvement team measured the gains of 120 ampli-
fiers as a sample to determine how capable the manufacturing
process was that produced the amplifiers. Three common meth-
ods can be taken into consideration to examine the normality of
data: (1) the Cullen and Frey graph, (2) the pdf plot, and (3) the
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ALGORITHM 1 Simulation procedure for computing MSE on the
basis of generating𝑚 samples each of size 𝑛 with 𝑘 outliers.

Require:
(1) The desired index 𝐶𝑢 and its considered estimator (𝐶𝑢).

(2) 𝑛 ≥ 1, 𝑘 ≥ 0,𝑚 ≥ 1, 𝜎 > 0, 𝜇, 𝛿, 𝐿𝑆𝐿,𝑈𝑆𝐿 ∈ ℝ.

(3) Probability density for the random variable 𝑋.

(4) Probability density for the random outlier.
Ensure:MSE of the desired estimator 𝐶𝑢.

for 𝑖 = 1 to 𝑚 do
Generate independently 𝑋1,𝑖 , … , 𝑋𝑛−𝑘,𝑖 ∼ 𝑁(𝜇, 𝜎2).
Generate independently
𝑋𝑛−𝑘+1,𝑖 , … , 𝑋𝑛,𝑖 ∼ 𝑁(𝜇 + 𝛿, 𝜎2).
Combine two samples (𝑋1,𝑖 , … , 𝑋𝑛−𝑘,𝑖) and
(𝑋𝑛−𝑘+1,𝑖 , … , 𝑋𝑛,𝑖),
to achieve

{
𝑋1,𝑖 , … , 𝑋𝑛−𝑘,𝑖 , 𝑋𝑛−𝑘+1,𝑖 , … , 𝑋𝑛,𝑖

}
.

Compute 𝐶𝑢,𝑖 based on the sample data set{
𝑋1,𝑖 , … , 𝑋𝑛,𝑖

}
.

end for
Calculate 𝐶𝑢.
Calculate MSE of the desired estimator 𝐶𝑢 by
Equation (22).
return MSE of the desired estimator 𝐶𝑢.

FIGURE 3 Schematic of a type of an amplifier.

goodness-of-fit test. Another name for the Cullen and Frey graph
is the skewness-kurtosis graph; see Cullen et al. [30]. It suggests
choosing the best fit based on kurtosis and skewness level for
an unknown distribution. To aid in the selection of the model,
values for common distributions are displayed on this graph. The
left side graphs in Figure 5 shows the distribution of observation
has not a skewness of zero, but the kurtosis of observation model
is close to the normal distribution. Therefore, by examining the
Cullen and Frey graph of the original amplifier gain data in the
left side graph of Figure 5, the normal distribution model is not
suitable to fit the original data.

FIGURE 4 Amplifier gain of the input signal.

TABLE 3 The original amplifier gain data.

8.1 8.2 9.1 11.5 9.3 8.4 7.9 9.9 8.7 8.1 8.5 8.6
10.4 8.9 8.4 8.0 9.7 9.1 8.5 10.6 9.8 10.1 8.2 9.2
8.8 10.1 9.6 7.9 8.7 10.1 9.2 8.6 8.5 9.6 9.0 8.5
9.7 9.4 11.1 8.3 8.2 7.8 8.7 9.4 8.9 8.3 10.2 9.6
7.8 9.2 7.9 8.7 8.9 8.1 10.2 8.8 9.1 8.0 9.5 9.0
9.9 7.9 8.5 10.0 8.6 8.8 7.9 8.2 8.4 9.8 8.3 10.7
11.7 9.5 8.7 9.4 9.5 8.0 9.8 10.5 8.1 9.0 8.9 8.6
8.0 10.9 7.8 9.0 9.4 9.2 8.3 9.7 9.5 8.9 9.1 10.0
9.3 7.8 10.5 9.2 8.8 8.4 9.0 9.1 8.7 8.1 10.3 8.8
9.0 8.3 8.5 10.7 8.3 7.8 9.6 8.0 9.3 9.7 8.4 8.6

Shapiro–Wilk test does not confirm fitting thenormal distribution
on the original data with W = 0.9523 and 𝑝 value = 0.0003.
Also, the Lilliefors (corrected Kolmogorov–Smirnov) normality
test withD = 0.0815 and 𝑝 value = 0.0487, shows that the original
amplifier gain data follow a non-normal distribution.

