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Abstract 

Predicting the long-term durability of rock in the construction of breakwaters is crucial for their safe 

and economic operation, but remains challenging. Here, we report on the application of Machine 

Learning models to such prediction. We developed a database of physical and mechanical 

properties of rocks from 35 rubble mound breakwaters on the Caspian Sea, Oman Sea and Persian 

Gulf coastlines of Iran. Properties include uniaxial compressive strength, point load strength, 

Brazilian tensile strength, aggregate impact and aggregate crushing values, Los Angeles abrasion, 

porosity, ultrasonic wave velocity, density, sodium sulfate soundness and slake durability index, 

together with petrophysical data. These data were analysed using the four supervised machine 

learning (ML) models of random forest (RF), support vector (SV) machine, gradient boost (GB) and 

k-nearest (KN) neighbour. Model performance was assessed using RMSE computed using predicted 

and measured values of slake durability, and R2 of the linear regression of the predicted and 

measured slake durability values. The results indicate that the random forest (RF) models perform 

best, especially for igneous rocks: for both saturated and oven-dry igneous rocks the RF model 

produced prediction errors of under ±0.6%, and R2 was unity to five significant figures. We 

conclude that ML techniques are robust methods for predicting the slake durability resistance of 

rock material used in the construction of breakwaters. 

Keywords: Breakwaters, long-term durability resistance, rock property database, supervised 

machine learning, random forest model. 
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1. Introduction 

Understanding the complexities of rock 

engineering behaviour is critical for reliable rock 

engineering design, particularly when utilizing 

rock as an engineering material for construction. 

Given the local availability of quarries, the 

optimal construction approach for coastal 

protection structures is often rubble mound 

breakwaters. Considering the extensive coastlines 

of northern and southern Iran, spanning over 3000 

km across the Persian Gulf, Oman, and Caspian 

seas, the construction of large protective 

structures is imperative for the development of the 

country’s safe marine transportation. 

A wide range of climatic and environmental 

conditions exist around the coastline of Iran. 

While rock materials have traditionally been 

utilized in breakwater construction worldwide, the 

lack of suitable standards appropriate for these 

conditions has restricted their widespread 

application in Iran. A particular challenge in 

breakwater construction is predicting the 

long-term engineering behaviour of rock material 

in the marine environment. This is most acute for 

rock used as armourstone in rubble mound 

breakwaters. Poor long-term performance of 

breakwater and coastal protection materials has 

been widely observed southern and northern Iran, 

with deterioration of the rock from which they are 

constructed (i.e., lack of durability) being 

identified as the primary failure mechanism. 

Consequently, effective prediction of factors 

affecting the durability of armourstone, as well as 

the criteria needed for material selection, can 

significantly reduce risks, enhance safety, and 

improve long-term reliability. This paper 

examines the use of machine learning (ML) 

algorithms to predict the long-term durability and 

performance of such rock materials. The main 

objective of this paper is to understand how the 

predictability of rock material durability in 

breakwater armourstone selection during the 

design process can be improved. 

Rubble mound structures have been used for over 

100 years, with extensive use being made of rock 

materials. Early work on the design process of 

such marine structures (e.g., Wakeling 1977; 

Gravesen & Sorensen 1977; US Army Corps of 

Engineers, 2002) did not concentrate on the 

significance of the durability of rock materials, 

particularly in relation to deterioration 

mechanisms over time. This situation began to 

change in the 1980s as researchers began to 

investigate factors and mechanisms affecting long 

term durability, using both laboratory testing and 

field monitoring. 

Rock used in breakwater construction is required 

to have physical and chemical characteristics that 

can endure the marine conditions within the 

specific section of the structure where it is 

employed. Durability of rock material is its ability 

to continue performing adequately in a specific 

working environment (Latham et al., 2006) and is 

known to be a function of mineralogical 

composition, texture, grain size, and geological 

weathering (Poole, 1991). Predicting rock 

behaviour and its durability in a marine 

environment therefore requires consideration of 

physical, mechanical and petrophysical properties, 

marine environmental factors, and the specific 

placement of rock material in the structure. 

Similarly, Dibb et al., (1983) reported on in-

service resistance and deterioration of rock 

material used in breakwaters, and discussed how 

factors such as rock type, rock engineering 

properties and strength, salt and sodium sulfate 

solutions in the marine environment, and their 

interactions affect the process of deterioration and 

degradation. Such properties should be 

determined during material selection and the 

design process of breakwaters (Latham et al., 

1988). A review of the literature shows that a 

variety of engineering and laboratory tests are 

used to measure and understand the process of 

degradation and material weight loss in rubble 

mound structures and breakwaters. These include 

abrasion tests (Latham & Poole 1988), sodium or 

magnesium sulfate soundness tests (Dibb et al., 

1983), and material durability evaluations and the 

quality of armourstone in breakwater structures 

(Latham & Poole 1986; Latham & Poole 1988; 

Latham 1991; Poole 1991; Lienhart 1998; 

Gökceoğlu et al., 2000; Latham et al., 2006; 

Ozden & Topal 2009; Latham 1998; Karandagh et 

al., 2019). According to Rosa et al., (1991), 

petrographical characteristics and physical 

properties such as void spaces associated with 

water absorption influence the durability of rock 

materials and are the most significant factors 

controlling their longevity. This comprehensive 

overview also makes clear the intricate relation 

between rock properties and deterioration factors. 

