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ABSTRACT

General Circulation Models (GCMs) represent a contemporary and advanced tool designed to simulate the response of climate systems to

alterations in greenhouse gas levels. Increasing spatial resolutions of the outputs of GCMs on a regional scale requires a downscaling pro-

cess. This study applied six Machine Learning (ML) models, named decision tree regression (DTR), support vector regression (SVR), artificial

neural networks (ANN), K-nearest neighbors (KNN), Light Gradient-Boosting Machine (LightGBM), and Stochastic Gradient Descent Regressor

(SGDRegressor), to downscale daily temperature data from CMIP6 models in Kohgiluyeh and Boyer-Ahmad, Iran. Observations from

Nazmakan station were used for training (1995 -2009) and testing (2009 -2015). In addition, future temperature projections during 2015

-2045 were made under SSP2-4.5 and SSP5-8.5 scenarios. Results showed that LightGBM and KNN developed the most reliable results.

Mann-Kendall’s analysis confirmed a significant upward trend, predicting cooler summers and warmer winters. The predicted data was

also validated against observations from the period 2015 -2022. This study highlights the strengths and limitations of nonlinear ML techniques

and emphasizes the need for further research to enhance predictive accuracy and spatial resolution in statistical downscaling.
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HIGHLIGHTS

• This study employed six machine learning models for downscaling daily temperature of climate models under Coupled Model Intercom-

parison Project 6 scenarios in southwest Iran.

• Daily temperature for the future period of 2015–2022 was predicted under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5)

climate scenarios.

• Daily temperature range of future period will decrease compared to the historical period, leading to cooler summers and warmer winters.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Climate change denotes a sustained alteration in long-term climate patterns. This transformation is a direct outcome of the

release of greenhouse gases into the atmosphere, a phenomenon rooted in the pre-industrial revolution era (Zahabiyoun et al.
2013). Climate change has evolved into a worldwide challenge with the ability to influence the local scale. Changing climate
patterns increase the likelihood of more frequent occurrences of extreme hydrological events, like flash floods or droughts

(IPCC 2014). Diverse sectors, such as agriculture, ecosystems, human and food security, as well as natural resource manage-
ment, face potential threats from these effects, leading to substantial losses. Climate change jeopardizes the sustainable
development of nations. Hence, it is crucial to initiate prompt and targeted climate actions aligned with the objectives of sus-
tainable development.

Taking action involves using adaptation as a key strategy. This approach centers on enhancing life adaptability and prep-
aration to mitigate the severity of impacts from future changes (Prathom & Champrasert 2023). To reduce local impacts, an
assessment of risks and impacts is conducted by comparing potential future climate scenarios with the present situation. This

informs the development of adaptation plans for different sectors (Buras & Menzel 2019; Liu et al. 2019; Miao et al. 2020;
Toot et al. 2020). Predicting future climate conditions involves using general circulation models (GCMs) under various scen-
arios (Goodarzi et al. 2022a, b). These predictions account for different scenarios, such as variations in greenhouse gas

emissions, land use, and socioeconomic conditions, providing valuable insights for planning and decision-making. This
study specifically concentrates on a future scenario known as ‘Shared Socioeconomic Pathways’ (SSPs), currently employed
as an input scenario for the GCM. SSPs are scenarios that simulate how various socioeconomic developments can influence
or pose challenges to strategies addressing climate change (Riahi et al. 2017). SSPs include five socioeconomic scenarios

labeled SSP1–5. The two SSPs selected in this study are regarded to be a combination of moderate social vulnerability
with a moderate emission range (SSP2-4.5) and higher emissions that impose high mitigation but low adaptation challenges
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(SSP5-8.5) (Zhu & Yang 2021; Ma et al. 2022). However, due to the coarse spatial resolution, GCM outputs might inade-

quately depict local data. To enhance spatial resolution, the downscaling process is crucial. GCMs are limited by their
coarse spatial resolution (250–600 km), leading to discrepancies between their predictions and actual local and global climate
variations. The output might not accurately represent information for a small local area. This poses a challenge for adaptation

activities (Gebrechorkos et al. 2019). Therefore, to utilize the prediction output, a necessary step involves a process called
‘downscaling’ to enhance spatial resolution and calibrate the prediction output. Downscaling is a method employed to
enhance the resolution of data by capturing the historical relationship between observed data and prediction output, with
the goal of calibrating the prediction.