According to Remark 3.3, to transform the non-normal data to
normality, we can use the Johnson transformation procedure.
It must be noted that using the original specification limits,
(𝐿𝑆𝐿, 𝑇,𝑈𝑆𝐿) = (7.75, 10, 12.25), to assess the quality using the
transformed data would be incorrect. Therefore, the transformed
specification limits (𝐿𝑆𝐿

′
, 𝑇

′
, 𝑈𝑆𝐿

′
) = (−2.314, 1.019, 6.302) as

well as the transformed data are calculated by the following
estimated transformation; see more details in [31]:

𝑧 = 0.96 + 0.98 ln
(

𝑥−7.59

4.68+7.59−𝑥

)
, (24)

where 𝑧 is the standard normal observation 𝑥.

Table 3 displays the sample of the original gains of 120 amplifiers
listed in Juran Institute [2]. Table 4 displays the corresponding
transformed amplifier gain data, using the estimated transforma-
tion in Equation (24).

Meanwhile, the transformed amplifier gain data set has been
checked for the normal distribution’s appropriateness using the
goodness-of-fit test (Shapiro–Wilk test or Lilliefors normality test)
and showed that the normal distribution is a suitable distribution
to fit the transformed data. Also, based on the right-side graphs
in Figure 5, the normal distribution model is appropriate to fit
the transformed amplifier gain data.

The plots in Figure 6 display the box plots and histograms of
the original and transformed amplifier gain data with the fitted
density functions. Moreover, box plots and histograms show
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FIGURE 5 Left: Cullen and Frey graph of the original amplifier gain data. Right: Cullen and Frey graph of the transformed amplifier gain data.

FIGURE 6 Left: Histogram for 120 observed gain data. Right: Histogram for 120 transformed gain data.

that outliers contaminate both original and transformed data
(Figure 6). Whenever the alternative hypothesis is that “highest
value 2.9 is an outlier,” the result of the chi-square test for the
detection of the outlier in the transformed data shows that one
outlier exists (𝑝 value = 0.003).

In the original dataset, extreme valuesmight dominate and distort
the overall distribution, making it harder to identify smaller but
still significant outliers. After transformation, extreme values are
often compressed (especially with log transformations), allowing
outliers to stand out more clearly relative to the transformed
distribution. It should be noted that the chi-square test is often
more effective at detecting outliers in transformed data compared
to the original dataset due to how the transformation changes
the data distribution, enabling better adherence to the test’s
assumptions. Transforming data makes it more suitable for
statistical tests like the chi-square test by reducing skewness,

stabilizing variance, and aligning the data more closely with the
normal distribution, thereby improving outlier detection.

Remark 4.1. The Johnson transformation reshapes both non-
normal data and asymmetric tolerances into a form that adheres
to normal distribution assumptions [6]. By doing this, it ensures
that the indices like 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
remain valid, accurately

reflecting process capability. This transformation effectively han-
dles the skewness and asymmetry in the original dataset by
stabilizing variance and ensuring that distances between the
mean and specification limits are properly represented in the
transformed space. After transformation, the specification limits
and data are normalized, meaning that the distance between
the transformed mean and the transformed limits is correctly
represented. This allows for accurate calculations of this indices,
even when the tolerances were asymmetric. It should be noted
that this manufacturing process operates based on asymmetric
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TABLE 4 The transformed amplifier gain data.

