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Abstract
This study aims to assess performances of eleven Machine Learning (ML) methods in pre-
dicting the Groundwater Quality Index (GWQI) for Yazd, an arid province in Iran. The ML 
models encompass Multiple Linear Regression (MLR), Support Vector Regression (SVR), 
K-Nearest Neighbors, Decision Tree Regression, Adaptive Boosting or AdaBoost, Random 
Forest Regression, Gradient Boosting Regression (GBR), XGBoost Regression (XGBR), 
Gaussian Process (GP), Artificial Neural Network (ANN), and Multi-Gene Genetic Pro-
gramming (MGGP). After optimizing ML hyperparameters, ML-based estimation mod-
els were developed for three scenarios depending on which water quality parameters were 
used as input data: (1) K+ and pH; (2) K+, pH, Na+, Ca2+, SO4

2-, HCO3
- and Mg2+; and 

(3) K+, pH, Na+, Ca2+, SO4
2-, HCO3

-, Mg2+, Cl-, EC, TH, and TDS. For each scenario, 
ML-based models were assessed further by conducting (i) reliability analysis, (ii) ranking 
analysis, and (iii) confidence limits check. The results of the first scenario (with two input 
data) demonstrated the superiority of ANN, MGGP and GP, whereas ANN, MGGP and 
GBR were the most robust for the second scenario (with seven input data). Furthermore, 
the ranking analysis indicated that MLR, GP and ANN achieved the first highest ranks 
when eleven water quality parameters (third scenario) were used. The reliability analysis 
revealed that GP, MGGP, MLR, ANN, GBR, and XGBR achieved the highest reliability 
percentages across different scenarios, with ANN consistently ranking among the top mod-
els. Finally, the comprehensive comparative analysis of ML performances in this study 
reveals their potential for predicting GWQI.

Highlights 
• Groundwater quality was assessed using a dataset collected from wells of an arid region
• Eleven machine learning models were evaluated for estimating groundwater quality index
• Three scenarios were compared based on WHO permissible limits
• Reliability and ranking analyses were conducted for estimations of each ML model

Keywords  Groundwater quality index · Water quality parameters · Machine learning · 
Multi-gene genetic programming · XGBoost
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1  Introduction

Water is essential for human life and activities. Having access to safe, sufficient, and good-
quality water is among the most prominent conditions for achieving sustainable develop-
ment (Srebotnjak et al. 2012). Access to surface and groundwater resources and suitable 
quality water are decreasing due to various factors, such as population growth, agricultural 
expansion, industrialization, and urbanization worldwide (Tyagi et al. 2012). For instance, 
surface water and groundwater resources are highly vulnerable to various pollutants due to 
their rapid growth and development (UNEP 2016).

Physicochemical parameters in drinking water hold a significant importance, where 
their concentrations can directly or indirectly impact human health (Jonnalagadda and 
Mhere 2001). Natural factors including evaporation, watershed geography, and regional 
geology, as well as human factors, play roles in controlling chemical, physical, and bio-
logical compositions of water resources (Mishra et al. 2017). Consequently, assessing the 
quality status of water resources is necessary to implement suitable strategies for prevent-
ing degradation or enhancing its quality (Fernández et  al. 2004). In this regard, analyz-
ing various water physicochemical parameters, or water quality parameters, is difficult and 
inevitably cumbersome. In this regard, quality indices, e.g., Water Quality Index (WQI) or 
Groundwater Quality Index (GWQI), are methods that convert the qualitative attributes of 
water into a numerical value, allowing them to be utilized for water quality management, 
analysis, and monitoring over time and space (Carbajal-Hernández et al. 2013).

WQI for surface water or GWQI for groundwater is a technique proposed by Horton 
(1965) and has been used for evaluating water quality. It typically entails general water 
parameters, such as dissolved oxygen, acidity, hardness, dissolved solids, temperature, tur-
bidity, nitrates, nitrites, and some major ions (Prusty and Farooq 2020; Tang et al. 2022). 
Some studies employ statistical techniques, utilizing weighted scores for each analyzed 
parameter to assess WQI (Jamshidzadeh 2020). It categorizes water quality status into 
easy-to-understand ranges on a scale from less than 50 to greater than 300, where higher 
values indicate lower water quality and vice versa (Prasad et al. 2019). Therefore, it aids in 
interpreting water quality through numerical values.

Although GWQI-based analysis approach is useful and applicable, it requires field sur-
vey to collect many water quality parameters from wells following laboratory analyses, 
which may be significantly costly and not practical in some cases, particularly in under-
developed countries. Therefore, the need for alternative methods, e.g., artificial intelli-
gence techniques, has emerged. According to the literature, various studies have already 
employed Machine Learning (ML) models to predict individual water quality parameters 
(Kheradpisheh et al. 2015; Ransom et al. 2017, 2022; Bedi et al. 2020; Stackelberg et al. 
2021). Despite their proven utility, such application is limited to prediction of specific 
parameters, which may not delineate the overall status of water or groundwater quality. 
Therefore, a few studies have exploited ML models to estimate GWQI according to the 
literature review. To be more specific, some of them targeted at predicting Irrigation WQI 
(IWQI) (Trabelsi and Bel Hadj Ali 2022; Ibrahim et al. 2023; Hussein et al. 2024), whereas 
the present study emphasizes ML applications for estimating GWQI in the context of 
drinking water.