Downscaling methods include statistical and dynamical approaches. The former, which is enhanced through machine
learning (ML) techniques, is particularly effective for simulating hydroclimatic variables that exhibit complex nonlinear
relationships (Xu et al. 2020). In this context, someMLmethods have been applied for statistical downscaling, such as genetic

programming (GP) (Coulibaly 2004), artificial neural network (ANN) (Ahmed et al. 2015; Tripathi et al. 2006), multiple linear
regression (MLR) (Sachindra et al. 2014), relevant vector machine (RVM) (Okkan & Inan 2015), K-nearest neighbors (KNN)
(Liu et al. 2017), support vector machine (SVM) (Goly et al. 2014), gene expression programming (Hashmi et al. 2011), and
generalized linear models (GLMs) (Beecham et al. 2014). Furthermore, SVM, ANN, and MLR have been used to simulate
minimum and maximum monthly temperatures (Duhan & Pandey 2015). Another study highlighted the applicability of
RVM, ANN, GP, and SVM in developing downscaling techniques for drought analysis (Sachindra et al. 2018). The better

performance of linear regression compared to ANN with limited available data was recognized (Hatanaka 2022). Also,
multi-gene GP was found to provide more valid results than ANN for downscaling daily temperature (Niazkar et al.
2023). In addition, a combination of interpolation approaches, such as inverse distance weighted (IDW) with ML models,
e.g., IDW-ANN, was used for downscaling precipitation and temperature (Prathom & Champrasert 2023), while a combi-

nation of four ML algorithms (Random Forest, KNN, Extra Trees, and Gradient-Boosting Decision Tree) was employed to
predict future precipitation (Wang et al. 2023). Nonetheless, several research gaps still remain. To be more specific, chal-
lenges in the current methods include improving spatial resolution, capturing extreme events, and better quantifying

uncertainties. In addition, downscaling efforts remained underrepresented for hydroclimatic variables, e.g., extreme precipi-
tation or small-scale phenomena, in certain regions. Moreover, many models lack thorough validation against real-world data,
raising concerns about their reliability. Finally, issues related to scalability and generalization across different regions and

future scenarios require the development of more robust and adaptable models.
The aim of this study is to employ some ML models to downscale outputs of Coupled Model Intercomparison Project 6

(CMIP6) climate models, i.e., Access-CM2, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and MRI-ESM2-0. In this context, this
study assesses the applicability of ANN, support vector regression (SVR), decision tree regression (DTR), KNN, Light Gra-

dient-Boosting Machine (LightGBM), and Stochastic Gradient Descent Regressor (SGDRegressor) for downscaling
hydroclimatic variables. Based on the literature review, the last three ML models have been rarely applied for statistical down-
scaling. In addition, the daily temperature for the future period of 2015–2045 is predicted under SSP2-4.5 and SSP5-8.5

climate scenarios.

2. MATERIALS AND METHODS

2.1. Study area

Kowsar dam basin is located in Kohgiluyeh and Boyer-Ahmad Province, Iran, and has an area of 2,420 km2 in the range of

latitudes 30° 260 to 30° 550 north and longitudes 50° 260 to 51° 130 east (Figure 1). This region is primarily characterized by
extensive agricultural lands and pastures, making it essential to address water management issues in this province. The aver-
age temperatures of the region in winter and summer are 11.5 and 32.4°C, respectively. The average annual rainfall is 421 mm
from 1995 to 2015.