−1.1 −0.9 0.2 2.6 0.4 −0.6 −1.6 0.9 −0.2 −1.1 −0.4 −0.3
1.4 0.0 −0.6 −1.3 0.8 0.2 −0.4 1.5 0.9 1.1 −0.9 0.3
−0.1 1.1 0.7 −1.6 −0.2 1.1 0.3 −0.3 −0.4 0.7 0.1 −0.4
0.8 0.5 2.0 −0.7 −0.9 −2.0 −0.2 0.5 0.0 −0.7 1.2 0.7
−2.0 0.3 −1.6 −0.2 0.0 −1.1 1.2 −0.1 0.2 −1.3 0.6 0.1
0.9 −1.6 −0.4 1.0 −0.3 −0.1 −1.6 −0.9 −0.6 0.9 −0.7 1.6
2.9 0.6 −0.2 0.5 0.6 −1.3 0.9 1.4 −1.1 0.1 0.0 −0.3
−1.3 1.8 −2.0 0.1 0.5 0.3 −0.7 0.8 0.6 0.0 0.2 1.0
0.4 −2.0 1.4 0.3 −0.1 −0.6 0.1 0.2 −0.2 −1.1 1.3 −0.1
0.1 −0.7 −0.4 1.6 −0.7 −2.0 0.7 −1.3 0.4 0.8 −0.6 −0.3

tolerance (𝐿𝑆𝐿
′
, 𝑇

′
, 𝑈𝑆𝐿

′
) = (−2.314, 1.019, 6.302). Thus, using

the indices 𝑆𝑝𝑚𝑘 and 𝐶
′′

𝑝𝑚𝑘
to measure the performance of this

manufacturing process can be useful.

In the sense of parametric model of outliers, the likelihood
functions with respect to 𝑘 by using MM and ML estimators
of the parameters are summarized in Table 5. In the case of
both MM- and ML-based estimators of the PCIs, the likelihood
functions are maximized at 𝑘 = 1 (see Table 5). Therefore,
according to Notation 2.2, taking 𝑘 = 1 into account, the ML-
and MM-based estimators for the indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
under

the conditions of 𝐿𝑆𝐿′ = −2.314, 𝑈𝑆𝐿′ = 6.302, and 𝑇
′ = 1.019

are computed as follows: 𝑆𝑀𝑀
𝑝𝑚𝑘

= 0.5838, 𝑆𝑀𝐿
𝑝𝑚𝑘

= 0.8122, 𝐶′′𝑀𝑀
𝑝𝑚𝑘

=
0.3997, and 𝐶

′′𝑀𝐿
𝑝𝑚𝑘

= 0.5263. Furthermore, the robust estimators
for the indices 𝑆𝑝𝑚𝑘 and𝐶

′′

𝑝𝑚𝑘
are, respectively, obtained as 𝑆IQR

𝑝𝑚𝑘
=

0.4749, 𝑆MAD
𝑝𝑚𝑘

= 0.6717, 𝐶
′′IQR

𝑝𝑚𝑘
= 0.5825, and 𝐶′′MAD

𝑝𝑚𝑘
= 0.4909.

The lowvalues of the computedML-based,MM-based, and robust
estimators of the indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
show that the average

quality of the amplifiers deviates significantly from the target
value, even though all 120 amplifiers met the specification limits.
Now that the manufacturing line was unable to produce ampli-
fiers with average quality that were closer to the target value, the
quality improvement team’s investigation could concentrate on
that reason.

4.2 Interpretation of the Implications for
Process Improvement

The given results demonstrate that the indices 𝑆𝑝𝑚𝑘 and
𝐶

′′

𝑝𝑚𝑘
—calculated using the ML-based, MM-based, and robust

estimators—show low values, indicating that the average quality
of the amplifiers deviates significantly from the target value,
even though all 120 amplifiers met the specification limits. This
suggests a process issue where average performance does not
align with the target, and the presence of outliers likely plays a
crucial role in these deviations.