Most studies with the aim of drinking water have evaluated performances of Artificial 
Neural Network (ANN) and Support Vector Regression (SVR) (Sakizadeh 2016; Kulisz 
et al. 2021; Mohammed et al. 2023), while others used other ML models including Ran-
dom Forest Regression (RFR) (Norouzi and Moghaddam 2020), Additive Regression 
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(AR), M5P tree model (M5P), Random Subspace (RSS) (Elbeltagi et al. 2022), Multiple 
Linear Regression (MLR), Locally Weighted Linear Regression (LWLR) (Kouadri et al. 
2021), Deep Neural Network (DNN), Gradient Boosting Regression (GBR), eXtreme 
Gradient Boosting (XGBoost) Regression (XGBR) (Raheja et  al. 2022), Naive Bayes, 
K-Nearest Neighbors (KNN) (Khiavi et  al. 2023), Ensemble of Trees (ENT), Gauss-
ian Process (GP), Regression Tree (RT) (Sajib et al. 2023), Ridge Regression (El-Rawy 
et al. 2024), Decision Tree Regression (DTR), Adaptive Neuro-Fuzzy Inference System 
(ANFIS) (Jibrin et al. 2024). These studies have proved the usefulness of ML models 
in estimating GWQI. Additionally, a few studies treated the estimation of GWQI as a 
classification problem (Agrawal et al. 2021; El-Magd et al. 2023; Sahour et al. 2023). 
In addition to GWQI, a few studies applied ML models to predict alternative indices, 
like Entropy-based WQI (EWQI) (Singha et al. 2021; Aju et al. 2024; Yang et al. 2024). 
Although ML models proved to be efficient in previous studies, they still require a suffi-
cient amount of data for effective implementation. Due to practical challenges of meas-
uring all groundwater quality parameters, it is crucial to estimate GWQI when not all 
water quality parameters are available. Hence, GWQI estimations rely not only on the 
measured data but also how the methodology operates.

In the domain of data-driven models, ML techniques have been applied to address 
estimation tasks for solving water resources problems, while estimation of water quality 
is among such problems. The critical issue is how ML-based models can predict GWQI 
in the absence of measurements of a few water quality parameter. Thus, further inves-
tigation is practically necessary as all water quality parameters may not be obtained by 
in situ measurements in some cases. In this regard, different scenarios of water quality 
parameters can be considered. For each scenario, ML models can be applied to the avail-
able parameters and consequently, performances of ML-based estimation models can 
be assessed for predicting GWQI. While several studies have employed feature impor-
tance or sensitivity analysis on their proposed GWQI estimation models (Kouadri et al. 
2021; Raheja et  al. 2022; El-Magd et  al. 2023; Khiavi et  al. 2023; Mohammed et  al. 
2023; Sahour et al. 2023; Sajib et al. 2023; El-Rawy et al. 2024), few have incorporated 
approaches, like Pearson correlation, to split their input parameters to conduct multiple 
scenarios with different input set of water quality parameters (Kulisz et al. 2021; Elbelt-
agi et al. 2022; Jibrin et al. 2024). However, variations of their results highlight a gap in 
the literature regarding the most effective splitting techniques.

Haggerty et al. (2023) conducted a review on applications of ML models to ground-
water quality modeling. They suggested the need for further exploration of comparing 
performances of different ML models. Likewise, Torres-Martínez et al. (2024) empha-
sized that comparative evaluations of ML algorithms and the selection of appropriate 
evaluation metrics are critical for assessing model reliability, with 33% of studies focus-
ing on a single algorithm, 18% comparing two algorithms, 41% comparing three to five 
methods, and only 8% comparing more than five. In essence, the availability of numer-
ous ML algorithms poses a challenge when selecting an appropriate ML model for a 
given study. In addition, performances of different ML algorithms can vary significantly 
based on the data in question. Selecting a random ML model may compromise both the 
efficiency and the accuracy. Therefore, it is critical not only to validate the data but also 
to select the ML algorithms suited to the specific task (Rajeev et al. 2024). As a result, 
there is a clear need for comprehensive studies that assess the capabilities of ML models 
for GWQI estimations. Such line of investigations can contribute to more efficient and 
accurate water quality analysis and assessment.
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This study gathered extensive field water quality parameters from Yazd Province, Iran, 
to develop various predictive models for forecasting GWQI. Three distinct scenarios were 
considered, each using different combinations of water quality parameters as input. Unlike 
previous studies that often utilized Pearson correlation for selecting input combinations, 
this study categorized parameters based on different ranges of standard values (weights), 
leading to a more consistent division method. This scenario-based ML modeling demon-
strates how accurate GWQI can be estimated when a specific set of water quality param-
eters data is missing. For this purpose, eleven ML models, including MLR, SVR, KNN, 
DTR, Adaptive Boosting or AdaBoost (AB), RFR, GBR, XGBR, GP, ANN, and Multi-
Gene Genetic Programming (MGGP), were evaluated for GWQI prediction. To the best of 
the authors’ knowledge, comparing performances of these many ML models for predicting 
GWQI is novel, while this is the first time that MGGP has been employed for this applica-
tion. The wide range of ML models offers a comprehensive evaluation of their potential. 
ML performances were assessed across the scenarios using six statistical metrics, and an 
overall ranking method was applied to identify the best-performing model across all sce-
narios. Furthermore, reliability and confidence limits analyses were conducted.

The remainder of this paper is structured as follows: Sect. 2 presents the Methods and 
Materials, which includes details on the case study, data for modeling, the groundwater 
quality index, model scenarios, and descriptions of the ML models. It also outlines the per-
formance criteria, ranking approach, and reliability analysis. Section 3 provides the Results 
and Discussion, focusing on the optimization of ML hyperparameters and the results of the 
models for three different scenarios. It also includes a dedicated subsection for post-pro-
cessing, where the ML models are ranked, and their reliability is analyzed. The final part 
of Sect. 3 is a discussion, which interprets the results and compares them with the findings 
obtained from other studies. Finally, Sect. 4 concludes the paper with a summary of key 
findings and implications for future research.

2 � Materials and Methods

2.1 � Case Study

The province of Yazd, located in the central plateau of Iran, covers an arid area of approxi-
mately 74,493 km2, accounting for 5.4% of Iran’s total land area. Figure 1 illustrates the 
designated area and the locations of the sampling stations. As shown, the study area geo-
graphically lies between 29° 30’ and 33° 20’ North latitude and 52° 45’ and 56° 40’ East 
longitude. According to the Domartan climate classification, the province is divided into 
three climatic regions: arid, semi-arid, and Mediterranean. Except for the mountainous 
region of Shirkooh, which has a Mediterranean climate, the province becomes progres-
sively drier when moving from the southwestern and western parts towards the northeast-
ern and eastern areas.