In this study, observed data from a synoptic station and simulated data from GCM outputs adopted from CMIP6 were used.
The observed data of the daily temperature collected from Nazmakan synoptic station (with latitude 30° 630 north and longi-
tude 50° 740 east) from 1995 to 2015 was obtained by the Meteorological Organization (https://www.irimo.ir), which provides

long-term and reliable data about the state of precipitation and temperature in Iran. This database was divided into two parts:
(a) training data (from 1995 to 2009) and (b) test data (from 2009 to 2015). The dataset, which is illustrated in Figure 2, was
used to evaluate the applicability of four CMIP6 climate models.
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2.2. Models and scenarios

The daily gridded temperature data obtained from four CMIP6 climate models, shown in Table 1, are for 1995–2015 for the
historical period and for 2015–2045 for the future period. The data were collected from the Earth System Grid Association
(https://esgf-node.llnl.gov/search/cmip6). Furthermore, SSP is a combination of representative concentration pathways and

Figure 1 | Location of the study area.

Figure 2 | Temperature observations for the training and testing datasets.
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alternative pathways of socioeconomic development (O’Neill et al. 2016). The two SSPs selected in this study are SSP2-4.5
and SSP5-8.5.

2.3. ML downscaling models

SVR, ANN, DTR, KNN, LightGBM, and SGDRegressor are applied in this study to effectively downscale GCM outputs, each
leveraging different strengths in capturing patterns and relationships within the data.

2.3.1. Support vector regression

An SVM is an ML algorithm that handles both linear and nonlinear regressions. SVR is widely recognized as one of the most
commonly used supervised ML techniques (He et al. 2022). Basically, it creates an optimal hyperplane to transform input

data into a higher dimensional space, where data points become vectors (Bisong 2019). The optimum hyperplane, which
divides data into two classes, aims to widen the area between the hyperplane and nearest data points, i.e., support vectors.
Finally, the SVM prediction at each point is the hyperplane value at that point plus a bias to avoid overfitting. The perform-

ance of an SVM model is significantly influenced by kernel hyperparameters and a regularization term (Leong et al. 2021).
After comparing linear, polynomial, sigmoid, and radial basis kernel functions, the radial basis function kernel was ultimately
chosen for feature research.

2.3.2. Artificial neural network

The ANN, a method proficient in constructing nonlinear models between input and output samples (Piraei et al. 2023),
derives inspiration from the functioning of the human brain’s biological nervous system (Agatonovic-Kustrin & Beresford

2000). It is a mathematically modeled system mimicking biology, consisting of processing elements called neurons (or percep-
trons) connected with parameters (weights) assigned to the connections, forming the neuronal structure. In comparison to
traditional statistical regression techniques like MLR and GLM, ANN demonstrates superior performance, finding wide-
spread application in hydrology and climatology (Kisi̧ 2008; Okkan & Fistikoglu 2014).

In general, a common network in ANN comprises three layers: (i) an input layer including a set of neurons to carry input
data, (ii) a hidden layer that enables data flow in the network, and (iii) an output layer holding neuron associated with the
output data. Since the input data should be independent, neurons within a layer are not connected to one another, while

they are exclusively in connection with the neurons in adjacent layers (Piraei et al. 2023). The connection between two neur-
ons relates their values with a mathematical model, whose parameters can be optimized when data flow back and forth in the
network. As a result, the layer-based structure provides a relationship between input and output variables regardless of any

prior knowledge on the theoretical background of the problem in question.

2.3.3. Decision tree regression

The decision tree algorithm, a commonly used ML method for classification and regression tasks, exhibits a tendency to over-

fit, leading to less-than-optimal performance on testing datasets (Bisong 2019). With a structure resembling a flowchart
composed of nodes and branches, the decision tree is widely embraced in data mining due to its simplicity and ease of under-
standing. In creating a treelike structure, DTR divides data based on feature values at branch nodes. Each data partition

corresponds to the result of a splitting test on the training data. Branch nodes link to leaf nodes, where each leaf signifies
a model outcome derived by averaging data points from the training data assigned to that node during the splitting process
(Piraei et al. 2023).

