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Abstract: In recent years, the study of copula has made significant progress, and the
need for a simple and reliable method to select the appropriate copula model is essen-
tial. This paper proposes the use of copula-based Rényi distance as a criterion capable
of evaluating potential statistical evidence in an experiment for model selection. In
addition, we present two nonparametric estimation methods, empirical and Bernstein,
to estimate this distance. Finally, we evaluate the accuracy of these methods through
a simulation study.

Keywords: Copula model, Potential statistical evidence, Rényi distance.
Mathematics Subject Classification (2020): 62N05, 62F10, 62E10.

∗Corresponding author: mo.mohammadi@um.ac.ir

1



Short title 2

1 Introduction
Copulas offer a flexible way to model multivariate dependencies, but choosing the
right copula family is crucial for accurate statistical analysis. Parametric models can
be restrictive, and nonparametric models lack precision, highlighting the need for a
reliable and straightforward approach to copula model selection.

Evidence inference is a modern approach that relies solely on data for inference,
avoiding subjective influences such as prior information. Royall (1997) introduced key
principles of evidential inference, emphasizing the likelihood function as central to this
method. Unlike traditional frequentist or Bayesian methods, Royall’s paradigm focuses
explicitly on evidence, criticizing the Neyman-Pearson and Fisher approaches for their
lack of this concept. In essence, potential statistical evidence refers to data indicating
that a hypothesis or model merits further exploration. This likelihood-based approach
provides a coherent way to interpret data and guide research inquiries.

The Rényi divergence of order � (or alpha-divergence) between two probability den-
sity functions f and g is defined as:

Rα(f∥g) =
1

α− 1
log

(∫
f(x)αg(x)1−α dx

)
where α controls the sensitivity of the divergence. As α approaches 1, the Rényi diver-
gence converges to the Kullback-Leibler divergence. Rényi divergence has applications
in hypothesis testing, coding theory, and assessing model fit. Researchers use it to
compare distributions, quantify information loss, and select appropriate models. Re-
member that the Rényi divergence provides a flexible way to measure the difference
between distributions, and it complements other statistical tools.

The objective of our paper is to establish a novel connection between copula model
selection and symmetric Rényi distance that allow for the measure the potential statis-
tical evidence. For ease of exposition, we focus exclusively on the bivariate continuous
case. The second section of the paper will provide an overview of copulas. The relation-
ship between the Rényi distance and potential statistical evidence will be investigated
in the third section, and the copula-based Rényi distance will be introduced in the
fourth section. In Section 5, nonparametric estimators for the copula-based Rényi dis-
tance will be presented, and finally, the accuracy of these estimators will be evaluated
by a simulation study.

2 Copulas
Copulas serve as powerful tools for modeling dependence structures in multivariate
data. Rather than focusing solely on individual marginal distributions, copulas cap-
ture the underlying dependence among variables. Copulas allow us to separate the joint
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distribution into univariate margins and a copula function. Consider a random vector
(X,Y ). Suppose its marginals are continuous, meaning their cumulative distribution
functions (CDFs) are continuous functions. By applying the probability integral trans-
form to each component, we transform (X,Y ) into a new random vector with marginals
that are uniformly distributed on the interval [0, 1]. Sklar’s theorem establishes a con-
nection between the joint distribution function and its copula as:

F (x, y) = C(FX(x), FY (y)), (x, y) ∈ R2, (1)

where F is the joint CDF of (X,Y ), FX and FY are the marginal distributions of X
and Y , and C is the copula function that describes the dependence structure.

Copulas provide a flexible framework for modeling various dependence patterns. By
combining copulas with appropriate marginal distributions (e.g., Gaussian, t-distribution),
we can construct families of bivariate distributions tailored to specific applications.
These distributions are essential for risk assessment, portfolio optimization, and relia-
bility analysis. In summary, copulas offer a rich area for exploration and practical use.
In Table 1, three commonly used copulas including Gaussian, Clayton and Gumbel
copulas and their characteristics are presented.

Table 1: Copula Formulas and Parameter Ranges

Copula Formula Parameter Range
Gaussian C(u1, u2; ρ) = exp

{
− 1

2(1−ρ2)
[
Φ−1(u1)− ρΦ−1(u2)

]2} −1 ≤ ρ ≤ 1

Clayton C(u1, u2; θ) = max
{
u−θ1 + u−θ2 − 1, 0

}
θ > 0

Gumbel C(u1, u2; θ) = exp
{
−
(
(− log u1)

θ + (− log u2)
θ
)1/θ}

θ > 1

The Gaussian Copula is suitable for elliptical dependence, capturing both positive
and negative correlations. It is also tail-independent. The Clayton Copula allows
specific non-zero lower tail dependency and is commonly used for modeling credit risk
and insurance claims. It is an exchangeable copula. The Gumbel Copula permits a
specific level of upper tail dependence, finds applications in extreme value theory and
hydrology, and is also exchangeable. For further study regarding copulas and their
properties refer to Joe (1997).