The precipitation pattern of the province follows a Mediterranean type, with the maxi-
mum occurring during the winter season. The average annual precipitation ranges from 60 
to 80 mm, while the average annual evaporation varies between 2,500 mm and 4,200 mm, 
which is significantly higher than the precipitation amount (IRIMO 2015).

The water balance in the Yazd province is influenced by its arid and semi-arid climate, 
with an annual rainfall between 100 and 200  mm, primarily during spring and autumn. 
High summer temperatures lead to elevated evaporation rates, intensifying water stress 
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(Eslamian et  al. 2018). Groundwater, as the main water resource in the province, is 
extracted by wells across regions. Over-extraction of water has caused declining water lev-
els and increased salinity (Salehi et al. 2014). Geologically, Yazd features layers of clastic 
rocks, clay, and sand, which affect groundwater permeability. Furthermore, the Yazd prov-
ince contains several important aquifers, including karst, alluvial, and travertine aquifers. 
However, excessive groundwater use, combined with agricultural and industrial activities, 
has degraded water quality, with rising nitrate and salinity levels being major concerns 
(Farhadinejad et al. 2014).

2.2 � Data for Modeling

The data used for modeling in this study includes eleven water quality parameters. They 
are Potassium (K+), Sodium (Na+), pH, Calcium (Ca2+), Sulfate (SO4

2-), Chloride (Cl-), 
Bicarbonate (HCO3

-), Electrical Conductivity (EC), Total Hardness (TH), Total Dissolved 
Solids (TDS), and Magnesium (Mg2+). All notations used in this study are presented in the 
Supplementary Material. The data was divided into two parts: (i) train data (240 measure-
ments) and (ii) test data (80 measurements). Table 1 presents the minimum (min), maxi-
mum (max), average (mean), and standard deviation (Std.) of the water quality parameters 
(see Sect. 2.3) values for both train and test data. As shown, the minimum of each param-
eter of the train data is lower than the minimum of the corresponding parameter in the 
test data. Furthermore, the maximum of each parameter of the train data is larger than the 
maximum of the corresponding parameter of the test data.

A small part of the data (96 measurements), which belongs to a subregion of the Yazd 
province, was previously considered in another study (Goodarzi et al. 2023), while the rest 

Fig. 1   Study area and locations of the sampling stations
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(224 measurements) is new to the literature. In other words, this study worked on the data 
gathered from the whole Yazd province. Moreover, the previous study considered all water 
quality parameters to estimate GWQI (Goodarzi et al. 2023), whereas this study aimed to 
evaluate three scenarios with different set of water quality parameters as input. Finally, 
the data was further divided into three sets of scenarios, which will be explained later in 
Sect. 2.5.

2.3 � Ground Water Quality Index

GWQI is a practical method employed for assessing groundwater quality. It is an impor-
tant tool for informing policymakers about the condition of potable water as it synthesizes 
multiple water quality parameters into a single numerical value by identifying, weight-
ing, and integrating them (Abba et al. 2024). GWQI assigns standard values to each water 
quality parameter, while the corresponding weights vary based on their relevance to water 
quality assessment and potential health implications. For example, TDS receives the high-
est weight due to its significant impact on water quality and associated health risks when 
exceeding permissible limits in drinking water. In contrast, K+ is among water quality 
parameters with the lowest weights, indicating its lesser significance and minimal health 
effects (Abidi et  al. 2024). The process of computing GWQI for each data sample is 
described in the following steps.

2.3.1 � Calculation of Water Quality Classification

The water quality is classified by Eq. (1) (Prasad et al. 2019):

where qn represents the water quality rating for the parameter n, Vn is the observed value 
for parameter n, Sn is the standard value for the parameter n, and Vi is an ideal value for the 
parameter n.

2.3.2 � Calculation of Unit Weight

The unit weight of each water quality parameter (Wn) corresponds inversely to the recom-
mended standard value (Prasad et al. 2019), as shown in Eq. (2):

where K is the standard value for the parameter n, as given by Eq. (3):

Finally, GWQI can be calculated by linearly incorporating the quality grade into the unit 
weight, as shown in Eq. (4):

(1)qn = 100

(
Vn − Vi

Sn − Vi

)

(2)Wn =
K

Sn

(3)K =

1

∑�
1

Sn

�
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Typically, the GWQI values are classified into five categories (Prasad et al. 2019): (i) 
Class A representing excellent quality (GWQI < 50), (ii) Class B indicating good quality 
(51 ≤ GWQI < 100), (iii) Class C denoting poor water quality (101 ≤ GWQI < 200), (iv) 
Class D representing very poor water quality (201 ≤ GWQI < 300), and (v) Class E show-
ing water unsuitable for drinking use (GWQI < 300).

2.4 � Model Scenarios

We developed three scenarios in which different sets of input water quality parameters 
were used as input variables to implement the ML models. These scenarios were defined 
based on the standard value Sn of each chemical parameter. To be more specific, permis-
sible limits of Sn recommended by WHO were classified into three groups depending on 
each water quality parameter: (i) low ( Sn < 100), (ii) medium (100 < Sn < 400), and (iii) 
high (400 < Sn ). Following this classification, the first scenario entails the two water quality 
parameters with low Sn (i.e., 8.5 for pH and 12 for K+) based on the World Health Organi-
zation (WHO) recommendation (WHO 2011). Additionally, the second scenario includes 
the water quality parameters with low to medium Sn (200 for Na+, 200 for Ca2+, 250 for 
SO

2−

4
 , 120 for HCO−

3
 , and 150 for Mg2+) permissible limits, while the third scenario con-

sists of all water quality parameters, including those with high Sn (600 for Cl−, 1500 for 
EC, 500 for TH, and 1500 for TDS), as input. For better clarification, the input variables 
of the three scenarios are presented in Table 2, while the output for all scenarios is GWQI.

2.5 � Machine Learning Models

This study employed 11 ML models, namely MLR, SVR, KNN, DTR, AB, RFR, GBR, 
XGBR, GP, ANN, and MGGP. The first 10 ML models were implemented in Python, 
while GPTIPS tool in MATLAB was used to exploit MGPP. To implement the MLR, SVR, 
KNN, DTR, AB, RFR, GBR and GP models, the scikit-learn library was used, while the 
keras and xgboost libraries were used for ANN and XGBR, respectively. A concise over-
view of each ML method is presented in the following.