Table 1 | Characteristics of the CMIP6 models considered in this study

No Model Institution Country Resolution

1 Access-CM2 CSIRO-BOM Australia 1.25� 1.88°

2 MRI-ESM2-0 MRI Japan 1.13� 1.13°

3 MPI-ESM1-2-LR MPI-M Germany 0.94� 0.94°

4 MPI-ESM1-2-HR MPI-M Germany 0.94� 0.94°
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2.3.4. K-nearest neighbors

The KNN technique, used for both classification and regression purposes, operates as a nonparametric method (Altman
1992). Its core function involves identifying the K closest data points to a designated testing data point and calculating the

weighted average of their target values. Assessing similarity between the training and testing data points relies on a distance
function. Common distance functions for continuous variables include Euclidean, Manhattan, and Minkowski (Nugrahaeni
& Mutijarsa 2016).

Using a desirable distance function, distance metrics can be determined and then sorted to obtain the minimum distance

that is nearest, which implies the maximum similarity among neighbor points. In addition, the KNN output can be achieved
by the K-nearest data points based on sorting the calculated distances. For this purpose, selecting the K value is crucial on
KNN performances (Piraei et al. 2023). In essence, a high value for K may incorporate outclass data, whereas a low value

may end up in poor training of KNN. Therefore, the optimum number of neighbors (K) should be computed using a
cross-validation approach.

2.3.5. Light Gradient-Boosting Machine

LightGBM is a scalable gradient-boosting ML model developed by Microsoft. In comparison to traditional ML models, it
exploits a histogram-based technique for enhancing the training process. As a result, it reduces computational efforts and
the amount of memory, which enables it to handle large datasets efficiently (Xu et al. 2023). Furthermore, LightGBM can
tackle not only classification but also regression tasks.

LightGBM employs a specific strategy for creating decision trees, called leaf-wise. Commonly, the decision tree model
adopts the level-wise strategy that works on the leaves of the same layer. Conversely, the leaf-wise strategy first searches
all leaves to determine the ones with the highest branching gain and then proceed with the branching cycle. Thus, it can

not only obtain higher accuracy by conducting more important splits but also decrease the overfitting issue (Fan et al.
2019). Moreover, LightGBM can employ various optimization algorithms, like Gradient-based One-Side Sampling and Exclu-
sive Feature Bundling, to improve its precision and run time. To be more specific, these optimization techniques make it a

powerful tool for developing robust ML models across various domains.

2.3.6. Stochastic Gradient Descent Regressor

SGDRegressor utilizes stochastic gradient descent (SGD) as its search engine to develop a linear ML model for regression

tasks. To be more precise, SGD iteratively conducts parameter estimation for each training example, which helps it to ade-
quately handle large-scale datasets efficiently (Kumar et al. 2023). SGDRegressor treats one sample at a time, making it
efficient. Thus, the speed of SGDRegressor is one of its key features. Moreover, SGDRegressor incorporates various loss func-
tions to providing flexibility in handling different types of regression problems. In addition, it has several regularization

techniques to prevent overfitting (Erdal & Karakurt 2013). Finally, these features make it a versatile ML for a wide range
of applications.

2.4. Mann–Kendall test

The Mann–Kendall test, which is a nonparametric test, was first presented by Mann and then the statistical distribution of the
test was extracted by Kendall. This test is widely used to find trends in meteorological time series data (Modarres & da Silva
2007; Goodarzi et al. 2022a, b). Due to the capabilities of this test in revealing the changes in the time series of climatic vari-

ables, it has been widely used in climate change studies. This test examines the null hypothesis of no trend in time series. In
this regard, it also identifies sudden change points.

