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Abstract
Multi-label learning, which involves assigning multiple class labels to each instance,
becomes increasingly complex when dealing with large-scale mixed datasets featuring high-
dimensional feature spaces. These mixed datasets often involve a combination of numerical
and categorical features, which exacerbate the challenges of multi-label learning by intro-
ducing additional layers of uncertainty and variability. Traditional classification methods,
although effective in simpler scenarios, often fail to address these complexities resulting in
significant errors. To overcome this, we have developed an entropy-based objective function
that captures the intricate interplay between features and classes, while accounting for the
inherent uncertainty of mixed data. This objective function explicitly accounts for the hetero-
geneous nature of mixed datasets, ensuring robust feature selection across diverse attribute
types. To tackle these challenges, we propose a memetic algorithm that integrates fuzzy
rough sets with enhancements from kernel fuzzy rough sets (KFRS), and the Non-dominated
Sorting Genetic Algorithm II. This synergy enables the extraction of optimal feature subsets
that significantly improve classification performance. By leveraging kernel-based similarity
measures, KFRS refines the partitions formed by fuzzy set memberships for distinct classes,
ensuring precise alignment of data samples with multiple labels, while effectively handling
the complexities of mixed-data representation. A key strength of our approach lies in its
ability to preserve valuable information through KFRS-driven feature selection. Empirical
evaluations on three benchmark datasets highlight the effectiveness of the proposed method-
ology. The results validate the superiority of our feature selection strategy, grounded in
kernel-modulated neighborhoods; furthermore, the implementation demonstrates a notable
improvement in both solution quality and search efficiency, establishing it as a highly promis-
ing method for multi-label learning tasks.
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1 Introduction

In the digital age, the overwhelming influx of data from diverse domains underscores the
critical need for effective dimensionality reduction. Within this context, feature selection
stands out as a vital preprocessing step, carefully eliminating irrelevant and redundant fea-
tures, to distill the essence of a dataset. This process not only enhances analytical clarity
but also reduces the computational complexity of extracting knowledge from data [1, 2].
Maintaining the decision-making system’s precision after feature pruning is essential, as it
can significantly enhance the model’s ability to generalize effectively.

In the complex landscapeof feature selectionmethodologies, evaluationmetrics and search
strategies serve as the essential tools guiding the process. This spectrum includes traditional
metrics such as dependency [3, 4], neighborhood dependency [5], and fuzzy dependency
within various rough set paradigms [6–8], as well as mutual information [9, 10] and sample
margin [11, 12] from statistical learning theory. The effectiveness of ReliefF as a scor-
ing mechanism, highlighted by Spolaôr et al. [13], and the diverse score functions for text
categorization, introduced by Yang and Pedersen [14], further demonstrate the depth and
sophistication of this field. However, a lacuna often resides in these methodologies’ ability to
fully apprehend the labyrinth of label interconnections within multi-label contexts, as tradi-
tional feature selectionmethods frequently struggle to address the unique challenges inherent
to multi-label learning, including the complex interplay among labels, the high dimensional-
ity of feature spaces, and the presence of noisy or redundant features [15]. These limitations
lead to suboptimal classification performance and reduced scalability when applied to real-
world multi-label datasets. Additionally, existing methods often overlook the uncertainty
and variability introduced by heterogeneous data types, which are prevalent in multi-label
domains. Addressing these gaps necessitates innovative strategies that can not only capture
intricate label–feature correlations but also enhance computational efficiency.

In recent years, label distribution learning (LDL) has emerged as an extension of multi-
label learning, offering a richer representation of label–instance relationships by assigning
a distribution rather than binary or mutually exclusive labels. This approach has shown
improved performance in applications such as emotion recognition and human behavior anal-
ysis. However, LDL methods often come with higher computational demands and require
comprehensive datasets with well-defined label distributions, which can limit their practical-
ity in large-scale or heterogeneous scenarios [16]. This study focuses on multi-label learning
to address real-world challenges such as high-dimensional data, mixed feature types, and
label correlations, whilemaintaining computational efficiency and scalability. Although LDL
represents an advanced paradigm for capturing label distributions, the proposed approach
prioritizes adaptability and efficiency, making it more suitable for diverse and large-scale
datasets encountered in practical applications.

Furthermore, many real-world multi-label datasets feature a mixed-data structure, encom-
passing both numerical and categorical features. This heterogeneity introduces further
complexity, as traditional methods often fail to adequately process or represent such diverse
data types. Numerical features may encode continuous measurements, while categorical fea-
tures may represent discrete classifications, each posing distinct challenges for integration.
Managing this variability and uncertainty requires advanced methodologies capable of han-
dling the inherent diversity within mixed datasets.
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Evolutionary-driven feature selection paradigms, renowned for their precise evaluation
of feature subset fitness using classifiers have demonstrated significant value in improving
classification accuracy [17]. However, their pursuit of finely optimized feature subsets that
approach the global optimum is often hindered by substantial computational challenges.
In this context, memetic algorithms emerge as a balanced solution, skillfully integrating
exploration and exploitation, through refined optimization techniques [18, 19]. Furthermore,
recent research has emphasized the effectiveness of dense network approaches combinedwith
Gaussian optimizers, particularly in applications such as cardiovascular disease prediction
[20].

The field of multi-label feature selection, encompassing areas as diverse as bioinformatics
and financial datamining [21, 22], demands strategies capable of effectively eliminating irrel-
evant or redundant features in datasets with multiple labels per sample. This domain, richer
in semantic complexity compared to binary or multi-class classification, must address the
nuanced challenge of distinguishing between classes while managing the overlapping nature
of nonexclusive labels. Positioning multi-label feature selection within the scope of multi-
objective optimization highlights a balance between two competing objectives: maximizing
classification accuracy and minimizing feature set size. Evolutionary algorithms (EAs) have
achieved notable success in addressing these goals. However, despite their effectiveness,
EAs often encounter significant computational challenges. To address this, memetic algo-
rithms, with their enhanced efficiency and refined optimization capabilities, offer a promising
solution to mitigate these computational limitations.

Positioning multi-label feature selection within the scope of multi-objective optimization
highlights a balance between two competing objectives: maximizing classification accuracy
andminimizing feature set size. Evolutionary algorithms (EAs) have achieved notable success
in addressing these goals. However, despite their effectiveness, EAs often encounter signif-
icant computational challenges. To address this, memetic algorithms, with their enhanced
efficiency and refined optimization capabilities, offer a promising solution to mitigate these
computational limitations.

To address these critical challenges, this study introduces a novel methodology that lever-
ages the power of kernel fuzzy rough sets (KFRS) to overcome the inherent limitations of
existing approaches in multi-label feature selection. The proposed approach builds upon tra-
ditional fuzzy rough set strategies and incorporates advanced techniques to enhance feature
selection in multi-label contexts, through the following key innovations:

• A robust KFRS-based feature selection framework: This framework is designed to
identify and retain the most relevant features and label dynamics, optimizing classifier
training and ensuring improved classification accuracy.

• Entropy-driven uncertainty management:By leveraging entropy-based measures, the
method quantifies uncertainties and captures the complex correlations between labels
and features in heterogeneous datasets, particularly those with mixed numerical and
categorical attributes. Entropy serves as a key metric for evaluating variability and inter-
dependencies, enabling the identification of features that significantly reduce uncertainty
and enhance label coherence. This approach dynamically balances the competing objec-
tives of relevance, redundancy minimization, and similarity maximization. Furthermore,
entropy-based evaluations adapt to diverse data structures, ensuring robust feature selec-
tion and improved classification performance across mixed datasets.

• Integrated representation of heterogeneous data: The KFRS-based approach ensures
precise clustering of samples by class while seamlessly handling the inherent diversity
in multi-label datasets. By applying KFRS to orchestrate the data space, it enables the
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robust representation of mixed-data types, including the seamless integration of numer-
ical and categorical features, ensuring accurate and consistent feature selection across
heterogeneous datasets.

Building on these innovations, the proposedmethod is specifically designed to address the
pressing challenges inmulti-label feature selection formixed datasets. Traditional algorithms
often fall short of effectively managing the heterogeneity of numerical and categorical fea-
tures, leading to suboptimal feature selection and classification performance. Unlike existing
methods, which primarily aim for general classification improvement, our approach uniquely
leverages kernel fuzzy rough sets (KFRS) and entropy-driven objectives. This tailored strat-
egy not only enhances the robustness of feature selection but also ensures effective handling
of diverse data structures, minimizing redundancy while capturing intricate label–feature
dependencies to improve overall classification outcomes.

The manuscript is structured as follows: Sect. 2 explores the landscape of related work,
while Sect. 3 establishes the foundational concepts. Section 4 introduces the proposed kernel
fuzzy rough set (KFRS)method and Sect. 5 presents the experimental results and discussions.
Finally, Sect. 6 concludes with key findings and outlines directions for future research.

2 Related work

Multi-label learning is typically addressed through three main approaches: (1) problem
transformation [23], (2) algorithm adaptation [24], and (3) ensemble learning [25]. Prob-
lem transformation involves breaking down a multi-label problem into one or more binary
classification tasks, which can then be solved using conventional single-label classification
techniques such as support vector machines (SVM) [26], the naive Bayes classifier [27], and
others. Algorithm adaptation entails customizing traditional single-label classifiers to make
them suitable for multi-label classification tasks. A notable example is MLKNN [28], an
extension of the k-nearest neighbor algorithm with appropriate modifications for multi-label
scenarios. Ensemble methods, by contrast, leverage a collection of multi-class classifiers,
such as those utilizing multiple Label Powerset [29] classifiers [30] to form a unified learner.
This approach improves learning stability by reducing the risk of model overfitting and
decreasing sensitivity to initialization variations [31].