Various researchers have studied specific quarries 

as sources of armourstone material. For example, 
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Ozden & Topal (2009), examined rock from an 

andesite quarry for use in the Hisarönü rubble 

mound breakwater. Using laboratory and field 

measurements, Ertas & Topal (2007) compared 

site performance, material durability and the mass 

properties of armourstone. In other work, Ozden 

& Topal (2007), determined the long-term quality 

and durability of armourstone through field and 

laboratory studies. Such work provides insights 

into the geological characteristics and suitability 

of armourstone sources, thereby contributing to 

informed decisions in breakwater construction 

(Topal & Acir 2004). 

Most design and construction standards for coastal 

and marine structures, such as CIRIA/CUR 

(2007), classify the quality of rock material based 

on experimental results obtained through 

laboratory testing procedures such as this referred 

to above. However, many of these procedures 

tend to be costly and time-consuming. 

Additionally, measurement methods primarily 

focus on quantitative engineering properties 

independently and are mostly unable to represent 

the complexities of rock engineering behaviour 

where many properties combine to confound 

overall performance. Consequently, the intricate 

correlations of parameters and the pattern of 

effects between them are difficult to detect 

through typical laboratory testing. As we show 

below in Section 3, machine learning techniques 

seem to offer a means of overcoming these 

difficulties. 

 

2. Methodology 

2.1. Establishing a rock property database 

The basis of this research is a comprehensive 

database of rock properties developed by the 

principal author from laboratory testing of rocks 

materials taken from different quarry sites and 

utilized as construction material of 35 rubble 

mound breakwater in southern and northern 

coastlines of Iran, including the Caspian Sea, 

Oman Sea, and Persian Gulf, and encompass 

sedimentary (sandstone, limestone and carbonate) 

and igneous (basalt, andesite, rhyolite, and 

granite) rock types (Hamidi, 2024). 

Figures 1, 2 and 3 indicate the sample locations, 

and Table 1 gives sample locations and rock 

types. Table 1 is ordered by increasing UTM 

easting to allow easy correspondence with Figures 

2 and 3. Complete details of the sample locations 

and geology is presented in Hamidi, 2024. 

 

 

 

 
Figure 1. Regional location map. 
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Figure 2. Northern breakwater sites. 

 

 
Figure 3. Southern breakwater sites. 
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Table 1. Site locations and rock types (after Hamidi, 2024) 

Breakwater Province 
UTM 

zone 

UTM 

east 

UTM 

north 
Material XRD mineral identification 

Deylam Bushehr 39 417196 3325598 
Limestone; sandstone; calcareous 

conglomerate; lomashell 
Calcite; dolomite; quartz 

Ganaveh Bushehr 39 451809 3269776 Sandstone; lomashell 
Calcite; quartz; dolomite; 

gypsum 

Bushehr Bushehr 39 482548 3205053 Limestone; lomashell Calcite; dolomite 

Shahid Ameri Bushehr 39 505523 3176710 Limestone; lomashell; mudstone Calcite 

Buol Kheyr Bushehr 39 508608 3156566 
Crystallized limestone; marly 

limestone; mudstone; lomashell 

Calcite; dolomite; quartz; halite 

(minor) 

Lavar e Saheli Bushehr 39 526636 3124207 
Limestone; siltstone; lomashell; 

calcareous conglomerate 
Calcite; dolomite; feldspar 

Dayyer Bushehr 39 591309 3078513 Limestone; lomashell Calcite; dolomite; quartz (minor) 

Kangan Bushehr 39 604123 3078768 Limestone; lomashell, mudstone Calcite; dolomite 

Lengeh Hormozgan 40 289717 2938250 Lomashell; limestone; basalt Calcite; quartz; feldspar; zircon 

Kong Hormozgan 40 295365 2942746 
Lomashell; limestone 
conglomerate 

Calcite 

Jaddaf Hormozgan 40 297593 2945289 Gabbro; basalt — 

Basaidu Hormozgan 40 327824 2950036 Lomashell; limestone Calcite; rutile 

Shahid Rajaei Hormozgan 40 407430 2997026 
Granite; diorite; andesite; basalt; 

rhyolite; gabbro 

Quartz; calcite; feldspar; anatase; 

clay minerals (minor) 

Zakeri Hormozgan 40 427744 2983069 Lomashell; limestone; Calcite 

Shahid Haqani 

(Haghani) 
Hormozgan 40 428785 3005743 Agglomerate; gabbro 

Quartz; feldspar; calcite; 

kaolinite 

Hormuz Hormozgan 40 444816 2996894 
Basalt; gabbro; lomashell; 

conglomerate; sandstone 
Quartz; kaolinite; illite 

Kouhestak Hormozgan 40 502043 2664235 Sandstone; lomashell 
Calcite; quartz (minor); feldspar 

(minor) 

Sirik Hormozgan 40 507474 2933936 
Lomashell; limestone 

conglomerate 
Calcite; quartz; feldspar (minor) 