In essence, it consists of two hypotheses: (i) null hypothesis and (ii) alternative hypothesis. The former denotes the lack of
pattern or trend in the data series, while the latter suggests the presence of a trend in the data series. For more information on

this trend analysis method, interested readers are referred to previous studies (Hırca et al. 2022; Niazkar et al. 2023).
The implementation of analysis in this test is attributed to the diagrams UI and U0I. Both graphs originate from a specific

point. Moreover, when |U| is greater than 1.96, it indicates that the UI graph intersects the two lines Y¼ 1.96 and Y¼�1.96,

signifying a significant trend. If U is greater than 0, or the overall trend of the UI graph is upward, it discloses a meaningful
upward trend. In the case where U is less than 0, the trend is both significant and decreasing. Furthermore, if the UI and U0I
graphs intersect within the range of �1.96 to 1.96, it indicates a sudden change.
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2.5. Sensitivity analysis

Sensitivity analysis (SA) examines how an independent variable affects the temperature estimation outcomes in statistical
downscaling methods based on ML. By employing Equation (1), the SA percentage for the simulated temperature, as deter-

mined by downscaling models, was calculated, considering each individual climate model (Zakwan & Niazkar 2021)

SAi ¼ Tmax(xi)� Tmin(xi)PN
i¼1

[Tmax(xi)� Tmin(xi) ]
� 100 (1)

where Tmax(xi) and Tmin(xi) are the maximum and minimum temperature, respectively.

2.6. Performance evaluation

Various metrics were employed to assess the performance of ML-based downscaling models: root mean square error (RMSE),
Nash–Sutcliffe efficiency (NSE), the coefficient of determination (R2), and bias percentage (PBIAS). The metrics are dis-
played in Table 2, where Tobs and Test represent the daily observed and estimated temperatures, respectively, and

N denotes the number of data points.
Referring to the optimal values listed in Table 2 for each metric, a greater R2 value indicates a stronger correlation between

the simulation and observed data. Unlike R2, a higher value of RMSE signifies a larger deviation between simulated and
observed data. A higher NSE indicates more accurate model performance. Finally, the ideal PBIAS value is 0. Negative

and positive PBIAS values signify underestimation and overestimation, respectively.

3. RESULTS AND DISCUSSION

This research involves the application of six ML-based downscaling models to forecast the daily temperature for a future
period at Nazmakan station under the SSP2-4.5 and SSP5-8.5 climate scenarios. To assess the sparsity between observed
and estimated daily temperature values obtained from downscaling models, a comparison was conducted for the training

data (1995–2009), as illustrated in Figure 3, and the testing data (2009–2015), as depicted in Figure 4.
The results indicate that LightGBM and KNN have little dispersion for training data and they are close to the observed data

line, while DTR displays greater dispersion among all. According to the results of testing data, the lowest dispersion is related

Table 2 | Model evaluation metrics

Measure Equation Range Optimal value

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
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2

N

vuuut
[0, ∞] 0
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1�

PN
i¼1

(Tobsi � Testi )
2

PN
i¼1

(Tobsi �
PN
i¼1
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[�∞, 1] 1

R2 PN
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Testi �
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Testi

 !" #
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PBIAS PN
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Figure 3 | Temperature estimations applying ML-based statistical downscaling for the training data: (a) ANN, (b) KNN, (c) DTR, (d) SVR,
(e) LightGBM, and (f) SGDRegressor.
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to LightGBM and KNN and the highest dispersion is related to DTR. Clearly, scattering of data reduces the accuracy of the

results.
The temperature estimated by all ML models under both SSP climate scenarios is shown in Figure 5. Compared to the

observed temperature shown in Figure 2, all ML models demonstrated a significant increase in the minimum daily

Figure 4 | Temperature estimations applying ML-based statistical downscaling for the testing data: (a) ANN, (b) KNN, (c) DTR, (d) SVR,
(e) LightGBM, and (f) SGDRegressor.
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temperature during the coldest days and a decrease in the maximum daily temperature during the hottest days in the study

area. LightGBM, KNN, and DTR display changes of about 5–10°C, while SGDRegressor, ANN, and SVR show smaller
changes compared to the observed data. The SSP5-8.5 scenario is associated with an increase in the mean temperature com-
pared to the SSP2-4.5 scenario. In general, the daily temperature in the future period versus historical period will lead to

warmer winters and cooler summers in the coming years.