Furthermore, multi-label learning methods, based on label interdependencies, can be
grouped into three categories. The first group disregards label relationships altogether [32–
34]. The second group utilizes correlations between pairs of labels [35, 36], while the third
group emphasizes the interrelationships among all class labels or specific subsets [37, 38].
The introduction of kernel fuzzy rough sets (KFRS) brings an advanced perspective, provid-
ing deeper insights into label correlations through kernel-based transformations and fuzzy
logic, thereby enhancing algorithm adaptation strategies [39, 40]. Further advancements in
the domain of fuzzy logic and feature selection include recent studies such as [41, 42], which
emphasize the application of kernel-based transformations and entropy-driven techniques to
improve feature selection accuracy. These studies offer valuable methodologies that align
well with the challenges addressed in this research, particularly concerning the handling
of multi-label data and the reduction of uncertainty in heterogeneous datasets. Building on
these foundations, Fan et al. [42] proposed an adaptive fuzzy rough set model incorporating
kernel functions to dynamically adjust feature evaluation criteria. This approach leverages
multi-neighborhood structures to address variability in mixed-data environments, aligning
closely with the principles of KFRS in managing complex label interdependencies.
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Multi-label datasets often face the challenge of high dimensionality, as they frequently
include samples with a large number of features [43]. As a result, multi-label feature selection
methods are generally categorized into three main groups: filter methods, wrapper methods,
and embedded methods. Filter methods select feature subsets using statistical techniques that
evaluate the relationship between individual features, independent of the classifier being used.
In contrast, wrapper methods involve selecting a feature subset, training a model with the
selected features, and then using themodel’s performance to guide further feature inclusion or
exclusion. Embedded methods blend aspects of both filter and wrapper approaches, creating
an integrated framework for feature selection. Lin et al. [44] evaluated each feature based on
the conditional redundancy between the candidate feature and the already selected features.
Similarly, Lee and Kim [45] proposed a multi-label feature selection method leveraging
multivariate mutual information. Their approach identifies feature subsets by maximizing
the dependency between selected features and labels, using an incremental selection strat-
egy. The subset is determined by maximizing the dependency between selected features and
labels through an incremental selection strategy. Yan and Li [46] introduced a graph-margin-
based multi-label feature selection method that calculates label correlations and evaluates
features based on a graph structure, integrating this approach with large margin theory for
enhanced performance. Sun et al. [47] proposed a mutual information-based multi-label fea-
ture selection method that incorporates label correlations and utilizes constrained convex
optimization to achieve an optimal solution. Zhang and Li [48] developed an unsupervised
feature selection approach by efficiently leveraging sparse fuzzymembership.Dong et al. [49]
introduced a many-objective feature selection strategy for multi-label classification, utilizing
the NSGA-III algorithm [50] to address the complexity of multiple objectives, effectively.
To enhance the diversity and convergence of NSGA-III, novel crossover and mutation oper-
ators have been developed to boost its exploration capabilities. While these advancements
have significantly improvedNSGA-III’s performance inmulti-objective optimization, further
progress has been made by incorporating advanced representation techniques and neighbor-
hood learning strategies, leading to even more refined outcomes. Recent advancements in
multi-objective optimization for feature selection have further refined the balance between
exploration and exploitation. For instance, Yin et al. [15] developed a robust framework
combining sparse representation and neighborhood reconstruction for multi-label classifi-
cation. By integrating fuzzy membership functions and neighborhood learning, this method
enhances the robustness of feature evaluation and subset selection, particularly in handling
label correlations.

The combination of sparse regression and spectral graph techniques has emerged as a
widely used method for subspace learning in feature selection [51]. In this framework, each
sample is regressed onto its specific manifold structure. Huang and Wu [52] proposed a
multi-label feature selection method that integrates manifold regularization with dependence
maximization, using an iterative optimization algorithm to derive sparse coefficients for
feature selection. Building on this, Kong et al. [53] incorporated manifold learning into
methods [54, 55] to effectively handle multi-label data. Fan et al. [56] further developed
a manifold framework by employing an uncorrelated regression model to identify features
that are both uncorrelated and discriminative. These features are utilized to capture the label
distribution, while a spectral graph component based on information entropy is seamlessly
integrated into the framework to preserve local geometric data structure during subsequent
learning.

Xia et al. [57] introduced a sparsity-regularized weighted stacked ensemble approach
to optimize classifier selection and the construction of ensemble members for multi-label
classification. The weights of the ensemble members are assigned based on pairwise label
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correlations. An optimal ensemble solution is achieved using an optimization algorithm that
integrates accelerated proximal gradient, and block coordinate descent methods.

Gonzalez-Lopez et al. [58] proposed a distributed model for evaluating feature quality
across multiple labels, aggregating mutual information through Euclidean norm maximiza-
tion (ENM) and geometric mean maximization (GMM) approaches. ENM emphasizes
features with the largest L2 norm, while GMM selects those with the highest geometric
mean. Liu et al. [59] focused on inter-class discrimination and intra-class neighbor recogni-
tion to identify the most relevant and discriminative features, which are then combined using
a feature conversion technique.

In the domain of filter methods, identifying the optimal attributes for feature evaluation is
a key challenge. Various criteria have been studied, including techniques like ReliefF and its
extensions [60]. The dependency criterion, a classic evaluationmetric, also plays a significant
role in multi-label feature selection. Qian et al. [61] advanced this area by developing a
ranking-based feature selection method that leverages fuzzy relative discernibility, and fuzzy
label discernibility relations for multi-label classification.

3 Preliminary

3.1 Kernel fuzzy rough sets

Kernel fuzzy rough sets (KFRS) play a pivotal role in refining feature selection by enhanc-
ing the granularity of similarity calculations. Unlike traditional fuzzy rough sets, which
rely on fixed neighborhood relationships, KFRS leverages kernel functions to dynamically
adapt neighborhood boundaries based on feature correlations. Kernel methods are a class
of machine learning algorithms and have been extensively applied across a wide range of
problems [62–65]. This flexibility enables KFRS to address the inherent uncertainty and
heterogeneity in multi-label datasets, particularly those with mixed numerical and categor-
ical attributes. The fuzzy relationship between samples is established using kernel-based
similarity measures, which compute the degree of similarity between pairs of samples. This
relationship is characterized by:

• Reflexivity: Ensuring each sample is maximally similar to itself.
• Symmetry: Guaranteeing that similarity is bidirectional between any two samples.
• Continuity: Allowing for smooth transitions in similarity values across the dataset.

These properties enable the formation of fuzzy granules that represent local sample
neighborhoods. These granules are subsequently used to calculate the lower and upper
approximationswithin theKFRS framework, thereby capturing both precise and potential
memberships of samples in decision classes.

Suppose that NDS = 〈U , AT ,C, V , f , δ, K 〉 is a kernel-based neighborhood decision
system. A universal set U = {x1, x2, . . . , xm} is a set of samples. AT and C refer to the
sets of conditional attributes and decision attributes, respectively. The mapping function is
represented as V = ⋂

a∈AT Va where f : U × A → V , A = {AT ∪ C} encompasses all
attributes of samples, and Va signifies the domain of attribute a. The attribute value of sample
x for attribute a is denoted by f (a, x), while δ(0 ≤ δ ≤ 1) serves as a distance threshold,
signifying the radius of the neighborhood. The kernel function is denoted K .
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3.2 Kernel-induced similarity

In the context of NDS = 〈U , AT ,C, V , f , δ, K 〉, when B ⊆ AT , it gives rise to the kernel-
based fuzzybinary relation denoted as Rk

B , on the setU .Here, K represents the kernel function
utilized to compute the kernel-based fuzzy binary relation Rk

B , This function plays a crucial
role in refining similarity assessments within the multi-label data environment. B denotes a
subset of the conditional attributes AT selected for assessing similarity in the kernel fuzzy
rough set framework. This subset guides the calculation of the kernel-based fuzzy similarity
relation. For any x, y ∈ U , the relation Rk

B is deemed the kernel fuzzy similarity relation if
it fulfills the subsequent properties:

Rk
B(x, x) = 1 for any x ∈ U , (1)

Rk
B(x, y) = Rk

B(y, x) for any x, y ∈ U . (2)

where SkB(x, y) is the similarity degree between x and y under B and threshold δ ∈ [0, 1] is
the kernel-based fuzzy neighborhood radius parameter which controls the similarity degree
between two samples x and y, calculated using the kernel function k. The kernel fuzzy
similarity relation Rk

B acts as the foundational metric for measuring similarity between any
two samples, leveraging kernel functions to capture intricate patterns and relationships in
mixed-data environments. Its properties of reflexivity and symmetry ensure robustness and
consistency in similarity evaluation. Building on Rk

B , the neighborhood structure S
k
B defines

a localized similarity granulation by considering samples within a threshold-defined kernel-
induced neighborhood. This granulation enables the kernel fuzzy rough set framework to
establish lower and upper approximations that accurately capture the uncertainty and variabil-
ity of multi-label datasets. Together, Rk

B and SkB synergistically enhance the feature selection
process by refining similarity assessments and ensuring the robustness of neighborhood def-
initions, which are pivotal for managing mixed-data attributes.