Jask Hormozgan 40 577016 2836900 Sandstone; lomashell Calcite; feldspar 

Ab Shirin Kon 
Sistan & 

Balouchestan 
41 247296 2815655 Lomashell Calcite 

Konarak 
Sistan & 

Balouchestan 
41 241585 2806795 Lomashell — 

Shahid Beheshti 
Sistan & 

Balouchestan 
41 258431 2800285 Lomashell Calcite; quartz 

Shahid Kalantari 
Sistan & 

Balouchestan 
41 260276 2801793 Sandstone; lomashell; limestone 

Quartz; feldspar; calcite; 

kaolinite 

Ramin 
Sistan & 

Balouchestan 
41 272979 2796692 Lomashell Calcite; quartz; rutile 

Kachoo 
Sistan & 
Balouchestan 

41 284132 2793127 Lomashell — 

Beris 
Sistan & 

Balouchestan 
41 316324 2782321 Lomashell Calcite; quartz 

Pasabandar 
Sistan & 

Balouchestan 
41 339804 2773192 Lomashell Calcite; quartz 

Astara Gilan 39 315004 4253122 Andesite; sandstone — 

Anzali Gilan 39 364384 4149475 Igneous Calcite; quartz 

Kiashahr Gilan 39 408686 4144500 Igneous, sedimentary Feldspar; geothite 

Chamkhaleh Gilan 39 435670 4118964 
Dacite; diorite; andesite; granite; 

agglomerate 

Quartz; calcite; feldspar; 

kaolinite 

Nowshahr Mazandaran 39 545338 4056963 Limestone; sandstone; granite Calcite 



 2م، شماره هفده، جلد 1403 تابستان               پژوهشی انجمن زمین شناسی مهندسی ایران                                         -/ مجله علمی 80

_______________________________________________________________________________________  
 

Fereydunkenar Mazandaran 39 639092 4062642 
Limestone; sandstone; syenite; 

dacite; slate 
Calcite; quartz (minor) 

Neka Mazandaran 39 702886 4080657 
Limestone; sandstone; diorite; 
agglomerate; slate; schist 

Calcite; quartz 

Amir Abad Mazandaran 39 711240 4081488 
Limestone; sandstone; limestone 

conglomerate 
Calcite 

 

 

To examine the performance of quarried rock 

used in the construction of breakwaters, an 

extensive research project was conducted in 

conjunction with the Ports and Maritime 

Organization and the Road, Housing and Urban 

Development Research Center (BHRC). This 

project involved sampling of the rocks used at 

multiple breakwater sites, followed by various 

tests conducted in the laboratories of Ferdowsi 

University of Mashhad (FUM) and BHRC. 

The general geology of the southern quarries (i.e., 

those that supplied the material for the southern 

breakwaters) fall within the structural units of the 

Iranian Plateau, specifically the Folded Zagros, 

Makran, and the sedimentary-structural zone of 

Alborz (Aghanabati, 2004). The Folded Zagros 

comprises a thick sedimentary sequence from the 

Mesozoic and Cenozoic eras, featuring 

stratigraphic gaps from various orogenic phases 

and diverse lithologies, including alternating 

carbonate rocks (limestone, dolomite), evaporitic 

rocks (marl), and clastic rocks (sandstone, 

siltstone). This sequence includes formations such 

as the Hormuz Series, Khami Group, Asmari, 

Jahrum, Mishan, Gachsaran, and Bakhtiari 

formations. Volcanic activities are generally 

absent, except for intrusive volcanic rocks in salt 

domes from the Late Precambrian (Khosrotehrani, 

1998). The southeastern coastal strip in the 

Chabahar region lies within the Makran structural 

zone, specifically the coastal Makran part.  

In the northern regions, quarries for the 

construction of northern breakwaters are situated 

within the sedimentary-structural zones of the 

Alborz range, Caspian subsidence, and southern 

Caspian margin. The Alborz range forms a 

composite anticline extending from Azerbaijan to 

Khorasan. The northern border coincides with 

Tertiary deposits and the Caspian coastal plain. 

Geologically, the northern boundary of Alborz is 

defined by the Tethys suture zone, formed by the 

collision of the Alborz continental lithosphere 

with the Turan continent in the Late Triassic 

(Aghanabati, 2004). Sedimentary sequences south 

of the Caspian Sea, from Gonbad Kavus to the 

Moghan plain, indicate Middle Miocene deposits 

onwards. 

The rock property data were obtained from 210 

blocks, each with dimensions greater than 

30×30×30 cm, taken from the armor layer at the 

mentioned 35 breakwater locations. These blocks 

were transported to the Geotechnical Engineering 

Department of BHRC. Test samples were 

prepared by the first author to conduct laboratory 

experiments, investigate rock sample properties, 

and develop the database. All tests were 

conducted in the laboratories of FUM and BHRC. 

The database contains physical, mechanical, 

petrophysical and petrographical properties, as 

well as durability indicators through simulation 

tests, as recommended in design standards and the 

literature for the use of rock in marine structures 

(Dibb et al., 1983; Latham & Poole 1988; Fookes 

1991; Poole 1991; CUR/CIRIA 2007; Latham et 

al., 2006). Additionally, the procedures align with 

the Iranian Ports and Marine Structures Design 

Code (Iran Planning and Management 

Organization 2007) for engineering tests required 

for determining the properties of the rock material 

used in the armour layer and underlying units. 

Properties determined include rock type, 

petrographical data (e.g., mineralogy, textural 

features), uniaxial compression strength (UCS), 

point load strength (PLT), Brazilian tensile 

strength (BTS), aggregate impact value (AIV), 

aggregate crushing value (ACV), Los Angeles 

abrasion (LAA), porosity, ultrasonic velocity 

(Vp), density, sodium sulfate soundness after 5, 

10 and 15 cycles (SN05, SN10 and SN15), and 

slake durability index after 5, 10 and 15 cycles 

(ID05, ID10 and ID15). LAA, slake durability and 

sodium sulfate soundness were used as potential 

indicators of long-term durability. The decision to 

subject the igneous rocks to slake durability 

determination was based on the observation that 

XRD results Table 1 (not reported here for brevity 

but presented in Hamidi (2024)) indicated that 

they contained clay minerals; the deleterious 
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effect of such minerals on long-term durability of 

rocks when in service as breakwater materials is 

well known. All determinations were conducted 

based on standard methods including ISRM, 

ASTM and BS procedures, as indicated in Table 2 

(Fookes et al, 1988). Example photographs of 

various laboratory tests are provided in Appendix 

A. In all, the database is considered to offer a 

comprehensive evaluation of quality, integrity, 

soundness, and porosity. Summaries of the data 

are given in Table 3 and Table 4. Given the 

numerous factors that contribute to durability – 

including physical and mechanical properties, as 

well as environmental factors which are assessed 

in simulation test procedures – the dataset has 

much larger dimensions than would usually be 

used in multivariate regression. 