3.1. Performance evaluation of downscaling models

The performance of downscaling models was evaluated for training and testing data. At first, R2, RMSE, and standard devi-
ation (SD) of six ML-based downscaling methods were calculated and Taylor diagrams were plotted, as shown in Figure 6.

The ML performances for predicting temperature differed slightly. According to Figure 6(a), all ML models resulted in very

Figure 5 | Temperature estimations applying ML-based statistical downscaling for 2015–2045: (a) ANN for SSP2-4.5, (b) ANN for SSP5-8.5,
(c) DTR for SSP2-4.5, (d) DTR for SSP5-8.5, (e) KNN for SSP2-4.5, (f) KNN for SSP5-8.5, (g) SVR for SSP2-4.5, (h) SVR for SSP5-8.5, (i) LightGBM for
SSP2-4.5, (j) LightGBM for SSP5-8.5, (k) SGDRegressor for SSP2-4.5, and (l) SGDRegressor for SSP5-8.5. (continued.).
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close R2 for the training data, and SD of the simulated temperature values were close to the observed ones. To be more
specific, the best performance was achieved by LightGBM and DTR with the highest R2 of about 0.93 and a minor RMSE

value. According to Figure 6(b), LightGBM and KNN obtained best performance with an R2 of about 0.92 for the testing
data, and then SGDRegressor, ANN, SVR, and DTR models performed better, respectively. Finally, these results indicate
that the efficiency of ML models is different in the training and testing data based on the evaluation criteria considered in
this study.

Figure 7 describes the values of different metrics for better performance evaluation of downscaling models. As shown in
Figure 7(a), LightGBM and DTR resulted in NSE¼ 0.93 and showed a better performance compared to the other six
models for the training data. Therefore, KNN presented the best performance with NSE¼ 0.92 for the testing data. Likewise,

Figure 7(b) demonstrates LightGBM and DTR as the best models with PBIAS around 0 for the training data and ANN with
the lowest PBIAS value for the testing data, respectively. In general, the obtained results showed that LightGBM and KNN
achieved the highest accuracy for Nazmakan station.

Figure 5 | Continued.
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3.2. Mann–Kendall test results

To identify the mutation and the initial year of the trend or sudden change, the MK test was executed. Initially, UI and U0I
components were graphed on an annual basis for the temperature data throughout the historical and future periods under
both climate scenarios. The respective graphs are illustrated in Figure 8.

According to Figure 8(a), the annual changes for 1996–2001 and 2007–2011 showed a negative and decreasing trend, while
a positive and increasing trend was observed for 2002–2007 and 2011–2014, with sudden changes occurring in 1996, 2006,

and 2008. Based on Figure 8(b), the predicted annual average temperature changes under the SSP2-4.5 scenario indicate a
positive and increasing trend, with sudden changes in 2016, 2019, 2021, 2022, and 2025. Similarly, Figure 8(c), associated
with the SSP5-8.5 scenario, shows a positive and upward trend from 2015 to 2020 and from 2025 to 2045. Based on Kendall’s
test, the intersection of the UI and U0I graphs between �1.96 and 1.96 indicates sudden shifts during the period of 2015–2019.
These statistical changes suggest that the trends during this period are distinct from others, requiring further investigation into
the factors driving these fluctuations.

Figure 6 | Taylor diagrams of estimated temperature for (a) training and (b) testing data.