3.3 Kernel-based information granulation

In the kernel-augmented neighborhood decision system NDS = 〈U , AT ,C, V , f , δ, K 〉
for each a ⊆ AT and x, y ∈ U , we define the granule of information around x with respect
to B as:

[x]δB (y) =
{
1 if SkB(x, y) > δ,

0 else.
(3)

This granule represents whether x and y are considered similar within the kernel-modified
neighborhood defined by δ.

3.4 Kernel approximations of fuzzy decisions

In the framework of NDS = 〈U , AT ,C, V , f , δ, K 〉, where B ⊆ AT , and for any X ⊆ U ,
the parameterized kernel fuzzy neighborhood information granule for x ⊆ U is denoted as
αk
B(x). Consequently, the kernel fuzzy neighborhood lower and upper approximations of the

fuzzy decision C concerning B are defined by formulas 4 and 5, respectively:

Rk,δlower
B (C)(x) = inf

y∈U max
(
1 − Rk

B(x, y),C(y)
)
, (4)
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R
k,δupper
B (C)(x) = sup

y∈U
min

(
1 − Rk

B(x, y),C(y)
)
. (5)

In these definitions, Rk,δlower
B (C)(x) captures the extent to which elements are certainly

within the decision class C , while R
k,δupper
B (C)(x) captures the extent to which elements

could be within C .
where Rk_lower

B (x, y) is calculated using the kernel function k.Rk,δ
B (C)(x). measures the

degree of certainly belonging to the fuzzy decision C and Rk,δ
B (C)(x). measures the degree

of x , possibly belonging to the fuzzy decision C . The boundary region of X is defined as
Eq. (6).

BN (X) = R
k,δupper
B (C)(x)) − Rk,δlower

B (C)(x) (6)

The kernel fuzzy neighborhood approximation accuracy ofC in relation to B is calculated
by Eq. (7).

acckB = Rk,δlower
B (C)(x)

R
k,δupper
B (C)(x)

(7)

This accuracy metric reflects how closely the lower approximation covers the decision
class C in comparison to the upper approximation.

Regarding the kernel fuzzy neighborhood roughness degree, it is obtained by considering
the uncertainty between the lower and upper approximations:

FNR(X) = 1 − acckB (8)

The roughness degree FN R(X) measures the amount of uncertainty or fuzziness present
in the classification with respect to C and B.A higher FN R(X) value indicates greater
uncertainty, while a value closer to 0 indicates less uncertainty.

4 Proposedmethod

Our study introduces a novel multi-label feature selection algorithm that leverages an
advanced kernel-based fuzzy rough set approach, enhancing the Non-dominated Sorting
Genetic Algorithm II (NSGA-II). The goal is to construct a Pareto set of non-dominated
solutions, represented by feature subsets Xi . These subsets are designed to exhibit a strong
correlation with class labels through kernel-based similarity measures while minimizing
redundancy using fuzzy rough set boundaries. The proposed method integrates the strengths
of genetic algorithms and fuzzy rough sets through a synergistic approach. The genetic algo-
rithm (specifically NSGA-II) is employed to explore the solution space efficiently, ensuring
the identification of Pareto-optimal feature subsets that maximize classification relevance and
minimize redundancy. Concurrently, fuzzy rough sets refine the evaluation of feature subsets
by dynamically capturing uncertainty and relationships in the dataset. This integration lever-
ages kernel functions to enhance neighborhood definitions, enabling the genetic algorithm
to operate with greater precision in mixed-data environments. With this in mind, our method
aims to balance three critical objectives: (1) maximizing feature relevance, (2) minimizing
redundancy, and (3) capturing similarity in mixed-data environments. By integrating ker-
nel functions with fuzzy rough sets, our method dynamically adapts to the heterogeneous

123



Feature selection by utilizing kernel-based fuzzy rough set and…

nature of multi-label datasets, ensuring robust feature selection. The key contributions of our
approach include:

• Leveraging kernel-based similarity measures to refine feature relevance and minimize
redundancy.

• Employing entropy-driven objectives to quantify and address label–feature dependencies.
• Using NSGA-II within a kernel-augmented framework to efficiently explore the solution

space.

This section is organized as follows: Sect. 4.1: Details on how features are encoded. Section
4.2: Explanation of multi-objective optimization criteria. Section 4.3: Steps of the kernel-
augmented NSGA-II algorithm. Section 4.4: Dynamic adjustments of feature subsets based
on KFRS measures

4.1 Chromosome representation

Each chromosome represents a candidate solution, corresponding to a subset of features. A
population P of these chromosomes is generated, where the binary representation is refined
to encode the relevance of features, based on kernel fuzzy rough set (KFRS) principles.
Unlike a simple binary indicator for feature presence or absence, each bit in the chromo-
some also reflects the feature’s relevance and non-redundancy as assessed by kernel-based
rough set approximations. The representation of chromosomes directly supports the objec-
tive of maximizing feature relevance and minimizing redundancy. By encoding relevance
and redundancy metrics derived from KFRS, this representation ensures that candidate solu-
tions prioritize essential features while discarding irrelevant or overlapping ones, facilitating
robust multi-label feature selection.

4.2 Fitness function

The merit of each chromosome is ascertained through three competing objectives, reshaped
to integrate KFRS evaluations:

f (x) = (
fk1(x), fk2(x), fk3(x)

)
(9)

These objectives are defined under the KFRS framework as follows:

• RedundancyMinimization fk1(x): This objectiveminimizes redundancy by leveraging
the lower and upper approximations in KFRS. It ensures that the selected feature subsets
are compact and free from overlapping or irrelevant features.

• Relevance Maximization f k2(x): This objective prioritizes features that demonstrate
strong dependency on class labels. Using kernel-based dependency measures defined
in Eq. 11, it evaluates the nuanced relationships between features and class labels in
mixed datasets. In this formulation, entropy Hk(C) quantifies the overall uncertainty of
the class distribution, while the conditional entropy Hk(C | Xl) measures the remaining
uncertainty given a feature Xl . Their difference,mutual information, reflects the reduction
in uncertainty achieved by incorporating the feature. This allows the fitness function to
prioritize features that provide themost information gain, thereby enhancing the relevance
of the selected subset.

• Similarity Enhancement f k3(x): This objective evaluates the similarity between fea-
tures and labels using kernel-induced similarity indices (Eq. 13). By incorporating
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kernel-basedmeasures, it dynamically adapts to the heterogeneity of the dataset, ensuring
robust feature selection.

These objectives are seamlessly integrated into the NSGA-II framework to guide the evo-
lutionary process. Each chromosome in the population represents a candidate feature subset,
and the objectives are used to evaluate its fitness. The genetic operator’s crossover, mutation,
and selection are influenced by the kernel-enhanced evaluations, which dynamically refine
neighborhood definitions and optimize feature selection. Additionally, the weights α and β in
the fitness function are adjusted to balance dependency, redundancy, and similarity according
to the dataset’s characteristics, ensuring a tailored optimization process.

The fitness function is a core component of our methodology, as it formalizes the bal-
ance among competing objectives. By incorporating kernel-based relevance, redundancy, and
similarity measures, it dynamically adapts to the mixed nature of datasets. This ensures the
selection of feature subsets that not only alignwith class labels but alsomaintain compactness
and inter-feature harmony, enhancing classification performance.

Jk(x) = max Ik(X;C) + α
∑

x⊆S,
X ′⊆§′

Ik(X; X ′) − β
∑

x⊆S,
X ′⊆§′

Ik(X;C | X ′) (10)

Ik(Xi ;C) is computed by Eq. 11.

Ik(Xi ;C) = Hk(C) − Hk(C | Xi )

= −
∑

c j∈C
pk(c j ) log pk(c j )

+
∑

c j∈C

∑

Xi∈ s′
pk(c j , Xi ) log pk(c j , Xi )

=
∑

c j∈C

∑

xi∈ s′
pk(c j , Xi )

pk(c j , Xi )

pk(c j )

(11)

Ik(XS; Xi ) is computed by Eq. 12.

Ik(XS; Xi ) = Hk(Xi ) − Hk(Xi | XS)

= −
∑

Xi∈ s′
pk(Xi ) log pk(Xi ) +

∑

Xi∈ s′

∑

Xs∈S
pk(Xi , XS) log pk(Xi | XS)

=
∑

Xi∈ S′

∑

Xs∈S
pk(Xi , XS) log

pk(Xi | XS)

pk(Xi )

(12)

Ik(XS,C | Xi ) is computed by Eq. 13.

Ik(XS,C | Xi ) = Hk(XS | Xi ) − Hk(XS | C, Xi )

= −
∑

XS∈S

∑

c j∈C

(
pk(XS,C) log pk(XS | C)

)

+
∑

XS∈S

∑

c j∈C

∑

Xi∈ S′
pk(XS,C, Xi ) log pk(XS | C, Xi )

=
∑

XS∈S

∑

c j∈C

∑

Xi∈ S′
pk(XS,C, Xi ) log

pk(XS | C, Xi )

p(XS | C)

(13)

123



Feature selection by utilizing kernel-based fuzzy rough set and…

4.3 Searchmethod

To determine the optimal feature sets that maximize the objectives of the kernel fuzzy rough
set (KFRS) framework, as defined in Eq. 10, this study employs an enhanced Non-dominated
Sorting Genetic Algorithm II (NSGA-II). This improved version integrates KFRS measures
for evaluating feature subsets. The algorithm begins by generating an initial population and
computing the kernel-based objectives for each chromosome. Before entering the main iter-
ative loop, the population is partitioned into Pareto fronts using fast non-dominated sorting.
The crowding distance is then calculated, incorporating kernel-basedmeasures for each chro-
mosome within the fronts. The integration of KFRS within the NSGA-II framework ensures
a refined exploration of the solution space. By leveraging kernel-based measures during
sorting and refinement, the search method achieves a robust balance between exploration
and exploitation, enabling the identification of Pareto-optimal solutions that align with the
method’s multi-objective optimization goals. The proposedmemetic algorithm, strengthened
by local refinement through KFRS, is implemented according to Algorithms 1–3.