 

Table 2. Test method standards and procedures 

Physical Tests Mechanical tests Simulation Tests Petrographic Tests 

Specific gravity 

Water absorption 
(BS 812) 

Unconfined compressive strength 

(ISRM) 

Point load strength (ISRM 1985) 

(apparent, oven- dried, saturated surface 
dry) 

-10% fines value (BS 812) 

Schmidt rebound number (Duncan, 
1969) 

Aggregate impact value (AIV) (BS 812) 

Aggregate abrasion value (BS 812) 

Aggregate crushing value (ACV) 
(BS 812) 

Modified aggregate impact value 

(Husking & Tubi, 1969) 

Los Angeles abrasion 
(ASTM C535) 

Washington degradation test 
(DMR T214) 

Wetting and drying 

Magnesium/sodium sulphate 
soundness test (ASTM C88) 

Freeze-thaw durability test 
(AASHTO T103-78) 

Slake durability index 

(ASTM D4644) 

Petrographic examination 

(ASTMC 295) 

Thin Section 

Clay mineral analysis (XRD, DTA, 
methylene blue absorption) 

Blue Absorption Ethyl Glycol 

(XRD) 

 

Table 3. Summary of experimental database (sedimentary) 

 Saturated Oven dried 

No. Property Units count max min mean sdev count max min mean sdev 

1 UCS MPa 348 86.22 0.51 18.54 17.33 378 142.09 1.90 26.62 24.37 

2 PLT MPa 237 9.76 0.31 2.07 1.45 232 16.19 0.58 2.94 2.29 

3 BTS MPa 214 16.39 0.22 3.03 2.33 208 24.20 0.73 4.32 2.95 

4 AIV % 196 65.66 10.31 31.17 15.87 196 65.66 10.31 31.17 15.87 

5 ACV % 196 91.31 17.09 46.35 22.46 196 91.31 17.09 46.35 22.46 

6 LAA % 197 90.84 11.65 49.62 22.46 188 90.84 11.65 49.84 22.28 

7 e % 290 28.32 0.20 10.31 5.50 290 28.32 0.20 10.31 5.50 

8 Vp m/s 244 10000 604.2 3995 1389 199 12730 34.80 3920 1685 

9 γ g/cm3 290 2.86 1.25 2.20 0.30 290 2.82 1.17 2.10 0.33 

10 SN05 % 202 61.69 -0.37 8.21 11.59 200 61.69 -0.37 8.01 11.49 

11 SN10 % 202 79.88 0.47 20.73 20.70 200 79.88 0.47 20.28 20.48 

12 SN15 % 202 88.69 0.54 28.54 24.12 200 88.69 0.54 28.07 24.12 

13 ID05 % 137 103.68 71.82 92.29 7.04 122 103.68 71.82 90.65 7.13 

14 ID10 % 137 102.75 58.00 87.44 10.53 122 102.75 58.00 85.37 10.62 

15 ID15 % 137 100.63 46.26 84.23 12.46 122 100.63 46.26 81.35 13.19 

Property abbreviations 

UCS: unconfined compressive stress. PLT: point load strength. BTS: Brazilian tensile strength. AIV: aggregate 

impact value. ACV: aggregate crushing value. LAA: Los Angeles abrasion. e: porosity. Vp: p-wave ultrasonic 

velocity. γ: mass density. SN05, SN10, SN15: soundness (5, 10 and 15 cycles, respectively). ID05, ID10, ID15: 

durability (5, 10 and 15 cycles, respectively). 
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Table 4. Summary of experimental database (igneous) 

 Saturated Oven dried 

No. 

Propert

y Units count max min mean sdev count max min mean sdev 

1 UCS MPa 119 119.12 0.67 46.44 28.14 111 152.00 4.09 56.26 41.05 

2 PLT MPa 54 9.40 0.61 5.22 2.52 54 12.86 0.65 6.55 2.94 

3 BTS MPa 45 13.40 0.74 7.15 3.29 45 32.34 1.18 10.15 5.96 

4 AIV % 58 31.56 6.26 15.03 7.74 58 31.56 6.26 15.03 7.74 

5 ACV % 58 68.73 8.38 26.87 19.21 58 68.73 8.38 26.87 19.21 

6 LAA % 57 43.00 9.76 19.67 10.20 50 43.00 9.76 20.51 10.49 

7 e % 70 22.81 0.52 7.28 5.77 70 22.81 0.52 7.28 5.77 

8 Vp m/s 75 7938 1463 4250 1370 68 7147 1461 4260 1134 

9 γ g/cm3 70 2.79 1.76 2.39 0.16 70 2.77 1.64 2.32 0.21 

10 SN05 % 49 24.45 -0.80 5.04 8.32 39 24.45 -0.80 6.13 8.90 

11 SN10 % 49 42.26 0.01 10.95 14.69 39 42.26 0.01 13.31 15.37 

12 SN15 % 49 47.96 0.10 13.57 17.36 39 47.96 0.10 16.46 18.08 

13 ID05 % 40 99.17 90.65 96.62 3.35 31 99.17 90.65 96.07 3.56 

14 ID10 % 40 98.49 85.02 94.61 5.37 31 98.49 85.02 93.71 5.68 

15 ID15 % 40 98.12 81.59 93.30 6.57 31 98.12 81.59 92.18 6.94 

Property abbreviations 

UCS: unconfined compressive stress. PLT: point load strength. BTS: Brazilian tensile strength. AIV: aggregate 