Figure 7 | Evaluation of ML-based statistical downscaling performance in temperature estimation for both training and testing datasets using
the following metrics: (a) NSE and (b) PBIAS.
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3.3. SA results

The influence of GCM output variations on daily temperature data generated by ML-based downscaling models was inves-
tigated. As shown in Figure 9, the MPI-ESM1-2-HR model had the greatest impact on the SVR, KNN, and DTR results,
contributing 34.7, 41.5, and 89.4%, respectively. Conversely, the ACCESS-CM2 outputs exhibited the lowest impacts on

Figure 8 | Changes of UI and U0I components for annual mean temperature of (a) observed data, (b) SSP2-4.5, and (c) SSP5-8.5 scenarios for
2015–2045.
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the KNN and SVR models, with sensitivity analyses of 12.1 and 17.2%, respectively. Also, the SA results for all four GCM

models concerning ANN were identical, which limits their reliability. These findings highlight that spatial resolution differ-
ences significantly affect model performances, as higher-resolution models capture local climatic features more effectively
than their lower-resolution counterparts. Overall, this underscores the critical role that GCMs play in ensuring the accuracy

of simulation results.

3.4. Comparison of predicted data with observed data

In this research, a comparison was made between the observed data and the estimated data under both climate scenarios
during 2015–2022 for Nazmakan station. The evaluation was calculated based on R2 and NSE, which is shown in
Table 3. KNN obtained the most valid performance with R2 and NSE of about 0.92 in both scenarios and in other

models, between 0.88 and 0.91. In general, it can be concluded that ML-based methods were acceptably precise for down-
scaling daily temperature.

4. CONCLUSIONS

In this study, six ML methods, namely, KNN, SVR, DTR, ANNs, LightGBM, and SGDRegressor, were employed to down-
scale the daily temperature of the Nazmakan station for the period from 1995 to 2015. Training and testing of ML-based

Figure 9 | Results of the SA.

Table 3 | The evaluation between the observed data and the estimated data under both climate scenarios for 2015–2022

ML technique

SSP2-4.5 SSP5-8.5

R2 NSE R2 NSE

ANN 0.9150 0.9136 0.9109 0.9102

DTR 0.9028 0.8985 0.8976 0.8945

KNN 0.9193 0.9157 0.9146 0.9117

SVR 0.9145 0.9118 0.9108 0.9089

LightGBM 0.9152 0.8985 0.9135 0.9006

SGDRegressor 0.9152 0.8872 0.9111 0.8867
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downscaling models were conducted based on the observed daily temperatures, allowing the outputs of four CMIP6 climate

models to be effectively downscaled. The results, evaluated using Taylor diagrams, NSE, and PBIAS, demonstrated that all
models performed similarly well for both training and testing data. Based on the study’s metrics, all six ML models performed
acceptably, with LightGBM achieving the best results in the training dataset, while both KNN and LightGBM performed the

best in the testing dataset. The SA indicated that the models were more sensitive to the MPI-ESM1-2-HR climate model. Fur-
thermore, the six ML models were utilized to predict daily temperatures for the future period of 2015–2045 under the SPP2-
4.5 and SPP5-8.5 climate scenarios. The results of the Mann–Kendall test illustrated a decreasing trend in the early observed
temperatures, followed by a positive and increasing trend. The estimated temperatures also showed an upward trend in most

forthcoming years. According to the future projections, there will be a reduction in the daily temperature range compared to
the historical period, leading to cooler summers and warmer winters. The evaluation of the performance of ML-based models
was supported by the overlapping of available observed and estimated data from 2015 to 2022, which yielded reliable results.

Overall, this study provides significant contributions to the field by demonstrating the effectiveness of ML methods in down-
scaling climate data. Specifically, the KNN and LightGBM methods exhibited the best performance in simulating daily
temperatures and showed strong capabilities in performing nonlinear regression.

To build upon the findings of this study, future research should explore advanced ML techniques, such as ensemble learn-
ing and deep learning, to improve downscaling accuracy. Comprehensive validation against observational data is essential for
ensuring reliability. Focusing on underrepresented regions and climate variables will provide an enhanced understanding of

climate trends. In addition, models must efficiently handle larger datasets. Ensuring that these models can generalize across
diverse climatic conditions will strengthen climate predictions and risk assessments.
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