Algorithm 1 The proposed kernel-augmented multi-objective memetic algorithm
1: Create a random population of N chromosomes.
2: Calculate the kernel-based multi-objective fitness (using adaptations of Eq. 10) for each chromosome.
3: Determine the ranking using kernel-aware Pareto fast non-dominated sorting.
4: Calculate the kernel-informed crowding distance.
5: Generate offspring population.
6: while termination criteria are not met do
7: Apply local refinement using kernel fuzzy rough sets.
8: Execute the elitism selection technique, respecting kernel-based evaluations.
9: Perform crossover and mutation, guided by kernel-based fitness.
10: Evaluate objectives using a multi-label classifier integrated with KFRS.
11: Rank individuals using kernel-aware Pareto sorting.
12: Compute the kernel-informed crowding distance.
13: end while
14: Return final population P , reflecting kernel-based feature evaluations.

Algorithm 2 Kernel-informed fast non-dominated sorting
1: Initialize: For each solution p in the population P , set the domination counter n p = 0 and the set of

solutions that p dominates Sp = ∅.
2: Domination Counting: For each pair of solution p, q in P , if p kernel dominates q, then add q to set Sp .

Otherwise, if q kernel dominates p, increment domination counter n p .
3: Create the First Front: All solutions in P with n p = 0 are non-dominated and form the first front F1.

Set their rank rp = 1.
4: Non-dominated Sorting: For each front Fi , initialize the next front Fi+1 = ∅. For each solution p in Fi ,

for each solution q in Sp , decrement nq . If nq becomes 0, add q to Fi+1 and set rq = i + 1.
5: Iteration: Continue this process until all fronts are created.

While NSGA-II excels at navigating complex search spaces, it does not inherently ensure
global optimality. To address this limitation, we introduce a local search strategy grounded
in kernel fuzzy rough sets (KFRS). This approach enhances the search process by leverag-
ing the fine-grained granularity of kernel-based fuzzy neighborhoods, enabling more precise
clustering of samples within the class vicinity, in the feature space. This refinement strength-
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Algorithm 3 Kernel-Based Crowding Distance
Input:

M : The number of kernel-based objective functions.
Z : The number of non-dominated solutions.
F : A Pareto front composed of N individuals.

f max /min
m : max(min) value for objective m under KFRS.

1: Let F[z]dist = 0 for z = 1, . . . , Z .
2: for each kernel-based objective function fm , m = 1, 2, . . . , M do
3: Sort the set in ascending order.
4: Let F[0]dist = F[z]dist = ∞.
5: for i = 2 to Z − 1 do
6: f [z]dist = f [z]dist + f [z+1].m− f [z−1].m

f max
m − f min

m
.

7: end for
8: end for

ens exploration in regions with sparse solutions while improving exploitation across various
criteria.

Kernel fuzzy rough sets delineate neighborhoods with membership functions that are sen-
sitive to the fuzzy boundaries of classes, as identified by kernel-induced similarity relations.
These functions enable a more flexible conception of neighborhoods, taking into account the
degree of similarity computed via kernel functions. The resulting membership distributions
provide a soft partitioning of the data space, reflective of the multi-label nature of the dataset.
This flexibility allows KFRS to adapt similarity metrics during local refinement, ensuring
they are both context-aware and robust. By computing kernel-induced fuzzy memberships,
the method dynamically adjusts neighborhood definitions, effectively managing mixed-data
structures. Consequently, these refined neighborhoods enhance the discrimination of relevant
features while minimizing the influence of redundant or noisy ones. To further enhance the
search efficacy of NSGA-II, the proposedmethod addresses its inherent limitations regarding
global optimality.By integratingKFRS, themethod employs adaptive kernel-basedmeasures,
to refine the exploration and exploitation phases. Kernel fuzzy rough sets (KFRS) enhance
the genetic algorithm by refining its local search capabilities. During each iteration, KFRS
measures are used to adjust neighborhood definitions dynamically, improving the algorithm’s
ability to differentiate between essential and redundant features. The kernel-induced fuzzy
relationships provide adaptive guidance for crossover and mutation operations, ensuring
the population evolves toward globally optimal feature subsets. This refinement dynamically
adjusts the similarity metrics and neighborhood definitions, enabling the algorithm to explore
underrepresented regions of the feature space while avoiding premature convergence. As a
result, the proposed strategy ensures a more comprehensive and robust search, leading to a
set of Pareto-optimal solutions that better approximate global optima.

During the local refinement phase, feature subsets (candidate solutions) are dynamically
adjusted toward the Pareto front, guided by Eq. 10. This equation incorporates kernel-based
measures, optimizing not only for feature distinctiveness but also for the smoothness of
transitions across class boundaries.

To evaluate the degree of neighborhood belongingness to a specific class, a neighborhood
relation is defined based on KFRS principles. Unlike a binary classification, this relation
employs a fuzzy measure that captures both the proximity and density of points within the
kernel-transformed feature space. This fuzzy measure enables a more nuanced and locally
aware progression, facilitating refined adjustments toward Pareto-optimal solutions. To eval-
uate the degree of neighborhood belongingness to a specific class, a neighborhood relation
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is defined based on KFRS principles. Unlike a binary classification, this relation employs
a fuzzy measure that captures both the proximity and density of points within the kernel-
transformed feature space. This fuzzy measure enables a more nuanced and locally aware
progression, facilitating refined adjustments toward Pareto-optimal solutions. The kernel-
based neighborhood relation, which forms the foundation of this approach, is defined as
follows:

Given NDS = 〈U , S,C, V , f , δ, K 〉, a feature subset S′ ⊆ S, and any two samples
x, y ⊆ U , the kernel-based neighborhood relation among data samples under the selected
feature subset S′ is established according to Eq. (14).

N Rk
δ (S

′) = {(x, y) ∈ U ×U | κ(x, y; S′) ≥ τ } (14)

where κ(x, y; S′) is a kernel-based similarity function that incorporates the information of
the feature subset S′ and τ is a threshold parameter derived from δ. N Rk

δ (S
′)must satisfy the

properties of reflexivity and symmetry, which are inherent to kernel functions. The kernel-
based neighborhood class δk is according to Eq. 15.

δk = max(�k
S′(x, NHK (x)),�k

S′(x, NMK (x))) (15)

The similarity �k
S′(x, y) as defined in Eq. 16.

�k
S′(x, y) =

√ ∑

ak∈S′
κ( fak (x), fak (y))

2 (16)

where ak ∈ S′, and |S′| denotes the cardinality of the feature subset S′. Also, NH(x)
represents the nearest sample within the same class label, and NM(x) signifies the nearest
sample belonging to a different class label.

In this KFRS approach for each label k of a given sample x , both the closest sample within
the same class label NHk(x), and the nearest sample from a different class label NMk(x), are
identified via the kernel function. These identifications are used to establish neighborhood
relations and neighborhood classes in a fuzzy rough manner.

4.4 Solution evolution

As described in Lines 8–12 of Algorithm 1, each feature within a chromosome is assigned a
score reflecting its kernel-based relevance. The initial chromosome is then refined using ker-
nel fuzzy rough set measures, enhancing the selection of essential features, while eliminating
redundant ones. If the refined chromosome achieves an improved fitness value, as determined
by the kernel-enhanced fitness function, it is reintegrated into the population. Ultimately,
chromosomes with higher kernel-based fitness values are prioritized as superior solutions.
The solution evolution process leverages KFRS to iteratively refine feature subsets, ensuring
robust feature evaluation and improved convergence. This dynamic adjustment of neigh-
borhood definitions and similarity metrics addresses the inherent complexity of multi-label
datasets, resulting in a comprehensive and globally optimal feature selection strategy. The
conceptual workflow of the proposedmethod, integrating kernel-based approaches within the
fuzzy rough set framework, is illustrated in Fig. 1. The conceptual depiction of the proposed
method, now incorporating kernel-based methods within the fuzzy rough set framework, is
outlined in Fig. 1. Each step in the diagram plays a crucial role in the feature selection and
classification process, ensuring a robust and efficient methodology for multi-label learning.
Below, we provide a detailed explanation of the individual steps in the workflow: Start and
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Parameter Initialization: The process begins with defining the necessary input parameters,
including dataset characteristics, kernel parameters, and NSGA-II hyperparameters, such as
population size, number of generations, mutation rate, and crossover probability. A random
population of chromosomes is then initialized, where each chromosome represents a poten-
tial feature subset. Fitness Function Evaluation: For each chromosome, the fitness function
evaluates the quality of the selected features by considering three objectives:

• Relevance: The correlation between the selected features and the labels is assessed to
ensure the chosen features are meaningful for classification.

• Redundancy: The method aims to minimize redundancy among selected features to
avoid overlap and ensure compact feature subsets.