impact value. ACV: aggregate crushing value. LAA: Los Angeles abrasion. e: porosity. Vp: p-wave ultrasonic 

velocity. γ: mass density. SN05, SN10, SN15: soundness (5, 10 and 15 cycles, respectively). ID05, ID10, ID15: 

durability (5, 10 and 15 cycles, respectively). 

 

The complete database contains 467 records, 

comprising 119 igneous and 348 sedimentary 

records. No further separation beyond igneous and 

sedimentary was performed; an effect of this is 

considered further in Section 4. As Table 3 and 

Table 4 show, the count of test numbers is less 

than that of the record count. This means that 

many records contained missing data, which has 

ramifications for the machine learning process. 

This is discussed below. The rock property 

database is arranged as four groups, one for each 

of saturated sedimentary rock (SS), saturated 

igneous rock (IS), oven dry sedimentary rock 

(SD) and oven dry igneous rock (ID). ML was 

applied separately to each of these groups.  

 

2.2. Supervised machine learning for durability 

prediction 

As the rationale for the application of machine 

learning (ML), it is emerging as a dominant 

approach in the application of artificial 

intelligence. ML can be categorized into 

supervised and unsupervised learning. Supervised 

learning in machine learning (ML) primarily 

concentrates on addressing regression and 

classification issues (El Mrabet et al., 2021). 

Supervised ML models construct non-linear 

mappings between input and output variables, 

exhibit a robust capacity to extract valuable 

information from a complex dataset, and are adept 

at handling multivariate relations in high-

dimensional data (Yu et al., 2022). Rock material 

often exhibits significant heterogeneity, leading to 

the requirement for extensive laboratory 

experimental campaigns in order to obtain 

comprehensive characterisation. These are time 

consuming and costly. Furthermore, the empirical 

correlations that are inevitably required in order to 

predict engineering behaviour often fail to achieve 

the necessary accuracy required for addressing 

problems and challenges in rock engineering 

applications. Machine learning algorithms are 

being used in the field of rock mechanics to 

address these challenges, encompassing tasks such 

as clustering, prediction, and classification 

(Abdelhedi et al., 2023). 

Rock mechanics applications of supervised ML 

algorithms are many and varied. Examples 
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include: correlating uniaxial compressive strength 

(UCS) of sandstone with Los Angeles abrasion 

(Liu et al., 2022); addressing inaccuracy in UCS 

assessments caused by small sample sizes 

(Abdelhedi et al., 2023); predicting UCS and 

elastic modulus of rock (Ghasemi et al., 2018); 

predicting elastic modulus (Ceryan et al., 2021); 

analysing rock strength and its related variables 

(Miah et al., 2020; Barzegar et al., 2020; 

Mahmoodzadeh et al., 2022); and, analysing 

borehole breakout (Yang et al., 2022). We have 

found no reports of ML being used to predict 

long-term performance of rock for use in 

breakwaters in a marine environment, and thus 

consider our work to be a novel contribution. 

In this work, four supervised ML algorithms have 

been applied to develop models and predict the 

long-term performance of rock materials when 

they are utilized in armourstone and breakwater 

construction. The four techniques used are: 

support vector machines (SV); K-nearest 

neighbours (KN), random forest (RF), and 

gradient boosting (GB). Each algorithm has been 

used to predict the durability of rock material after 

5, 10, and 15 cycles of slake durability tests.  

The support vector machine is primarily used for 

classification and regression tasks, addressing 

various classification problems, and as a classifier 

based on statistical learning theory (Tang & Na 

2021). SV machines attempt to identify the 

optimal hyperplane that fits to a multidimensional 

dataset; the points closest to the hyperplane are 

termed support vectors. The SV machine 

demonstrates effectiveness in high-dimensional 

spaces and is particularly valuable when a clear 

margin of separation exists between classes (Ebid 

2021; Abdelhedi et al., 2023; Aram et al., 2023), 

conditions that are thought to exist in the rock 

property database.  

K-nearest neighbours is applicable to both 

classification and regression problems. In 

regression it produces real number outputs, while 

in classification it provides discrete values. The 

method assumes that similar items are close to 

each other in multidimensional space and employs 

measures like Euclidean and Manhattan distance 

metrics to assess the proximity of items. The 

choice of distance measure significantly 

influences the performance of the KN classifier 

(Aram et al., 2023). For this work, as the data 

values are numeric quantities, the Euclidean 

distance is appropriate. 

Random forest is an ensemble learning method 

that creates a collection, or “forest” of decision 

trees, and is applicable to both classification and 

regression tasks (Aram et al., 2023). RF does not 

require hyperparameter tuning and avoids 

overfitting through the inclusion of a 

comprehensive array of decision trees in the 

decision-making process ((Breiman, 2001; 

Abdelhedi et al., 2023). Notably, during the tree-

splitting process, RF identifies the best feature 

within a random subset of features, thereby 

enhancing model performance (Aram et al., 

2023). We consider that such feature 

identification is crucial for durability prediction. 