2.5.1 � Multiple Linear Regression

MLR is one of the most common and easy-to-implement regression algorithms, employed 
to ascertain a linear correlation between dependent and independent variables using the 

(4)GWQI =

∑
qnWn∑
Wn

Table 2   Input variables in different scenarios

Scenario Input variables

1 K+ pH - - - - - - - - -
2 K+ pH Na+ Ca2+

SO
2−

4
HCO

−

3
Mg2+ - - - -

3 K+ pH Na+ Ca2+
SO

2−

4
HCO

−

3
Mg2+ Cl− EC TH TDS
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least squares method (Nathan et  al. 2017). It can be used to handle a linear relationship 
among various water quality parameters for GWQI estimations:

where xi is the value of the ith water quality parameter, �
0
 is the regression constant, and �i 

is the coefficient of the ith water quality parameter.

2.5.2 � Support Vector Regression

SVR is a versatile supervised ML algorithm for both linear and nonlinear regressions. It 
handles non-linear data by transforming it into a higher-dimensional space. SVR is a vari-
ant of Support Vector Machine (SVM) designed for predicting continuous numerical val-
ues. In contrast to conventional ANN, SVM offers the advantage of enhancing data net-
work performance, which can be used to improve the accuracy of data transmission, reduce 
the latency of data transmission, and improve the security of data transmission (Moham-
med et al. 2023). As a supervised classifier, SVM efficiently predicts by finding an opti-
mal hyperplane that maximizes the margin between the hyperplane and input variables. 
SVM constructs a hyperplane for class label prediction, whereas SVR generates various 
functions based on the training data to predict numerical values. SVR relies on the com-
putational framework of linear regression, where the inputs are transformed into a high-
dimensional feature space using a non-linear kernel function (Elzain et al. 2022). The SVR 
efficiency depends on the kernel choice, hyperparameters, and the regularization parameter 
(Piraei et al. 2023a). For more details on the specific mathematics behind SVR, interested 
readers are referred to Elzain et al. (2022).

2.5.3 � K‑Nearest Neighbors

KNN is a widely used supervised ML algorithm that can be utilized in nonlinear-regres-
sion tasks. KNN, as a non-parametric model, does not assume that variables or residuals 
follow a normal distribution (Elzain et al. 2023). In essence, it involves arranging training 
data to make predictions for test data. KNN identifies the nearest data points in the train-
ing dataset, known as neighbors, to predict outcomes for a given test point. Furthermore, it 
selects a specified number of closest neighbors to a query point. It then calculates the aver-
age of the target values associated with the selected data points. Moreover, the influence of 
neighbors on the average is determined by assigning weights. The KNN model employs a 
distance function to quantify the similarity between the query point and the data points in 
the training set. Notably, three widely-recognized distance functions for continuous vari-
ables are (i) Euclidean, (ii) Manhattan, and (iii) Minkowski (Piraei et al. 2023a). Finally, 
the best value for K, i.e., the number of closest neighbors, is determined by cross validation 
process. For more details on the specific mathematics behind KNN, readers are encouraged 
to refer to Elzain et al. (2023).

2.5.4 � Tree‑Based Models

Tree-based models are a class of ML methods that leverage hierarchical structures to make 
predictions. They utilize decision trees as their fundamental building blocks, enabling them 
to capture complex relationships within a dataset. This study utilized five distinct tree-
based models, namely DTR, AB, RFR, GBR, XGBR, and MGGP, where each one exploits 

(5)GWQI = �
0
+ �

1
x
1
+ �

2
x
2
+⋯ + �ixi
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decision trees in a distinct way not only to enhance the prediction accuracy but also tackle 
overfitting. They are briefly presented in the following.

DTR is a tree-structured model that employs regression trees to perform nonlinear 
regression tasks. DTR demonstrated significant potential for predicting the sensitivity of 
groundwater contamination, even when working with limited data or complex nonlinear 
relationship within the dataset (Jibrin et al. 2024). It relies on a hierarchical structure whose 
internal nodes represent tests on observed values, branches denote test outcomes, and leaf 
nodes offer output predictions. DTR starts at the root node and recursively splits data sub-
sets based on observation values until it reaches a leaf node. Then, predictions are derived 
from the average of instances within each leaf (Piraei et al. 2023a). For more details on the 
specific mathematics behind DTR, readers are encouraged to refer to Jibrin et al. (2024).

RFR is a popular robust, flexible, and easy-to-use ensemble algorithm for nonlinear 
regression that offers a strong balance between accuracy and stability (Elzain et al. 2024). 
It employs multiple decision trees to make predictions. Each tree is constructed using boot-
strapped data, which involves resampling the training dataset to create distinct samples. 
The samples are then used to build individual decision trees, ensuring diverse patterns are 
captured. The final prediction of RF is an average of outcomes obtained by all trees, con-
tributing to reduce overfitting as compared to standalone decision trees. For more details 
on the specific mathematics behind RFR, readers are encouraged to refer to Di Nunno et al. 
(2023).

AB is an ensemble technique that combines weak learners to create a strong learner. 
Unlike RFR, AB constructs trees with a single node and two leaves, often referred to as 
stumps. The stumps basically serve as weak learners. To be more precise, AB iteratively 
trains a series of weak learners, assigning a higher emphasis on misclassified data points 
from preceding learners. Furthermore, the sequence of constructing weak learners matters 
because errors from previous iterations impact subsequent ones. The final prediction of AB 
is a weighted summation of the weak learners predictions (Piraei et al. 2023b).

GBR is another ensemble technique that employs gradient descent to optimize the loss 
function, resulting in accurate and flexible estimations. Generally, it starts with a single 
leaf as an initial estimation, which is typically the average of continuous data. Subsequent 
trees are trained to correct errors from preceding ones. The construction of trees continues 
until a predefined threshold is reached. Finally, the GBR prediction is a weighted summa-
tion of tree predictions (Piraei et al. 2023b).