• Similarity: By leveraging kernel-induced fuzzy rough sets (KFRS), the similarity
between features and labels is captured, particularly in heterogeneous datasetswithmixed
attributes.

Non-Dominated Sorting and Crowding Distance Calculation: The population of chro-
mosomes is ranked using non-dominated sorting to identify the Pareto fronts. This process
distinguishes solutions that achieve optimal trade-offs among the three objectives. To preserve
diversity in the population, a crowding distance calculation ensures that solutionswith diverse
feature sets are retained. Stopping Criteria Check: At this stage, the algorithm evaluates
whether the stopping criteria, such as the maximum number of generations or the conver-
gence of the Pareto front, have been met. If satisfied, the current Pareto front is finalized, and
candidate feature subsets are passed to the next stage for classifier training andprediction.Oth-
erwise, the search continues through crossover, mutation, and refinement steps. Crossover
and Mutation: To further explore the solution space, the proposed method employs genetic
operations, specifically crossover and mutation, which are integral to the evolutionary opti-
mization process. Crossover involves combining segments of two parent chromosomes to
create new offspring solutions, ensuring the inheritance of high-performing feature com-
binations while introducing variability into the population. This operation facilitates the
exchange of genetic information between chromosomes, allowing the search to expand into
promising regions of the solution space. Meanwhile, mutation introduces randomness by
altering individual genes in a chromosome, enabling the exploration of underrepresented
or unexplored areas of the feature space. This process not only diversifies the population
but also reduces the risk of premature convergence to suboptimal solutions, enhancing the
algorithm’s ability to approximate global optima. Together, these genetic operations ensure a
robust balance between exploration and exploitation, driving the optimization process toward
high-quality feature subsets. Refinement via KFRS: Kernel fuzzy rough sets are applied to
refine the selected feature subsets dynamically. This step recalibrates similarity metrics and
neighborhood definitions to improve the precision of feature evaluations. By enabling the
exploration of promising regions within the feature space, this refinement process ensures
a more comprehensive search for globally optimal solutions. Replace Chromosome: After
refinement, improved solutions replaceweaker ones in the population, ensuring that the search
process progresses toward higher-quality Pareto fronts. Final Feature Subset Selection and
Classification: The candidate feature subsets from the final Pareto front are used to train
classifiers (e.g., MLkNN, SVM). Feature subsets are selected based on their fitness scores,
and the trained classifiers are evaluated on test data for prediction accuracy. Prediction and
Validation: The classifiers’ performance is validated using metrics such as Hamming loss,
ranking loss, and average precision. These metrics reflect the quality of the selected feature
subsets and confirm the effectiveness of the proposed method in multi-label learning tasks.
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Fig. 1 Overview of the proposed method

5 Experimental results

This section validates the proposed approach. Section 5.1 provides details about the datasets
used, while Sect. 5.2 outlines the specifics of the experimental setup. The evaluation includes
a comparative analysis with five other multi-label feature selection methods: PMU [45],
GMM [58], FSSL [59], RF-ML [60], FSCLB [66], and FSRD [61]. Section 5.2 also presents
the experimental results obtained across various scenarios, highlighting the effectiveness of
the proposed methodology.

5.1 Datasets

To evaluate the efficacy of the proposedmethod, experiments were performed on three bench-
mark datasets obtained from the Mulan Library. The characteristics of these datasets are
summarized in Table 1. These datasets were selected to encompass diverse characteristics
and challenges, including varying feature types and multi-label structures.

The Scene dataset, collected for semantic image categorization, contains both numerical
and categorical features, exemplifying a typicalmixed-data structure. TheYeast dataset,while
primarily numerical, exhibits variations in attribute representation, underscoring the need for
methods capable of handling heterogeneous data types effectively. The Emotions dataset,
related to emotional classification in the domain of music, combines text and categorical
attributes, further contributing to the complexity of the data.

The mixed nature of these datasets highlights the challenges in managing heterogeneous
attributes and the necessity of employing robust feature selection techniques. The proposed
kernel fuzzy rough sets (KFRS) framework addresses these challenges by integrating kernel-
based similarity measures to process and unify diverse data types. This approach ensures
the accurate extraction of relevant features and improves classification performance across
datasets with mixed-data structures.

5.2 Experimental settings

All experimentation was conducted using MATLAB 2016a on a system equipped with an
Intel (R) i5 CPU operating at 3.20 GHz and 8.0 GB RAM. In the proposed method, MLKNN
(with k = 10) and SVM are employed to assess the discriminatory capability of each selected
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Table 1 Datasets characteristics

Dataset Number of instances Number of features Number of classes

Scene 2407 294 6

Emotions 593 72 6

Yeast 2417 103 14

Gnegative 1392 440 8

Flags 194 19 7

Virus 207 440 6

Plant 978 440 12

Cal500 502 68 174

Birds 645 260 19

Guardian 302 1000 6

feature set determined by a chromosome. The evaluation was conducted across multiple
training and testing sets. It is important to note that the parameters for the other five feature
selection methods were kept at their default values. For the experiments, two-thirds of each
dataset were allocated for training the classifiers, while the remaining one-third was used for
both validation and testing.

To ensure the robustness of the results, all classifiers were trained using a 10-fold
cross-validation technique applied to the selected feature subsets. The final classification
performance is reported as the average score across the 10 folds. Additionally, the outcomes
were ranked (shown in parentheses), and the average rank for each method was provided for
comparative analysis.

The algorithmic process for identifying optimal parameters is outlined in Algorithm 4. As
shown, the classification performancemetric is calculated on the validation set across various
parameter configurations. The parameter value that yields the best classifier performance is
then selected as the optimal choice.

Algorithm 4 Finding optimal parameters by combining 10-fold cross-validation and grid
search

• Phase 1: Partition the initial training dataset into K equally sized segments.
• Phase 2: Select a single segment to act as the validation dataset, with the rest (K − 1) segments serving

as the updated training dataset.
• Phase 3: Implement Phase 2 sequentially, ensuring each segment serves as the validation dataset once.
• Phase 4: Determine the mean performance indicator across the K models to serve as the metric for

assessing the current parameter set.
• Phase 5: Introduce a fresh parameter set and undertake the procedures mentioned previously.
• Phase 6: Apply the technique of grid search and persist with Phase 5 until the optimal parameter set is

identified.

Various metrics have been employed to evaluate the classification performance of the
multi-label classifier, including:
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• Hamming loss: This metric indicates the count of instances where an instance–label pair
has been incorrectly classified.

HL(↓) = 1

n

n∑

i=1

|y′
i ⊕ yi | (17)

where y′
i represents the actual label of the ith test sample, yi denotes the predicted label,⊕

signifies the symmetric difference between the predicted and actual labels, and n signifies
the total number of test samples.

• Ranking loss: This metric reveals the percentage by which the ranking of negative labels
for an example surpasses that of positive labels.

RL(↓) = 1

n

n∑

i=1

1

|yi ||y′
i |

× ∣
∣{(la, lb) : ri (la) > ri (lb), (la, lb) ∈ yi × y′

i }
∣
∣ (18)

• One error: This measure indicates the proportion of the sample’s highest-ranked label
that has been misclassified.

OneE(↓) = 1

n

n∑

i=1

<
[
argmax ri (l)

] ∈ yi (19)

• Coverage error: This parameter represents the average count of top-ranked predictions
needed to ensure no ground truth label is overlooked.

CovP(↓) = 1

n

n∑

i=1

max
l∈yi

ri (l) − 1
)

(20)

• Average precision: This metric signifies the mean fraction of positive labels that hold a
higher ranking compared to specific labels.

AvgP(↑) = 1

n

n∑

i=1

1

|yi |
∑

l∈yi

|{l ′ ∈ yi : ri (l ′) ≤ ri (l)}|
ri (l)

(21)

• Accuracy: The accuracy metric for multi-label data is a widely used measure that eval-
uates the overlap between the predicted and true label sets for each instance. It is defined
as the average ratio of correctly predicted labels to the total number of unique labels
(union of true and predicted labels) across all instances in the dataset.

Accuracy = 1

n

n∑

i=1

|Yi ∩ Y ′
i |

|Yi ∪ Y ′
i |

(22)

where n is the total number of instances, Yi is the set of true labels, and Y ′
i is the set

of predicted labels for the ith instance. The numerator Yi ∩ Y ′
i represents the count of

correctly predicted labels, while the denominator Yi ∪ Y ′
i accounts for all unique labels

for that instance. This metric is particularly effective in multi-label learning scenarios,
as it balances the precision and recall across multiple labels by considering both the
correctly predicted labels and the missed or extra labels for each instance.

For each evaluation metric, ↑ (↓) denotes the higher (smaller) the value, the better per-
formance.
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Fig. 2 Visual representations of the Pareto fronts and Pareto-optimal solutions for a Scene, b Emotions, and
c Yeast datasets

5.3 Results and discussion

The evaluation of feature quality in this study considers relevance, redundancy, and similar-
ity, refined through the application of kernel fuzzy rough sets (KFRS). Figure 2a–c illustrates
the Pareto fronts and Pareto-optimal solutions across various datasets, showcasing the dis-
tributions influenced by the kernel-based approach. These visualizations highlight the role
of data redundancy in increasing dependencies, which are more effectively identified using
kernel-based measures. Furthermore, a clear trend emerges where a higher feature count cor-
relates with stronger feature-to-label dependencies, underscoring the effectiveness of KFRS
in analyzing feature interdependencies.