RF builds a number of random decision trees that 

are uncorrelated, and then aggregates them by 

majority frequency of occurrence to yield the 

predicted class. 

The gradient boosting algorithm is applicable to 

both classification and regression tasks. GB forms 

an ensemble of weak models, typically decision 

trees, with the goal of minimizing loss by 

iteratively correcting errors from previous 

iterations. The algorithm excels at handling 

complex, non-linear data relationships, producing 

highly accurate models (Aram et al., 2023). 

Again, these are conditions that are thought to 

exist in the rock property database. 

Two statistical indices were calculated to assess 

model performance: the root mean square error 

(RMSE) of the predictions versus the observed 

values of slake durability, and the correlation 

coefficient R2 associated with regression of the 

predictions against the observed values of slake 

durability. 

 

3. Analysis results 

Overall, the analysis procedure comprised the two 

elements of data preprocessing and data 

processing, with each of these elements 

containing a number of other procedures. This is 

shown in the flowchart presented in Figure 4. The 

following sub-sections discuss these two 

elements. 

 

3.1. Data visualization and pre-processing 

Before embarking on any campaign to fit 

predictive models to data it is critical to identify 

those features that contribute most to the 

prediction, as the effectiveness of models is 

greatly influenced by the adequacy of the 

observed data in terms of quality and quantity. 

When dealing with an excess of inputs, it becomes 

essential to carefully choose a pertinent set of 
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inputs to minimize the impact of unnecessary 

data, thereby reducing noise. Through the 

utilization of appropriate inputs, not only is the 

interpretation of a model enhanced, but its 

predictive capabilities also see an improvement 

(Ceryan, 2014). To this end, analysis began with 

calculating the pairwise correlation matrix 

associated with the data variables, and then 

visualizing these as heatmaps. Pairwise 

correlation is required in order to correctly handle 

the missing data in the rock property records. 

Figure 5 presents the heatmap for 15 durability 

cycles. The heatmaps use a diverging sequential 

colour scheme comprising 11 colours generated 

by ColorBrewer (www.colorbrewer2.org) 

interpolated to a total of 31 colours. The diverging 

scheme uses deep blue for correlations of -1, 

white for correlations of zero and deep red for 

correlations of +1. The entries on the leading 

diagonal have values of unity, and as these are 

meaningless the entries have been replaced by 

letter codes labelling the rock property to which 

the row and column belong. The entries in the 

heatmaps are arranged in groups: A to F represent 

strength assessments, G to L petrophysical 

properties, and N to Q slake durability index. 

The four heatmaps in Figure 5 are striking. Firstly, 

we note that the heatmaps for sedimentary rocks 

are clearly different from those for igneous rocks. 

In the former case the correlations are generally 

smaller in absolute magnitude than in the latter. In 

particular, sodium sulfate soundness (entries K to 

M) shows very little correlation with any other 

properties for the case of sedimentary rocks, 

whereas strong positive and negative correlations 

are seen for the igneous rocks. For sedimentary 

rocks this suggests that the factors most strongly 

influencing durability are their mechanical 

properties, rather than resistance to environmental 

factors such as the presence of aqueous solutions 

of salts. 

Physical and mechanical characteristics of rock 

material depend on mineral composition, grain 

shape and size, pore expansion, and mineral 

particle connections. Petrographic features like 

contact type, grain attributes, and rock fragment 

density significantly influence rock engineering 

properties, and reactions between rocks and 

weathering agents are categorized into internal 

(e.g., mineralogical composition, texture) and 

external factors (e.g., pressure, humidity, and 

temperature) (Ulusay et al., 1994). Thus, as the 

filling material between particles and pore spaces 

in sedimentary rocks is a matrix of various 

cements, the properties of these cements 

significantly affect the chemical behaviour of 

sedimentary rock, especially if they contain clay 

minerals. 

The type and pattern of cementation affects the 

strength and mechanical properties of sedimentary 

rock (Al-Tahini, 2006), but this is less important 

for igneous rocks as these are composed of a 

mixture of mineral crystals of various sizes. Thus, 

we see that in general both positive and negative 

correlations are stronger for igneous rocks than 

for sedimentary, indicating distinctly different 

behaviours between these materials. Finally, the 

differences between saturated and oven dry 

responses are much less marked than between 

rock types, suggesting that, in general, there is 

perhaps no need to prefer testing in one of oven 

dry or saturated conditions over the other. 

 

 
Figure 4. Flowchart of overall analysis procedure. 

http://www.colorbrewer2.org/


 2م، شماره هفده، جلد 1403 تابستان                                                   شناسی مهندسی ایران   پژوهشی انجمن زمین -/ مجله علمی 85

_______________________________________________________________________________________ 
 

 

Figure 5. Correlation matrix heatmaps for 15 durability cycles. 

 

Importantly, the heatmaps overall suggest that 

there is no one clear correlation pattern between 

the four cases, indicating that correlation-based 

approaches to durability prediction (e.g., through 

application of multivariate regression) will require 

different regression models for each situation. 

Similarly, the high (positive or negative) 

correlations indicate that a regression model 

would need to account for these and thus would 

be complex and cumbersome to use. This supports 

our investigation of ML techniques to the 

prediction of durability. 

The four ML models used here require all data 

records to be free from missing values. As noted 

above, many records contained missing data and 

following standard ML practice, these were 

replaced with either the mean or the median of the 

values present (Yang et al., 2023). Thus, UCS, 
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PLT, BTS, Vp, porosity, density, AIV and ACV 

were supplemented with mean values, and LA 

abrasion was supplemented with the median. 