3 Potential statistical evidence and Rényi distance
In statistical experiments, we often seek evidence to support hypotheses or model
choices. Habibi et al. (2006) introduced a pre-experimental criterion based on
Kullback-Leibler distance to assess the potential strength of evidence provided by an
experiment. However, we can also investigate potential statistical evidence using Rényi
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distance. Rényi divergence measures the dissimilarity between two probability distri-
butions based on their empirical copulas or density functions. It provides a unified
framework for model selection and goodness-of-fit assessment.

The central tenet of evidential inference is the likelihood function. This approach
relies on the likelihood principle and the law of likelihood. The likelihood principle
asserts that any statistical inference should be based on the likelihood function. The
law of likelihood states that based on the likelihood ratio R(x) =

fθ1 (x)

fθ0 (x)
, the data

support for θ = θ1 is greater (or less) than for θ = θ0 when R(x) > 1 (or R(x) < 1),
and the data provide equal support for both parameter values when R(x) = 1.

Consider an experimenter who wants to choose between two experiments with ap-
proximately equal costs. The experimenter aims to select the experiment that has
greater potential statistical evidence. Let x represent observations from experiment E,
where X is a random vector with density fθ(x).

Habibi et al. (2006) introduced the following measure for assessing potential sta-
tistical evidence in experiment E:  

Sψ(E) = Eθ1

[
ψ(RE(X))

]
+ Eθ0

[
ψ(

1

RE(X)
)
]
. (2)

 Here, ψ is an increasing function. If ψ(t) = log(t), then symmetric Kullback-Leibler
(K-L) distance is obtained. Alos, If ψ(t) = 1− 1√

t
, then symmetric Hellinger distance

is obtained. These distances provide valuable insights into the statistical evidence and
divergence between different distributions. Researchers often choose the appropriate
measure based on the context and specific goals of their analysis.

The generalization of Criterion B is presented by Abbasnejad and Arghami (2006)
as follows:  

Sψ1,ψ2
(E) = ψ2

[
Eθ1

[
ψ1(RE(X))

]]
+ ψ2

[
Eθ0

[
ψ1(

1

RE(X)
)
]]
. (3)

 where both ψ1 and ψ2 are non-decreasing or non-increasing functions. If we take
ψ1(t) = tα−1 and ψ2(t) =

1
α−1 log(t), α > 0 and α ̸= 1, then

Sψ1,ψ2
(E) =

1

α− 1
log

[
Eθ1

[fθ1(x)
fθ0(x)

]]
+

1

α− 1
log

[
Eθ0

[fθ0(x)
fθ1(x)

]]
= Rα(f1∥f0) +Rα(f0∥f1)

= RDα(f0∥f1) (4)

 where Rα and RDα are, respectively, asymmetric and symmetric Rényi distance of f1
and f0.
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4 Copula based Rényi Distance

The Rényi distance between two copula functions, denoted as C1 and C2, is given by:  

RDα(C1∥C2) = Rα(C1∥C2) +Rα(C2∥C1)

=
1

α− 1

[
log

(∫
[0,1]2

Cα1 (u, v)C
1−α
2 (u, v) dudv

)
+ log

(∫
[0,1]2

Cα2 (u, v)C
1−α
1 (u, v) dudv

)]
. (5)

 Here, α is a parameter that influences the sensitivity of the distance measure. As α
approaches 1, the Rényi distance converges to the Kullback-Leibler (K-L) divergence.
As α approaches infinity, it converges to the Hellinger distance.

A small Rényi distance indicates similarity between the copulas. A large distance
implies significant dissimilarity in their dependence structures. Researchers use the
Rényi distance for model comparison, goodness-of-fit assessment, and detecting changes
in dependence patterns. It provides a flexible alternative to other divergence measures.
The Rényi distance between two copula functions, denoted as C1 and C2, has several
important properties:

1. The Rényi distance is always non-negative: RDα(C1∥C2) ≥ 0. It measures the
divergence or dissimilarity between the two copulas.

2. The distance is symmetric: RDα(C1∥C2) = RDα(C2∥C1). This property ensures
that the order of the copulas does not affect the distance.

3. The Rényi distance satisfies the triangle inequality:

RDα(C1∥C2) ≤ RDα(C1∥C3) +RDα(C2∥C3).

In other words, the direct path between C1 and C2 is no longer than the sum of the
paths through an intermediate copula C3.

Recently, Mohammadi and Emadi (2023) and Mohammadi et al. (2024) have in-
troduced independence tests based on divergence measures and copulas. Also, Moham-
madi et al. (2021) has presented dependence measures based on copula-based symmetric
divergence measures.