In the presence of outliers, the implications for process improve-
ment becomemore complex and nuanced, as traditionalmethods
of quality assessment may be distorted by such anomalies. The
proposed robust estimators, designed to handle outliers, suggest

that outliers may be having a substantial impact on the process,
requiring more focused investigation. Meanwhile, the proposed
ML- and MM-based estimators are designed on the basis of
parametric methods. Parametric estimators are typically more
efficient when the underlying assumptions (like normality and
independence) are valid. They make use of full distributional
information, providing precise estimateswhen these assumptions
hold true. However, these advantages can turn into limita-
tions when the underlying assumptions do not hold, which is
where robust estimators are preferred. Robust estimators perform
better in the presence of outliers, skewed distributions, or non-
normality. Here is a detailed interpretation of the implications for
process improvement in this context:

∙ Identification of variability: The low values of these pro-
posed estimators suggest that the process, while controlled
within specifications, exhibits variability that prevents the
amplifiers from consistently meeting the target quality. This
signals a potential issue with process centering or alignment,
even though amplifiers arewithin the acceptable performance
range.

∙ Focus beyond specifications:Meeting specifications is nec-
essary but not sufficient for process excellence. The fact that
all amplifiersmet the specification limits yet deviated from the
target implies that quality improvements need to go beyond
mere compliance with specifications. The focus should shift
towards reducing variation and increasing precision toward
the target value.

∙ Root cause analysis: The quality improvement team can
now focus on why the average quality is not aligning with the
target.

∙ Opportunities for refinement: To bring the process closer
to the target, refinements might be needed:
1. Process optimization: SPC tools, such as process capabil-

ity studies, could help pinpoint where and why the process
drifts from the target.

2. Continuous improvement (CI) initiatives: Techniques
like Six Sigma or Kaizen could be employed to minimize
variability and ensure that production more consistently
hits the target quality.

3. Employee training: If the issue stems from manual
interventions or human error, staff training or procedural
changes might be necessary.

∙ Monitoring and feedback: Ongoing monitoring using
robust quality control methods is crucial. The low values
in the indices suggest that historical monitoring might not
have been sensitive enough to capture these deviations, so
improved data collection and real-time monitoring might be
needed.

∙ Customer satisfaction: Deviations from the target, even if
within specifications, might affect downstream performance
or customer satisfaction. If the target quality reflects optimal
product performance, failing to consistently achieve this could
lead to reduced reliability, performance issues, or increased
returns over time.

∙ Robustness and scalability: The use of MM-based, ML-
based, and robust estimators indicates an advanced analysis
of the data, suggesting that the current quality framework
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TABLE 5 The likelihood function with respect to the ML- and MM-based estimators of the parameters for different values of 𝑘 in the illustrative
example.

Procedure 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓

MM 4.114462𝑒−76 6.378718𝑒−83 1.566693𝑒−81 7.567683𝑒−93 2.1674493𝑒−123

ML 1.801374𝑒+57 0.921673𝑒+44 0.831332𝑒+30 0.450021𝑒+22 0.1304702𝑒+12

might be effective but underutilized. This analysis can provide
a roadmap for improving the robustness of the production
process, making it more scalable and resilient to future
demands.

5 Conclusions

PCIs serve as effective tools for assessing the capability of a
process in a controlled state. There has been extensive discus-
sion about how the existence of outliers can negatively impact
statistical analyses and decision-making processes. In this regard,
we first reviewed some existing generalizations of the index
𝐶𝑝𝑚𝑘 with asymmetric tolerances to check the performance of
an industrial manufacturing process. Then, for processes with
normal distributions, we proposed new parametric and robust
estimators of the indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
to estimate and compare

these indices in the presence of different outliers. The results
presented in Tables 1 and 2 indicated that the parametric esti-
mators for indices 𝑆𝑝𝑚𝑘 and 𝐶

′′

𝑝𝑚𝑘
perform better than the robust

estimators in this context. Furthermore, the results were visually
depicted in Figures 1 and 2. The mean squared error of these
estimators exhibits a decreasing trend in relation to the sample
size. Real data analysis was used to further clarify the proposed
procedure. As a potential procedure for the future research,
one can use these proposed robust/parametric estimators for
the newly proposed robust quality test. These guidelines can
be used to evaluate the capability of processes that involve
multiple characteristics.
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