Finally, as the data are of significantly different 

ranges, data normalization and standardization 

using a standard scaler was performed. This is to 

improve the performance of ML algorithms, as 

these are known to be sensitive to differences in 

scale and distribution of the input data. The 

outcome of these procedures was to produce a 

clean dataset to which ML could be applied. 

 

3.2. ML results and discussion 

The ML models applied here are supervised 

predictive algorithms, meaning that they have 

been trained on a dataset for which the result (in 

this case, slake durability) is known. The models 

were trained using a random selection of 80% of 

the records in the cleaned data, and then applied to 

the remaining 20% of the data in order to make 

predictions of slake durability. Table 5 gives the 

number of data used in each analysis, and 

indicates that the data set comprises 12 

independent variables and one dependent variable, 

namely slake durability, giving a total of 13 

dimensions. 

 

Table 5. ML data set sizes 
 Sedimentary, saturated Igneous, saturated Sedimentary, oven dry Igneous, oven dry 

complete data set 137 40 122 31 

training set 109 32 97 24 

prediction set 28 8 25 7 

 

Tables 6 and 7 summarise the RMSE values for 

all analyses and ML models. These tables also 

include the R2 values of the linear regression 

between the predicted and actual values of slake 

durability. For all cases the R2 values are very 

close to unity, indicating that in general the ML 

approach to predicting slake durability is 

efficacious. 

Figure 6 presents RMSE prediction error for all 

four ML models at 5, 10 and 15 cycles of slake 

durability test, and for the four rock sample 

conditions, combinations of sedimentary 

saturated, igneous saturated, sedimentary oven dry 

and igneous oven dry. All three plots show that, in 

terms of RMSE, for all cases the performance 

order of the ML models is the same: RF performs 

best, SV performs worst, and KN and GB lie 

between these. For the case of oven dry 

sedimentary rocks, RMSE for the SV model is 

almost 14%. Limiting our attention to the 

predictions at 15 slake durability cycles, we see 

that the RMSE associated with RF is almost zero 

for igneous rocks and rises to about 13% for oven 

dry sedimentary rocks. As predictions at 15 slake 

durability cycles are most representative of long-

term durability, these results indicate that the RF 

model is most suitable for this making this 

prediction. 

 

 

Table 6. Model performance, sedimentary 

 Saturated Oven dry 

 RF SV GB KN RF SV GB KN 

ID05 RMSE 3.03 5.95 4.30 5.15 2.75 6.05 3.94 4.82 

R2 0.9990 0.9961 0.9979 0.9970 0.9991 0.9958 0.9982 0.9973 

ID10 RMSE 3.03 5.95 4.30 5.15 3.38 9.30 5.70 6.82 

R2 0.9990 0.9961 0.9979 0.9970 0.9985 0.9891 0.9958 0.9942 

ID15 RMSE 3.03 5.95 4.30 5.15 4.19 12.90 6.20 8.12 

R2 0.9990 0.9961 0.9979 0.9970 0.9976 0.9778 0.9945 0.9911 
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Table 7. Model performance, igneous 

 Saturated Oven dry 

 RF SV GB KN RF SV GB KN 

ID05 RMSE 0.05 2.80 0.93 0.19 0.27 1.90 0.93 0.51 

R2 1.0000 0.9993 0.9999 1.0000 1.0000 0.9997 0.9999 1.0000 

ID10 RMSE 0.15 5.24 1.47 0.19 0.23 4.17 1.31 0.35 

R2 1.0000 0.9974 0.9998 1.0000 1.0000 0.9984 0.9998 1.0000 

ID15 RMSE 0.11 6.70 1.79 0.25 0.33 5.58 1.63 0.41 

R2 1.0000 0.9957 0.9997 1.0000 1.0000 0.9970 0.9997 1.0000 

 

 

Figure 6. RMSE prediction error for four ML 

models after 5, 10 and 15 cycles of durability test 

 

Figure 7 shows the individual prediction errors 

resulting from application of the RF model to 

15-cycle slake durability results. It is clear from 

this figure that RF performs very well when 

predicting the performance of igneous materials: 

indeed, the maximum prediction errors range 

between -0.5% and +0.6%. This suggests that the 

RF model, when applied to the rock property data 

used in the database created here, can be 

confidently used to predict long-term durability of 

igneous rocks in marine environments. The 

prediction results for sedimentary rocks show 

significantly greater errors, generally within about 

±10%. Particularly noteworthy are the oven dry 

results for those two tests with an actual slake 

durability of about 45%, as these display 

prediction errors of about 25%. A positive error 

indicates that the model predicts greater durability 

than the actual value, and using this model would 

therefore lead to designs that would suffer 

premature failure. It is not clear why the errors are 

so large for sedimentary rocks, but it may be a 

result of combining many different rock types into 

the one class. Further investigations are necessary 

to examine this, and it may be necessary to train 

models on more specific rock types (e.g., 

sandstone and carbonates will need to be trained 

separately). As the two greatest errors occur at 

slake durability values of less than 50%, this may 

suggest that the properties in the database and 

insufficient to predict the behaviour of low 

durability materials. Again, further investigations 

are needed to resolve this. Of course, although 

such low durability rocks are unlikely to be used 

in shore protection it is nonetheless essential that 

their durability is not overestimated. 