5 Nonparametric Estimator

To estimate the bopula-based Rényi distance, we propose a nonparametric estimator.
This estimator is consistent and computationally efficient. It adapts to the sample
size of the data, making it suitable for practical applications. The estimation of Rényi
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distance for copula model selection can be considered as:

R̂Dα(C1∥Ĉ2) =
1

α− 1

[
log

(∫
[0,1]2

Cα1 (u, v)Ĉ
1−α
2 (u, v) dudv

)
+ log

(∫
[0,1]2

Ĉα2 (u, v)C
1−α
1 (u, v) dudv

)]
. (6)

 Here, C1 is the competing copula and Ĉ2 is the nonparametric estimate of the correct
copula based on real data.

In this study, we use empirical copula and empirical Bernstein copula methods for
the estimation of C2. The empirical copula is a nonparametric estimator of the copula
function based on observed data. The empirical copula is a powerful tool for under-
standing dependence patterns in real-world data, especially when we don’t make strong
assumptions about the underlying distributions Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be
a random sample of size n from a pair (X,Y ). Empirical copula defined as

Ĉn(u, v) =
1

n

n∑
i=1

I{Ũi ≤ u, Ṽi ≤ v}, (7)

where Ũi = nF̂X(xi)/(n + 1), Ṽi = nF̂Y (yi)/(n + 1) for i = 1, · · · , n, are the pseudo
observations and F̂X and F̂Y are the empirical cumulative distribution function of the
observation Xi and Yi, respectively.

The empirical copula can be extended nonparametrically as the Bernstein empirical
copula by Maldonado et al. (2024) and is formulated as

ĈB
n (u, v; η) =

n∑
i=1

n∑
j=1

Ĉn

(
i

n
,
j

n

)
× η(i, j;u, v),

where the individual Bernstein weights η(i, j;u, v) for the k-th paired value of the u
and v vectors are

η(i, j;u, v) =

(
n

i

)
ui(1− u)n−i ×

(
n

j

)
vj(1− v)n−j .

The Bernstein empirical copula estimates the dependence structure between compo-
nents of (X,Y ) without assuming any specific parametric form. It adapts the empirical
copula using Bernstein polynomials, providing a smoother estimate for arbitrary di-
mensions.

6 Simulation Study
We perform extensive simulations to assess the performance of our method. In this
study, we investigated the estimation of the Rényi distance for the baseline copula us-
ing two methods: empirical estimation and the Bernstein method for non-parametric
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copula estimation. For our simulations, we utilized Gaussian, Clayton, and Gum-
bel copulas, considering various parameters based on weak (0.2), moderate (0.5), and
strong (0.8) dependency levels as defined by Kendall’s tau (τ). Additionally, we ana-
lyzed two sample sizes 50 and 200. The data were simulated from the correct copula
(C1) with parameters corresponding to the values of Kendall’s tau. Subsequently, the
Renyi distance was computed between these simulated data and the competing copula
(C2), for which the parameters were estimated using the maximum likelihood method.

The simulation results in Table 2 for moderate dependency level (τ = 0.5) indicated
that the accuracy of the Bernstein method in estimating the Renyi distance for the
baseline copula outperformed that of the empirical method. Consequently, selecting
copulas based on the Bernstein method yields more precise results. Furthermore, as
the sample size increases, the accuracy of the estimates in selecting the appropriate
copula also improves.

Table 2: Simulation Results for Renyi Distance Estimation (τ = 0.5)

Correct Competing Sample Size 50 Sample Size 200
Copula Copula Bernstein Empirical Bernstein Empirical

Gaussian Gaussian 0.1152 0.1708 0.0769 0.1320
Clayton 0.3373 0.3449 0.3063 0.3100
Gumbel 0.3401 0.3508 0.3063 0.3174

Clayton Gaussian 0.2264 0.2627 0.1884 0.2305
Clayton 0.1213 0.1748 0.0900 0.1396
Gumbel 0.3429 0.3547 0.3110 0.3233

Gumbel Gaussian 0.2328 0.2671 0.2001 0.2331
Clayton 0.2382 0.2720 0.2026 0.2328
Gumbel 0.1261 0.1810 0.0929 0.1484

Conclusion
The increasing complexity of statistical modeling has highlighted the importance of
copulas in capturing dependencies among random variables. This paper has addressed
the critical need for a straightforward and reliable method for selecting the appropriate
copula model. By utilizing the copula-based Rényi distance as a criterion for model
selection, we have demonstrated its effectiveness in evaluating potential statistical ev-
idence in experimental settings. Through our comparative analysis of two nonpara-
metric estimation methods—empirical and Bernstein—we found that the Bernstein
method consistently outperforms the empirical method, particularly as sample sizes
increase. The simulation study revealed that the accuracy of the Bernstein method
enhances the reliability of copula selection, making it a valuable tool for researchers
and practitioners alike. Overall, our findings underscore the utility of the copula-based
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Rényi distance in model selection and contribute to the ongoing development of robust
statistical methodologies. Future research could explore further refinements to these
estimation techniques and their applications across various fields, thereby extending
the impact of copula theory in practical scenarios.
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