XGBR, as an advancement of GBR, incorporates features like regularization and tree 
pruning to mitigate overfitting. It is renowned for its efficiency in handling large datasets, 
parallel processing, and continuous algorithm enhancements (Piraei et al. 2023b). Based on 
the gradient boosting framework, XGBR incrementally builds an ensemble of trees. Each 
new tree focuses on addressing the errors made by previous trees by minimizing a unique 
objective function. It comprises some components designed to reduce model complexity 
and refine residuals through an iterative process. Similar to GBR, the final prediction made 
by XGBR is a weighted summation of tree predictions. Additional significant innovations 
of XGBR involve the use of approximate greedy algorithms for efficient tree construction, 
the ability to customize objective functions for diverse learning tasks, and the estimation of 
feature importance, which enhances model interpretability (El-Rawy et al. 2024). For more 
details on the boosting methods (i.e., AB, GBR, and XGBR), readers are encouraged to 
refer to Wade and Glynn (2020).

Finally, MGGP is a modified version of genetic programming and has been used to solve 
some problems in water resources (Niazkar 2023). The latter is an ML method with a tree-
based structure, whose nodes are classified into three groups: (1) root, (2) functions, and (3) 
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terminals. In MGGP, each individual can be one or more than one tree (or gene), whereas 
in the traditional genetic programming, each tree can only be one tree. Both variants exploit 
the genetic algorithm as their search engine to optimize the fitness function, which is mini-
mizing the difference between estimated and measured values. The flexible architecture of 
MGGP enables it to capture nonlinear relationships between independent and dependent vari-
ables (Niazkar et al. 2023). For more information regarding the MGGP algorithm readers are 
encouraged to refer to Niazkar et al. (2023).

2.5.5 � Gaussian Process

GP is a stochastic model that involves utilizing random variables, assuming the underlying 
data follows a Gaussian distribution. Unlike parametric models that rely on predetermined 
structures, GP is a non-parametric method and constructs its model framework directly from 
the observed data (Suphawan and Chaisee 2021). This flexibility allows GP to adapt to vari-
ous data patterns. Furthermore, GP is characterized by its mean and covariance functions, 
which depend on the input vector. In GP, the common choice for the covariance function is the 
Radial Basis Function (RBF) kernel, which maps data to a higher-dimensional space. By eval-
uating the joint distribution of training and testing data, GP can make predictions for unseen 
input data (Piraei et al. 2023b). For further details on GP and its applications, refer to the rel-
evant literature (Roushangar et al. 2023).

2.5.6 � Artificial Neural Network

ANN mimics the biological nervous system by processing data in parallel, like the human 
brain. Among various versions of ANN, multilayer perceptron neural networks are common 
for environmental problems (Mohammed et al. 2023). It is a type of feed-forward neural net-
work consisted of an input layer (containing input variables), one or more hidden layer(s), and 
an output layer (output variable that is GWQI in this study). Initial operation involves linking 
inputs to hidden layers and refining weights using regularization. Specifically, the hidden lay-
ers process the data in the input layer by applying a weighted linear summation, followed by 
a non-linear activation function. Connections between neurons in adjacent layers are linked to 
trainable parameters, called weights, with each neuron typically having a bias term that aids 
in transformation. This process continues iteratively through the neurons from the input layer 
to the output layer, adjusting the weights in conjunction with biases until an optimal result is 
achieved (Granata et al. 2024).

2.6 � Performance Criteria and Ranking Approach

To evaluate the performances of the ML techniques in predicting GWQI under different sce-
narios, six metrics were employed. These metrics are: (i) Root Mean Square Error (RMSE); 
(ii) Mean Absolute Error (MAE); (iii) Nash–Sutcliffe Efficiency (NSE); (iv) Coefficient of 
Determination (R2); (v) Maximum Absolute Relative Error (MXARE); and (vi) Mean Abso-
lute Relative Error (MARE). The following equations are the mathematical formulas of these 
criteria (Goodarzi et al. 2023):

(6)RMSE =

�∑n

i=1

�
Oi − Pi

�2
n
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where n represents the number of data points, Oi is the ith observed GWQI, and Pi indicates 
the ith predicted GWQI.

The definitions associated with each metric imply that achieving more accurate esti-
mates of GWQIs corresponds to reduced RMSE, MAE, MARE, and MXARE values, and 
elevated R2 and NSE values.

After conducting a comprehensive analysis of metrics across all methods, a ranking 
strategy was employed to facilitate a more robust comparison of the ML methods based on 
their performances across all metrics. In this approach, each of the 12 metric results (com-
prising 6 metrics for each of the two datasets) was utilized to delineate performances of the 
ML models, which were subsequently arranged from the highest performance to the lowest 
one. Thus, 11 ML models were assigned rankings ranging from 1 (indicating superior per-
formance) to 11 for each of the 12 metric results. Subsequently, the summation of the ranks 
for all metrics within each of the training and testing datasets was computed independently 
for each method and organized in an ascending order. Given that a lower total rank denotes 
a better performance, the models were then re-ranked based on the summations, with the 
lowest total rank receiving the first position and the highest one receiving the final posi-
tion. The outcome in a condensed representation of the rankings, presenting them as two 
columns: one for the ranks pertaining to the training data and the other one for the ranks 
associated with the testing data. These ranks were once again subjected to the summation 
for both training and testing datasets. Then, the total summation was sorted in an ascend-
ing order and re-ranking. Finally, the ultimate ranking for each ML model was determined.

2.7 � Reliability Analysis

Reliability analysis evaluates the consistency of a predictive model in relation to a pre-
defined threshold. This assessment involved computing the relative error (RE), as shown 
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in Eq.  (12), for each ML model. It was then constrained with a predefined threshold set 
at 20% based on the literature (Piraei et al. 2023b). The count of cases where the relative 
error meets or falls lower than the designated threshold was divided by the total number of 
cases. The resulting percentage serves as an index of reliability, which assesses the overall 
coherence of an estimation model.