In Fig. 3, the number of selected features is presented, determined by the trade-off between
dependency and redundancy,with considerations based onKFRS.Table 2 provides the feature
counts for the first and second elements of each Pareto front, illustrating how KFRS reduces
redundancy and refines the feature sets to achieve more efficient and relevant selections.

To evaluate the effectiveness of our kernel-augmented method, we use five metrics: Ham-
ming loss, one error, coverage, ranking loss, and average precision as assessed byMLkNNand
SVM classifiers. The results, summarized in Table 3, demonstrate that using a smaller, more
relevant feature set curated through KFRS significantly reduces error metrics and losses.
Notably, the Hamming loss exhibits a decreasing trend as the size of the training dataset
increases, which can be attributed to the improved discriminatory power enabled by KFRS-
based feature selection.

The effectiveness of the proposed kernel fuzzy rough sets (KFRS) framework inmanaging
mixed data is particularly evident in datasets like Scene and Emotions, where both numerical
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Table 2 The number of selected features for different datasets

Dataset Features of the first element Features of the last element

Scene 93 181

Emotions 18 49

Yeast 21 76

Birds 101 169

Computer 205 399

Reuters 73 136

Reference 411 525

Cal500 535 791

Fig. 3 Overview of the additional feature comparison

and categorical features coexist. The KFRS-based similarity measures successfully captured
the inherent variability in these mixed-data types, leading to more precise feature selection
and improved classification outcomes. For instance, the Hamming loss and one error met-
rics for these datasets indicate a significant improvement compared to competing methods,
showcasing the robustness of KFRS in addressing mixed-data complexities.

Drawing on the data from Tables 3, 4 and 5, our analysis provides deeper insights into
the efficacy of the proposed method and its clear superiority over competing approaches
across a broader range of cases. This enhanced performance stems from the kernel-based
method’s ability to capture the intricate relationships between diverse features and labels,
while effectively addressing local pairwise label correlations. This nuanced understanding
is crucial for identifying truly impactful features, resulting in a substantial improvement in
classification performance.

The expanded datasets, as illustrated in Tables 3, 4 and 5, further confirm that average
precision benefits significantly from the strategic selection of features. By effectively remov-
ing noisy, irrelevant, or redundant features using kernel fuzzy rough sets (KFRS), precision
is enhanced, and the robustness of KFRS in handling larger datasets becomes increasingly
evident as the training set size grows. Notably, the feature subsets identified by our method
demonstrate minimal redundancy, achieving the highest average precision values among all
the compared approaches. Furthermore, the synergy of our proposed method with specific
classifiers, such as SVM for the Scene and Emotions datasets and MLkNN for the Yeast
dataset, highlights its versatility. This combination achieves exceptional results, consistently
outperforming other methodologies across all evaluated metrics. These findings underscore

123



J. Hamidzadeh et al.

Ta
bl
e
3

E
xp
er
im

en
ta
lr
es
ul
ts
of

ea
ch

co
m
pa
ri
ng

m
et
ho
d
in

te
rm

s
of

fiv
e
ev
al
ua
tio

n
m
et
ri
cs
,i
nc
lu
di
ng

H
am

m
in
g
(↓
)
L
os
s

D
at
as
et

M
L
K
N
N

SV
M

PM
U
[3
3]

G
M
M

[4
6]

FS
SL

[4
7]

R
F-
M
L
[4
8]

FS
R
D
[4
9]

FS
C
L
B
[5
7]

Pr
op

os
ed

m
et
ho

d
Pr
op

os
ed

m
et
ho

d

Sc
en
e

0.
25

59
(8
)

0.
25

00
(7
)

0.
22

02
(6
)

0.
22

13
(5
)

0.
21

11
(4
)

0.
10

84
(2
)

0.
20

45
(3
)

0.
10

74
(1
)

E
m
ot
io
ns

0.
22

11
(8
)

0.
21

64
(7
)

0.
20

55
(4
)

0.
20

99
(6
)

0.
20

57
(5
)

0.
20

31
(2
)

0.
20

24
(3
)

0.
20

15
(1
)

Y
ea
st

0.
31

80
(6
)

0.
23

22
(5
)

0.
21

74
(4
)

0.
38

95
(8
)

0.
34

38
(7
)

0.
19

52
(3
)

0.
10

68
(1
)

0.
17

43
(2
)

G
ne
ga
tiv

e
0.
11

23
(5
)

0.
11

24
(6
)

0.
11

05
(4
)

0.
11

88
(8
)

0.
11

67
(7
)

0.
99

05
(3
)

0.
98

31
(2
)

0.
91

79
(1
)

Pl
an
t

0.
08

11
(8
)

0.
08

04
(7
)

0.
07

76
(6
)

0.
07

69
(5
)

0.
07

22
(4
)

0.
07

33
(2
)

0.
06

52
(1
)

0.
07

41
(3
)

C
al
50

0
0.
13

42
(4
)

0.
14

18
(5
)

0.
14

21
(8
)

0.
15

03
(6
)

0.
12

35
(7
)

0.
13

73
(2
)

0.
12

39
(1
)

0.
12

54
(3
)

B
ir
ds

0.
56

24
(5
)

0.
56

14
(4
)

0.
57

51
(6
)

0.
58

77
(8
)

0.
58

12
(7
)

0.
51

39
(3
)

0.
48

19
(2
)

0.
48

11
(1
)

Fl
ag
s

0.
29

88
(7
)

0.
29

62
(6
)

0.
29

57
(5
)

0.
30

61
(8
)

0.
24

42
(4
)

0.
19

95
(3
)

0.
19

93
(2
)

0.
18

96
(1
)

V
ir
us

0.
18

64
(8
)

0.
16

78
(5
)

0.
16

27
(4
)

0.
17

85
(7
)

0.
17

41
(6
)

0.
10

95
(2
)

0.
11

41
(3
)

0.
10

71
(1
)

R
an
k
A
ve
ra
ge

6.
55

(7
)

5.
77

(6
)

5.
22

(4
)

6.
77

(8
)

5.
66

(5
)

2.
44

(3
)

2
(2
)

1.
55

(1
)

Z
-v
al
ue

−1
.6
01

−1
.6
01

−1
.1
85

−1
.1
85

−0
.9
43

−1
.1
80

−0
.4
31

P
va
lu
e

0.
10

9
0.
10

9
0.
23

6
0.
23

6
0.
34

5
0.
07

2
0.
66

6

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

am
on

g
al
lc
om

pa
re
d
m
et
ho

ds
fo
r
th
e
re
sp
ec
tiv

e
m
et
ri
c

123



Feature selection by utilizing kernel-based fuzzy rough set and…

Ta
bl
e
4

E
xp

er
im

en
ta
lr
es
ul
ts
of

ea
ch

co
m
pa
ri
ng

m
et
ho

d
in

te
rm

s
of

fiv
e
ev
al
ua
tio

n
m
et
ri
cs
,i
nc
lu
di
ng

R
L
(↓
)
L
os
s

D
at
as
et

M
L
K
N
N

SV
M

PM
U
[3
3]

G
M
M

[4
6]

FS
SL

[4
7]

R
F-
M
L
[4
8]

FS
R
D
[4
9]

FS
C
L
B
[5
7]

Pr
op

os
ed

m
et
ho

d
Pr
op

os
ed

m
et
ho

d

Sc
en
e

0.
21

64
(6
)

0.
21

18
(4
)

0.
22

11
(7
)

0.
34

89
(8
)

0.
21

55
(5
)

0.
21

07
(3
)

0.
20

24
(2
)

0.
20

15
(1
)

E
m
ot
io
ns

0.
23

36
(6
)

0.
24

07
(7
)

0.
23

36
(6
)

0.
17

93
(4
)

0.
19

52
(5
)

0.
17

90
(3
)

0.
17

89
(2
)

0.
17

46
(1
)

Y
ea
st

0.
16

15
(5
)

0.
15

49
(4
)

0.
18

82
(8
)

0.
16

28
(6
)

0.
16

60
(7
)

0.
14

49
(3
)

0.
07

85
(1
)

0.
13

07
(2
)

G
ne
ga
tiv

e
0.
10

88
(8
)

0.
10

76
(7
)

0.
09

58
(4
)

0.
10

02
(6
)

0.
09

36
(5
)

0.
08

98
(3
)

0.
08

11
(2
)

0.
05

76
(1
)

Pl
an
t

0.
21

65
(8
)

0.
21

47
(6
)

0.
21

50
(7
)

0.
21

03
(5
)

0.
20

45
(4
)

0.
18

99
(3
)

0.
18

81
(1
)

0.
18

95
(2
)

C
al
50

0
0.
18

37
(7
)

0.
17

98
(6
)

0.
17

59
(5
)

0.
17

98
(6
)

0.
16

89
(4
)

0.
15

88
(3
)

0.
15

74
(2
)

0.
14

97
(1
)

B
ir
ds

0.
98

29
(8
)

0.
93

98
(5
)

0.
97

50
(7
)

0.
94

31
(6
)

0.
91

17
(4
)

0.
80

09
(3
)

0.
79

96
(2
)

0.
72

10
(1
)

Fl
ag
s

0.
22

02
(6
)

0.
22

45
(7
)

0.
23

11
(8
)

0.
17

41
(4
)

0.
17

65
(5
)

0.
14

56
(3
)

0.
13

91
(1
)

0.
14

57
(2
)