 

4. Discussion on Model Performance 

It is clear from Tables 5 and 6, and Figures 5 and 

6, that the four ML models are able to predict 

slake durability index after 15 cycles (i.e., ID15), 

although with markedly different prediction 

errors. Overall, these results indicate that the RF 

model produces slake durability predictions more 

accurately than the other ML models, suggesting 

that it has a strong decision-making capability for 

material selection applications. 
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Figure 7. Individual prediction errors for the 

random 

 

We consider that several factors contribute to the 

superior performance of the RF model. Depending 

on the dataset characteristics, the RF algorithm, as 

an ensemble method, is robust to noisy data and 

outliers. The database used here contains 

numerous rock types from a wide range of 

geological settings, and so displays significant 

variability in properties; this is apparent from the 

ranges and standard deviation values shown in 

Tables 2 and 3. The SV model is sensitive to high 

variation and noisy data (Li et al., 2013), and we 

believe this is why it does not perform well with 

this database. 

RF is less prone to overfitting when the number of 

parameters is small, and there are multiple 

variables. Also, being a non-linear model by 

design, RF performs better here, where the 

relationship between rock properties and long-

term durability is complex and non-linear. It is an 

ensemble method that combines multiple decision 

trees to make predictions, reducing variance and 

improving predictive accuracy compared to other 

supervised ML predictive algorithms, which 

mostly rely on a single decision boundary. 

Finally, the RF model is capable of handling a 

wide range of features without requiring feature 

scaling (Breiman, 2001), and this a powerful 

advantage when dealing with diverse geological 

and rock property features. 

In machine learning algorithms the performance 

of models is highly dependent on hyperparameter 

settings, and thus if hyperparameters for a 

predictive model, such as the SV model, are not 

chosen correctly, suboptimal performance can 

result. RF has fewer hyperparameters to tune 

compared to other predictive regression 

algorithms, and we believe this is another reason 

for its superior performance with this database. 

The RF model has performed exceptionally well 

in predicting the performance of the igneous 

rocks. We believe this is due to an inherent 

behavioural homogeneity in such materials, but 

further investigations are needed to confirm this. 

This conjecture is supported by the poor 

performance of all models with the sedimentary 

rocks. As noted earlier, although the database 

contains properties of sandstone, limestone and 

carbonate rocks, these were grouped as one rock 

type. Geological considerations indicate that there 

is a large range of rock types within these 

categories, which undoubtedly will lead to 

behavioural heterogeneity: such inherent 

differences in their engineering properties are a 

result of their initial sedimentation and formation 

environments. On the basis of our findings, we 

conclude that sedimentary rocks cannot be 

considered as a single entity and must be 

separated. Further investigations are needed to 

determine appropriate ways of doing this. 

 

5. Summary and Conclusions 

We have employed four supervised machine 

learning predictive models – random forest (RF), 

gradient boost (GB), support vector (SV) 

machine, and k-nearest (KN) neighbour – to 

analyse experimental data and forecast long-term 

durability of rock used in rubble mound 

breakwaters. The models operated on a 
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comprehensive rock property database containing 

467 records, consisting of 119 igneous (basalt, 

andesite, rhyolite, and granite) and 348 

sedimentary records (sandstone, limestone and 

carbonate), and comprising a suite of physical, 

mechanical, petrophysical and petrographical 

properties, as well as durability characteristics 

determined through simulation tests. The rock 

properties included Vp, UCS, BTS, PLT, 

soundness, porosity, density, LA, AIV, and ACV. 

The database includes both saturated and oven-dry 

properties. The data were obtained by laboratory 

testing of rock materials taken from different 

quarry sites and utilized as construction material 

of 35 rubble mound breakwater in southern and 

northern coastlines of Iran (Hamidi, 2024). The 

data correspond to 210 block samples with 

dimensions greater than 30×30×30 cm. 

Following initial pre-processing of the data to 

remove incomplete records, correlation matrices 

were calculated and visualized using sequential 

colour heatmaps. These heatmaps indicated no 

obvious and consistent correlations between rock 

properties and across rock types and saturation 

conditions. 

The ML models were used to make predictions of 

slake durability after 15 cycles of slake durability 

index testing. The models were trained on 80% of 

the available data, with the remaining 20% being 

used for prediction. Evaluation metrics of RMSE 

and R2 were computed to gauge the performance 

of each model. RMSE was computed using 

predicted and measured values of slake durability, 

and R2 was determined from linear regression of 

the predicted and measured slake durability 

values. 

Based on calculation of RMSE, the RF model was 

found to be most accurate with errors of under 4% 

across all rock types and saturation conditions. 

For both saturated and oven-dry igneous rocks the 

RF model produced prediction errors of under 

±0.6%. For sedimentary rocks the errors were 

greater, up to ±10%. The limited data with 

measured slake durability values of under 50% 

showed errors of more than 20%, but this may be 

indicative of insufficient data on which to train the 

model. For the RF model the lowest value of R2 

was 0.9976 for the case of oven-dry sedimentary 

rocks; for all igneous rocks the value of R2 was 

unity to five significant figures. 

We conclude that ML, and particularly the RF 

model, is suitable for predicting the durability of 

igneous rock used in breakwater construction, but 

that further investigations are required to 

determine the applicability of ML to sedimentary 

rocks. 
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Appendix A. Photographs 

Example photographs of various laboratory tests. 

  

(a) Aggregate impact value specimen & 

equipment 

(b) Los Angeles abrasion test specimens 

 

 
 

(c) Point load test specimens & equipment 

 

(d) Various core specimens 

 

 
 

(e) UCS test specimen 

 

(f) Brazilian tensile strength test 
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(g) Ultrasonic test specimen & equipment  (h) Sodium sulphate soundness test specimens 

  

(j) Slake durability test specimen (k) Slake durability test arrangement 

 

 