3 � Results

3.1 � Optimizing ML Hyperparameters

To enhance the performance of ML models, it is imperative to tune their hyperparameters 
in alignment with the characteristics of the training data. The optimization process is cru-
cial for ensuring that the ML models exhibit an optimal performance when applied to the 
testing data. The process of optimizing hyperparameters was conducted for each scenario 
using the grid search method, and the results are summarized in Supplementary Material 
file for interested readers. The performance results of ML models for each scenario consid-
ering optimized hyperparameters are presented separately in following sections.

3.2 � ML Model Performances for the First Scenario

Statistical metrics serve as a valuable means for enhancing the comparative evaluation 
of the accuracy of ML models. The findings of the metrics are summarized in Fig.  2. 
The x-axis represents the ML models, while the y-axes illustrates the results of metrics. 
In Fig. 2, the MAE and RMSE results are depicted as bar charts and lines for each data-
set. All ML models exhibited satisfactory and comparable performance levels. Notably, 
with respect to RMSE, the ANN model demonstrated the most impressive performance 
on the testing data, yielding an RMSE value of 14.15, while the KNN model showed the 
least favorable performance (RMSE = 16.82). According to Fig.  2, RMSE achieved by 
ML are quite close, with a mere 2.67-unit discrepancy between the best and worst RMSE 
performances.

Based on Fig.  2, the MAE results followed a similar pattern, with the ANN model 
achieving the lowest MAE (= 9.82), and the KNN model obtaining the highest MAE 
(= 11.96). According to NSE, AB emerged as the top performer with a value of 0.68, 
whereas KNN displayed the weakest performance (NSE = 0.53). Moreover, regarding R2, 
the GP model outperformed others with an R2 value of 0.76, whereas KNN reached the 
weakest performance with an R2 of 0.61.

The MARE results presented in Fig. 2 are closely clustered, with both ANN and GP 
yielding the best MARE results (0.13), and SVR delivering slightly weaker outcomes 
(MARE = 0.18). Regarding MXARE, MGGP achieved the best value of 0.36, while GBR 
resulted in the least favorable performance (MXARE = 0.68). Based on the narrow mar-
gins between the metric results and the utilization of various criteria to evaluate each ML 
model, employing a ranking scheme is advisable to draw more conclusive findings.

(12)RE =

||Pi − Oi
||

Oi
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Fig. 2   Statistical metric results for the first scenario: (a) RMSE and MAE, (b) NSE and R2, (c) MXARE 
and MARE
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3.3 � ML Model Performances for the Second Scenario

Figure 3 presents the statistical findings for the second scenario. Compared to the first 
scenario, all ML models exhibited significantly improved performance in the second 
scenario. Nonetheless, there were notable variations in model performances, with cer-
tain models outperforming others to a considerable extent. According to Fig.  3, with 
respect to RMSE, the MGGP model demonstrated the most impressive performance on 
the testing data, yielding an RMSE value of 0.22, while the DTR model achieved the 
least favorable performance (RMSE = 8.51). The MAE results followed a similar pattern 
as the ANN and MGGP models obtained the lowest MAE of 0.12 and 0.13, respectively, 
whereas the DTR model reached the highest MAE (= 6.35).

According to Fig. 3, ANN, MGGP, MLR, and GP achieved an exceptional NSE of 
1, whereas DTR displayed the weakest performance with NSE equal to 0.88. Moreover, 
the results of R2 were also the same. To be more specific, the ANN, MGGP, MLR, and 
GP models outperformed others with an R2 value of 1, while DTR obtained the weakest 
performance with an R2 of 0.88. Furthermore, the MARE results were closely clustered, 
with the ANN, MGGP, MLR, and GP models yielding the best results (almost 0), and 
AB delivering slightly weaker outcomes (0.08). Regarding MXARE, the MGGP, MLR 
and GP models achieved the best score at 0.01, whereas SVR exhibited the least favora-
ble performance (MXARE = 0.39).

3.4 � ML Model Performances for the Third Scenario

Figure  4 presents the metric results for the third scenario. Overall, the ML models 
exhibited an improved performance in both second and third scenarios, as opposed to 
the first scenario. Nevertheless, there were slight disparities in performances of ML 
models when comparing the results of the second scenario with the third one, where 
most of ML models displayed a slight improvement in their performances, while oth-
ers showed a slight weaker performance. Notably, MLR showed an exceptional perfor-
mance with RMSE, MAE, MARE and MXARE values close to 0, and R2 and NSE val-
ues close to 1. In addition, GP showed the best results regarding the MARE, MXARE, 
R2 and NSE. However, in terms of RMSE and MAE, it showed a slight error of 0.03 and 
0.02, respectively. While other ML models indicated a commendable and satisfactory 
performance, the SVR, AB and DTR models exhibited much weaker performances com-
pared to others. Consequently, the SVR model demonstrated the poorest performance 
according to most of the performance criteria (RMSE = 7.07, MAE = 5.78, NSE = 0.92, 
MARE = 0.09, and MXARE = 0.34). DTR also showed the weakest performance regard-
ing R2 with a value of 0.92. Like previous scenarios, employing a ranking scheme is 
advisable to draw more conclusive findings.