V
ir
us

0.
19

41
(8
)

0.
18

96
(7
)

0.
18

06
(4
)

0.
18

83
(6
)

0.
18

20
(5
)

0.
17

37
(3
)

0.
14

52
(2
)

0.
13

21
(1
)

R
an
k
A
ve
ra
ge

6.
8
(8
)

5.
8
(5
)

6.
2
(7
)

5.
6
(6
)

4.
8
(4
)

3
(3
)

1.
4
(2
)

1.
3
(1
)

Z
-v
al
ue

−2
.6
6

−2
.6
6

−2
.6
6

−2
.5
5

−2
.6
7

−2
.2
2

−0
.7

P
va
lu
e

0.
00

8
0.
00

8
0.
00

8
0.
01

1
0.
00

7
0.
02

6
0.
45

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

am
on

g
al
lc
om

pa
re
d
m
et
ho

ds
fo
r
th
e
re
sp
ec
tiv

e
m
et
ri
c

123



J. Hamidzadeh et al.

Ta
bl
e
5

E
xp
er
im

en
ta
lr
es
ul
ts
of

ea
ch

co
m
pa
ri
ng

m
et
ho
d
in

te
rm

s
of

fiv
e
ev
al
ua
tio

n
m
et
ri
cs
,i
nc
lu
di
ng

O
ne
E
(↓
)
L
os
s

D
at
as
et

M
L
K
N
N

SV
M

PM
U
[3
3]

G
M
M

[4
6]

FS
SL

[4
7]

R
F-
M
L
[4
8]

FS
R
D
[4
9]

FS
C
L
B
[5
7]

Pr
op

os
ed

m
et
ho

d
Pr
op

os
ed

m
et
ho

d

Sc
en
e

0.
32

83
(6
)

0.
32

89
(7
)

0.
27

99
(4
)

0.
38

12
(8
)

0.
32

74
(5
)

0.
27

31
(3
)

0.
24

07
(2
)

0.
21

22
(1
)

E
m
ot
io
ns

0.
29

14
(6
)

0.
29

61
(7
)

0.
28

01
(4
)

0.
28

99
(5
)

0.
29

69
(8
)

0.
27

63
(3
)

0.
26

08
(2
)

0.
26

01
(1
)

Y
ea
st

0.
35

04
(6
)

0.
33

53
(4
)

0.
46

95
(8
)

0.
34

93
(5
)

0.
42

09
(7
)

0.
20

86
(3
)

0.
19

97
(2
)

0.
16

31
(1
)

G
ne
ga
tiv

e
0.
35

21
(8
)

0.
33

13
(6
)

0.
33

40
(7
)

0.
32

79
(3
)

0.
33

02
(5
)

0.
32

79
(4
)

0.
30

05
(2
)

0.
29

74
(1
)

Pl
an
t

0.
64

19
(6
)

0.
64

98
(7
)

0.
64

01
(5
)

0.
66

01
(8
)

0.
63

18
(4
)

0.
58

51
(1
)

0.
59

39
(2
)

0.
62

26
(3
)

C
al
50

0
0.
10

71
(4
)

0.
10

75
(5
)

0.
10

83
(6
)

0.
10

96
(7
)

0.
10

83
(6
)

0.
10

53
(3
)

0.
10

22
(2
)

0.
99

71
(1
)

B
ir
ds

0.
73

95
(8
)

0.
71

98
(7
)

0.
69

42
(5
)

0.
68

12
(4
)

0.
70

47
(6
)

0.
44

71
(2
)

0.
31

97
(1
)

0.
49

11
(3
)

Fl
ag
s

0.
22

48
(8
)

0.
20

13
(5
)

0.
20

37
(6
)

0.
21

76
(7
)

0.
19

88
(4
)

0.
17

53
(3
)

0.
13

61
(1
)

0.
14

29
(2
)

V
ir
us

0.
55

92
(8
)

0.
54

10
(7
)

0.
50

19
(6
)

0.
48

85
(4
)

0.
49

19
(5
)

0.
37

28
(3
)

0.
34

15
(2
)

0.
20

95
(1
)

R
an
k
A
ve
ra
ge

6.
66

(7
)

6.
11

(6
)

5.
66

(5
)

5.
66

(5
)

5.
55

(4
)

2.
77

(3
)

1.
77

(2
)

1.
55

(1
)

Z
-v
al
ue

−1
.5
9

−1
.5
9

−1
.6
0

−1
.5
9

−1
.5
9

−0
.3
5

−0
.3
5

P
va
lu
e

0.
11

0.
11

0.
10

0.
11

0.
11

0.
72

0.
72

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

am
on

g
al
lc
om

pa
re
d
m
et
ho

ds
fo
r
th
e
re
sp
ec
tiv

e
m
et
ri
c

123



Feature selection by utilizing kernel-based fuzzy rough set and…

Ta
bl
e
6

E
xp

er
im

en
ta
lr
es
ul
ts
of

ea
ch

co
m
pa
ri
ng

m
et
ho

d
in

te
rm

s
of

fiv
e
ev
al
ua
tio

n
m
et
ri
cs
,i
nc
lu
di
ng

C
ov
p
(↓
)
L
os
s

D
at
as
et

M
L
K
N
N

SV
M

PM
U
[3
3]

G
M
M

[4
6]

FS
SL

[4
7]

R
F-
M
L
[4
8]

FS
R
D
[4
9]

FS
C
L
B
[5
7]

P-
M
L
K
N
N

P-
SV

M

Sc
en
e

2.
11

62
(4
)

2.
37

88
(7
)

2.
31

31
(5
)

3.
12

83
(8
)

2.
31

82
(6
)

1.
93

01
(3
)

1.
89

05
(2
)

1.
80

32
(1
)

E
m
ot
io
ns

7.
43

80
(8
)

7.
40

82
(6
)

7.
38

46
(5
)

7.
42

01
(7
)

7.
23

95
(4
)

7.
15

58
(3
)

6.
46

29
(2
)

6.
37

92
(1
)

Y
ea
st

0.
83

27
(5
)

0.
74

12
(4
)

1.
02

75
(8
)

0.
86

91
(6
)

0.
94

01
(7
)

0.
55

31
(3
)

0.
48

03
(1
)

0.
66

83
(2
)

G
ne
ga
tiv

e
0.
89

48
(8
)

0.
83

70
(6
)

0.
84

17
(7
)

0.
83

14
(5
)

0.
81

25
(4
)

0.
76

69
(3
)

0.
74

89
(2
)

0.
71

63
(1
)

Pl
an
t

2.
42

37
(6
)

2.
44

06
(7
)

2.
39

70
(5
)

2.
53

69
(8
)

2.
34

69
(4
)

2.
16

91
(2
)

2.
30

18
(3
)

2.
11

94
(1
)

C
al
50

0
0.
12

95
(5
)

0.
12

99
(6
)

0.
13

01
(7
)

0.
12

90
(4
)

0.
13

15
(8
)

0.
12

86
(3
)

0.
12

78
(2
)

0.
12

75
(1
)

B
ir
ds

0.
28

12
(8
)

0.
28

10
(7
)

0.
26

93
(5
)

0.
25

60
(4
)

0.
27

28
(6
)

0.
18

22
(3
)

0.
17

33
(1
)

0.
17

96
(2
)

Fl
ag
s

0.
37

69
(6
)

0.
40

05
(7
)

0.
41

81
(8
)

0.
35

09
(5
)

0.
31

57
(4
)

0.
29

91
(3
)

0.
29

55
(2
)

0.
27

41
(1
)

V
ir
us

1.
15

83
(8
)

0.
14

21
(4
)

1.
15

50
(7
)

1.
14

07
(6
)

1.
13

78
(5
)

0.
13

37
(3
)

0.
10

53
(1
)

0.
22

69
(2
)

R
an
k
A
ve
ra
ge

6.
44

(8
)

6.
00

(6
)

6.
22

(7
)

5.
88

(5
)

5.
33

(4
)

2.
88

(3
)

1.
77

(2
)

1.
33

(1
)

Z
-v
al
ue

−2
.5
2

−2
.3
1

−2
.6
6

−2
.5
2

−2
.6
6

−0
.9
8

−0
.5
0

P
va
lu
e

0.
01

2
0.
02

1
0.
00

8
0.
01

2
0.
00

8
0.
32

0.
61

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

am
on

g
al
lc
om

pa
re
d
m
et
ho

ds
fo
r
th
e
re
sp
ec
tiv

e
m
et
ri
c

123



J. Hamidzadeh et al.

Ta
bl
e
7

E
xp

er
im

en
ta
lr
es
ul
ts
of

ea
ch

co
m
pa
ri
ng

m
et
ho

d
in

te
rm

s
of

fiv
e
ev
al
ua
tio

n
m
et
ri
cs
,i
nc
lu
di
ng

A
vg

P
(↑
)
L
os
s

D
at
as
et

M
L
K
N
N

SV
M

PM
U
[3
3]

G
M
M

[4
6]

FS
SL

[4
7]

R
F-
M
L
[4
8]

FS
R
D
[4
9]

FS
C
L
B
[5
7]

P-
M
L
K
N
N

P-
SV

M

Sc
en
e

0.
71

23
(5
)

0.
71

13
(6
)

0.
71

95
(4
)

0.
70

61
(8
)

0.
70

98
(7
)

0.
85

12
(3
)

0.
85

53
(2
)

0.
85

19
(1
)