3.5 � Postprocessing of ML Results

To enhance the assessment of diverse ML models across different scenarios, this study 
employed various postprocessing analyses. In this regard, Table 3 presents the outcomes 
of the ranking analysis for different scenarios. As shown, for the first scenario, while 
the ANN model initially secured the fourth position in terms of its performance on 
the training data, its exceptional performance on the testing data elevated it to the top 
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Fig. 3   Statistical metric results for the second scenario: (a) RMSE and MAE, (b) NSE and R2, (c) MXARE and MARE
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Fig. 4   Statistical metric results for the third scenario: (a) RMSE and MAE, (b) NSE and R2, (c) MXARE and MARE
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ranking. Following ANN, the MGGP, GP and AB models obtained subsequent ranks. 
Furthermore, the KNN model generally demonstrated a strong fit with the training data, 
while its comparatively weaker performance for the testing data put it in the fifth rank, 
similarly to the RFR model. Likewise, the MLR and DTR models were jointly ranked 
seventh. Finally, the XGBR, GBR and SVR models exhibited the lowest performances. 
Regarding the second scenario, like the first scenario, ANN outperformed other ML 
models. While the MGGP model initially secured the sixth position for the training 
data, it moved up to the second ranking position because of its exceptional performance 
for the testing data. Following MGGP, the GBR, MLR, and GP models achieved sub-
sequent ranks, respectively. Additionally, the KNN model demonstrated an adequate 
performance for the training data, while its considerably weaker performance for the 
testing data (the eighth rank for the testing dataset) led it to being ranked as the sixth 
model overall. Moreover, the RFR, XGBR, and DTR models were placed at the subse-
quent ranks, respectively. Lastly, the SVR and AB models exhibited the lowest perfor-
mances and jointly placed as the last model for the second scenario. Regarding the third 
scenario, the MLR model outperformed other ML models, following by the GP and 
ANN models obtaining the second and third ranks, respectively. Like other scenarios, 
the KNN model showed a weaker performance for the testing dataset (the eighth rank), 
which positioned it as the fourth robust model. In addition, the MGGP and GBR mod-
els achieved satisfactory performances and jointly were placed fifth. Furthermore, the 
XGBR, RFR, DTR and AB models were placed at the subsequent ranks, respectively. 
Finally, the SVR model was placed last due to its lowest performance.

Figure 5 depicts the results of the reliability analysis, with the x-axis representing the 
reliability percentage and the y-axis indicating each ML model. As shown, for the first sce-
nario, KNN achieved the highest reliability percentage for both training data (94.58%) and 
testing data (73.75%). Furthermore, the reliability percentages obtained by RFR (90% for 
training data and 67.5% for testing data) and MGGP (83.75% for training data and 72.5% 
for testing data) were the second and third highest values, respectively. Subsequently, the 
ANN, MLR, XGBR and DTR models exhibited acceptable reliability scores ranging from 
70 to 80%. In contrast, both AB and GBR yielded a lower training reliability of 66%, much 

Table 3   Results of ranking analysis of different ML models for three scenarios considered in this study

ML models First scenario Second scenario Third scenario

Train Test Total Train Test Total Train Test Total

ANN 4 1 1 3 2 1 4 3 3
MGGP 3 4 2 6 1 2 6 4 5
GP 6 2 3 4 4 4 3 2 2
MLR 7 6 7 5 3 4 2 1 1
KNN 1 11 5 1 8 6 1 8 4
GBR 8 7 10 2 5 2 5 5 5
RFR 2 10 5 7 7 7 9 7 8
XGBR 10 4 9 9 6 8 7 6 7
AB 8 3 4 10 10 10 10 9 10
DTR 4 9 7 8 11 9 8 10 9
SVR 11 8 11 11 9 10 11 11 11
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Fig. 5   Reliability analysis results for the three scenarios considered in this study. Scenario 1 includes water 
quality parameters with low S

n
 , Scenario 2 includes parameters with low to medium S

n
 , and Scenario 3 con-

siders all parameters, including those with high S
n
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lower than the reliability score achieved by other ML models. Finally, SVR demonstrated 
the least reliability percentage among all ML models as it reached a training reliability of 
60% and a testing reliability of 53.75%.

Regarding the second scenario, all ML models exploited in this study are more reliable 
compared to their corresponding reliability scores obtained in the first scenario. Further-
more, ANN, MLR, GP, GBR, and KNN demonstrated a remarkable performance, achiev-
ing 100% reliability scores for both training and testing datasets. Additionally, while RFR 
and XGBR yielded slightly lower reliability percentages for the training data (99.17% and 
97.92%, respectively), they reached 100% reliability for the testing data. In contrast, DTR, 
SVR and AB emerged as the least reliable models for the second scenario. Specifically, 
SVR displayed the lowest training reliability (i.e., 87.92%), while AB reached the lowest 
reliability percentage for the testing dataset (i.e., 91.25%).

Regarding the third scenario, the results of the reliability analysis indicate that all ML 
models overall exhibited a higher reliability compared to other scenarios. Particularly 
GP, MGGP, MLR, ANN, GBR and XGBR showed remarkable performances by attain-
ing the highest reliability scores of 100% for both training and testing datasets. Although 
KNN displayed slightly diminished reliability for the testing data (98.75%), it maintained 
a 100% reliability score for the training data. Furthermore, the RFR and DTR models 
resulted in adequate reliability percentages for both training and testing datasets. On the 
other hand, SVR and AB emerged as the least reliable models for the third scenario, with 
AB achieving the lowest training and testing reliability scores (i.e., 79.58% and 91.25%, 
respectively).

Figure  6 compares the confidence limits of various ML models. The y-axis displays 
the GWQI values, while the vertical lines represent the ML models, each line featuring 
(i) the 95% confidence interval, and (ii) the average value predicted by ML models. The 
initial vertical line, referred to as the “benchmark”, illustrates the confidence limits for 
the observed GWQI values. For the first scenario, upon analyzing the confidence limits 
depicted in Fig.  6, it becomes evident that none of the ML models in the first scenario 
closely align with the observed limits. To be more precise, most ML models exhibit lower 
confidence limits compared to that of the benchmark, signifying an underestimation of 
most GWQI. Conversely, the GBR model has higher confidence limits than that of the 
benchmark values, indicating a tendency to overestimate GWQI. In the case of the SVR 
model, while its average limit closely approximates that of the benchmark, the maximum 
and minimum values of its confidence limit deviate from those limits of the benchmark. 
This suggests that the SVR model tends not only to overestimate small GWQI but also to 
underestimate large GWQI.

Comparing the result of first and second scenario, it is obvious that the confidence lim-
its of the ML models in the second scenario indicate a much closer proximity to those of 
the observed values. Most of ML models (ANN, MGGP, GBR, MLR, and GP) demon-
strated confidence limits that replicated the benchmark. Additionally, while RFR, XGBR, 
DTR, and SVR exhibited a slight deviation from the benchmark, their confidence limits 
remained in a close alignment with it. Notably, the AB model displayed slightly larger con-
fidence limits than that of the benchmark, indicating an overestimation of certain cases of 
GWQI. Conversely, KNN achieved lower confidence limits and the most significant devia-
tions from the benchmark, suggesting a tendency to underestimate GWQI.