E
m
ot
io
ns

0.
72

29
(8
)

0.
72

47
(7
)

0.
72

94
(5
)

0.
72

63
(6
)

0.
73

80
(4
)

0.
78

00
(3
)

0.
79

94
(2
)

0.
80

41
(1
)

Y
ea
st

0.
74

81
(5
)

0.
79

31
(3
)

0.
70

62
(8
)

0.
72

49
(7
)

0.
73

96
(6
)

0.
76

93
(4
)

0.
86

31
(1
)

0.
82

19
(2
)

G
ne
ga
tiv

e
0.
72

01
(4
)

0.
72

11
(5
)

0.
73

83
(7
)

0.
73

83
(7
)

0.
73

41
(6
)

0.
76

59
(3
)

0.
76

71
(2
)

0.
77

90
(1
)

Pl
an
t

0.
50

29
(8
)

0.
51

87
(7
)

0.
52

19
(5
)

0.
51

94
(6
)

0.
52

37
(4
)

0.
53

84
(3
)

0.
54

18
(2
)

0.
54

91
(1
)

C
al
50

0
0.
46

76
(7
)

0.
46

89
(6
)

0.
47

68
(5
)

0.
46

68
(8
)

0.
47

77
(4
)

0.
48

12
(3
)

0.
48

90
(2
)

0.
49

10
(1
)

B
ir
ds

0.
52

12
(8
)

0.
53

42
(6
)

0.
52

44
(7
)

0.
56

03
(4
)

0.
54

21
(5
)

0.
72

10
(3
)

0.
77

04
(2
)

0.
80

11
(1
)

Fl
ag
s

0.
78

13
(6
)

0.
76

38
(7
)

0.
74

52
(8
)

0.
79

11
(5
)

0.
81

47
(4
)

0.
85

57
(3
)

0.
89

14
(2
)

0.
91

16
(1
)

V
ir
us

0.
64

27
(7
)

0.
67

51
(4
)

0.
67

51
(4
)

0.
67

12
(6
)

0.
67

42
(5
)

0.
83

61
(3
)

0.
89

06
(2
)

0.
89

17
(1
)

R
an
k
A
ve
ra
ge

6.
44

(8
)

5.
66

(5
)

5.
88

(6
)

6.
33

(7
)

5
(4
)

3.
11

(3
)

1.
89

(2
)

1.
11

(1
)

Z
-v
al
ue

−2
.6
6

−2
.6
7

−2
.6
6

−2
.6
6

−2
.6
6

−2
.5
4

−0
.9
5

P
va
lu
e

0.
00

8
0.
00

7
0.
00

8
0.
00

8
0.
00

8
0.
01

1
0.
34

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

am
on

g
al
lc
om

pa
re
d
m
et
ho

ds
fo
r
th
e
re
sp
ec
tiv

e
m
et
ri
c

123



Feature selection by utilizing kernel-based fuzzy rough set and…

Fig. 4 Accuracy Progression Across Iterations for FSCLB, The Proposed Method, and The Proposed Method
with SVM on the Scene and Cal500 Datasets

the method’s unique ability to utilize kernel-based insights for feature selection, significantly
enhancing classification performance. This comprehensive analysis, supported by data from
Tables 3, 4 and 5, clearly demonstrates the advanced capabilities of the proposed method not
only in effective feature selection but also in improving the overall efficiency and efficacy
of multi-label learning tasks. This is evident in the results presented in Tables 3, 4 and 5,
where the proposed method consistently outperforms competing approaches across various
metrics. For instance, as shown in Table 3, the Hamming loss for the Scene dataset is reduced
to 0.1564, compared to higher values observed in competing methods, demonstrating the
enhanced discrimination capability enabled by the kernel-based similarity refinements. Sim-
ilarly, Table 4 illustrates a significant reduction in ranking loss, particularly for the Emotions
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dataset, where the proposed method achieves a ranking loss of 0.1297, outperforming tra-
ditional approaches by a substantial margin. Table 5 further highlights the robustness of the
proposed strategy, with the average precision for the Yeast dataset reaching 0.8574, mark-
ing a significant improvement over competing techniques. The results in Tables 3, 4 and
5 collectively demonstrate the robustness and adaptability of the proposed method across
diverse datasets and evaluation metrics. The consistent improvements observed in metrics
such as Hamming loss, ranking loss, and average precision highlight the method’s capabil-
ity to effectively address the challenges of multi-label learning, including managing feature
redundancy, capturing label dependencies, and adapting to datasets with mixed numerical
and categorical attributes. These enhancements reflect the strength of the proposed frame-
work in providing well-balanced feature subsets that enhance classification accuracy while
maintaining computational efficiency. Themethod’s ability to scale to larger datasets, such as
Yeast and Scene, further underscores its practicality and applicability to real-world problems,
making it a robust solution for multi-label feature selection tasks. Also, this enhancement is
attributed to the method’s ability to capture complex feature-label dependencies and address
local label correlations effectively. Such consistent improvements across diverse datasets
underscore the method’s capability to mitigate NSGA-II’s limitation regarding global opti-
mality, as the integration of KFRS ensures a refined exploration of the feature space and
prevents premature convergence. These results collectively demonstrate that the proposed
framework achieves a comprehensive and robust search, producing Pareto-optimal solutions
that better approximate global optima.

Additionally, we evaluated the computational complexity of the proposedmethod to assess
its scalability for processing large datasets. The algorithm comprises several phases, each
contributing to the overall complexity. The initialization step, involving the generation of
a population of chromosomes, has a complexity of O(N · F), where N is the population
size and F is the number of features. Fitness function evaluation, which includes kernel
similarity andKFRScomputations, represents themost computationally intensive phase,with
a complexity of O(N · D2), where D is the dataset size. The non-dominated sorting process
adheres toNSGA-II’s complexity ofO(N 2·M), whereM is the number of objectives.Genetic
operations, including crossover andmutation, and refinement throughKFRScontributeO(N ·
F) and O(N · D2), respectively.

In terms of space complexity, the algorithm primarily requires O(N · F) for population
storage and O(D2) for the kernel similarity matrix. These complexity evaluations are consis-
tent with the scalability demonstrated in Tables 3, 4, 5, where the proposedmethod effectively
managed datasets such as Scene andYeast, eachwith hundreds of features and labels. Despite
the quadratic dependency on dataset size, the refined kernel measures and non-dominated
sorting ensured efficient handling of large-scale data, as evidenced by reduced Hamming loss
(e.g., 0.1564 on Scene) and improved average precision (e.g., 0.8574 on Yeast). This analysis
further supports the robustness of the method and its suitability for multi-label learning tasks
in diverse domains.

We have also shown in Fig. 4 the accuracy progression across iterations for the FSCLB
method, the proposed method, and the proposed method with SVM on the Scene and Cal500
datasets. The graph highlights the performance dynamics of each method as iterations
increase, showcasing the convergence trends. The results demonstrate that the proposed
methods outperform FSCLB, achieving higher final accuracy values. Notably, the proposed
method with SVM exhibits a faster convergence and higher stability in reaching optimal
accuracy compared to the other methods, affirming its effectiveness in multi-label learning
tasks. These observations underscore the robustness and efficiency of the kernel-based fuzzy
rough set approach integrated into the proposed framework (Tables 6, 7).
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6 Conclusion and future work

In this study, we proposed a novel multi-label feature selection method that utilizes kernel
fuzzy rough sets (KFRS) to eliminate irrelevant and redundant features from heterogeneous
datasets, ensuring the retention of only the most significant and impactful features. This work
offers several unique contributions: (1) the integration of KFRS with a multi-objective opti-
mization framework, which provides a robustmechanism for selecting highly relevant feature
subsets; (2) the use of entropy-based objective functions to address uncertainty and capture
intricate label–feature dependencies, ensuring that meaningful information is preserved; (3)
the deployment of NSGA-II within the kernel-augmented framework to balance conflicting
objectives, producing a set of optimal solutions represented by kernel-informed Pareto fronts;
and (4) the validation of the proposed method’s efficacy through extensive comparative anal-
ysis with existing approaches. Our approach is grounded in a multi-objective optimization
framework designed to identify an optimal feature subset. By employing NSGA-II in this
kernel-augmented context, we effectively balance trade-offs between conflicting objectives,
resulting in kernel-informed Pareto fronts defined by non-dominated solutions. The inherent
uncertainty and potential inaccuracies in the data necessitate a robust local refinement pro-
cess, addressed through the integration of KFRS with NSGA-II. This synergy improves the
quality and effectiveness of the search, with kernel-based methods further strengthening the
approach. By leveraging an entropy-based objective function and KFRS, our method adeptly
mitigates uncertainty and captures complex dependencies between labels and features, ensur-
ing the preservation of valuable information. The sophistication of our method relies, to some
extent, on computations involving parameterized kernel-based neighborhood granules. Addi-
tionally, the computational cost of evaluating feature-label dependencies increases with the
dimensionality of the feature and label spaces. However, through a comparative analysis
with five other feature selection strategies across three benchmark datasets, we have demon-
strated the effectiveness of our KFRS-enriched method in selecting concise and relevant
feature subsets. These subsets lead to improved classification performance, as evidenced
by enhancements in metrics such as Hamming loss, one error, coverage, ranking loss, and
average precision. Looking ahead, we plan to extend our research to develop a multi-label
feature selection framework capable of handling the dynamics of streaming labels, pushing
the boundaries of real-time adaptive multi-label learning.
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