Regarding the third scenario, the results are almost the same, where most of ML 
models demonstrated confidence limits close to the confidence limits of the benchmark. 
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Additionally, KNN and AB showed performances like they did in the second scenario. 
Finally, the SVR model in the third scenario tends to overestimate smaller GWQI and 
underestimate larger GWQI, similar to its performance in the first scenario.

Fig. 6   Confidence limits of the observed and estimated GWQI obtained by the ML models for three sce-
narios considered in this study
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Fig. 7   Taylor diagrams for different ML models for the testing data of: (a) first scenario; (b) second sce-
nario; and (c) third scenario



Comparative Assessment of Machine Learning Models for… Page 23 of 30     10 

Figure 7 depicts the Taylor diagram for the testing data of each scenario. As shown, 
the performances of ML models in the Taylor diagram are in line with the results of 
previous analyses.

4 � Discussion

This study provides a comprehensive evaluation of eleven ML models applied to the pre-
diction of GWQI under three different input scenarios, providing valuable insights into 
how different models handle varying data availability. The findings reveal notable distinc-
tions in model performance across different scenarios, driven by both the availability of 
water quality parameters and the characteristics of the models themselves. These results 
address key gaps in the existing literature on ML applications for GWQI estimation, par-
ticularly in terms of scenario-based analysis and the exploration of underutilized models.

In the first scenario, where fewer input variables were used (low Sn values), ANN out-
performed the other models. ANN strong performance with limited input data can be 
attributed to its ability to model complex relationships, even with fewer features making 
it ideal for modelling aquatic ecosystems (Hadjisolomou et  al. 2021). Following ANN, 
the MGGP, GP, and AB also performed well, demonstrating their ability to handle limited 
input variables. However, the extreme relative errors (i.e., MXARE) ranged from 0.36 to 
0.68, with models like XGBR, GBR and SVR exhibiting the weakest performance.

In the second scenario, which incorporated a broader set of input features ( Sn values 
from low to medium), all ML models demonstrated improved performance. The range 
of MXARE narrowed significantly, from 0.01 to 0.39, indicating that the broader input 
data enhanced the accuracy of all models. Once again, ANN ranked highest, followed by 
MGGP, GBR, MLR and GP. Models like SVR and AB showed the weakest performance, 
and RFR, XGBR and DTR failed again to rank among the top performers. The high per-
formance of most models in this scenario suggests that the combination of inputs with low 
to medium Sn values is sufficient for accurate GWQI prediction. Notably, there was no 
major leap in performance when transitioning to the third scenario, reinforcing the notion 
that adding more features beyond a certain threshold may not significantly improve model 
accuracy. Same outcome was also achieved in various studies that used feature importance 
analysis on their proposed ML models (Kulisz et al. 2021; Elbeltagi et al. 2022; El-Rawy 
et al. 2024; Jibrin et al. 2024).

In the third scenario, where all input features ( Sn values from low to high) were used, 
MLR achieved the best performance. This is likely because the GWQI calculation is based 
on a linear equation, and MLR excels at capturing linear relationships between inputs and 
outputs. The proficiency of MLR or other simple linear algorithms such as Ridge Regres-
sion was also stated in previous studies in the literature (Kouadri et al. 2021; El-Rawy et al. 
2024). However, MLR required all available input features to achieve optimal performance, 
making it less versatile for scenarios with fewer parameters. This limitation was also noted 
by Kouadri et al. (2021), who demonstrated that while MLR excels as the best estimator 
when all parameters are available, its performance significantly declines when only TDS 
and TH are accessible. GP and ANN followed MLR in performance, securing second and 
third ranks, respectively. Models like XGBR, RFR, DTR, AB and SVR ranked at the bot-
tom. The MXARE in this scenario ranged from 0.01 to 0.34, showing slight improvements 
for some models and minor declines for others, reinforcing the conclusion that additional 
features did not lead to significant gains.
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Regarding the reliability of the ML models, in the first scenario all models exhibited 
testing reliability percentages higher than 50%, ranging from 53 to 75%. KNN achieved 
the highest training reliability (94.58%), while its testing reliability was 73.75%. Notably, 
despite ANN being the top performer across most scenarios, it had lower reliability in 
training (80%), but the testing reliability was the highest (75%), indicating effective train-
ing with close reliability percentages across datasets. In the second scenario, reliability 
improved significantly across all models, with all achieving testing reliabilities above 90%. 
Five models, i.e., ANN, MLR, GP, GBR, and KNN, achieved perfect reliability (100%) in 
both the training and testing datasets, reflecting their ability to consistently predict GWQI 
with the broader input dataset. This trend continued in the third scenario, where the reli-
ability remained high, with most models exceeding 90% reliability. Models such as ANN, 
MLR, GP, GBR, MGGP, and XGBR achieved perfect reliability in both datasets. However, 
SVR exhibited the lowest training reliability 79.58% indicating it remained less reliable 
than the other models. The confidence limit analysis provides additional insight into the 
robustness of the model predictions. In the first scenario, most models displayed confidence 
limits that deviated from the benchmark values, with models such as GBR overestimating 
GWQI and SVR tending to overestimate smaller values and underestimate larger values. 
In the second scenario, the confidence limits of most models, including ANN, MGGP, GP, 
and MLR, aligned closely with the benchmark, indicating a strong fit between predicted 
and observed values. The third scenario exhibited similar results, where confidence limits 
remained tightly aligned with the benchmark for top-performing models like MLR, GP, 
and ANN, further confirming model reliability and accuracy. Although numerous studies 
in the literature have explored the application of ML models in GWQI prediction, very 
few have employed post-processing analyses, such as reliability assessments. Raheja et al. 
(2022) is one of the few that conducted a reliability analysis, demonstrating high reliabil-
ity in their GBR, XGBR, and particularly their DNN model. Future studies must consider 
conducting post-processing analyses, such as reliability analysis, since they are crucial for 
further validating the results of ML models, ensuring the robustness and dependability of 
the predictions in real-world applications.

Overall, ANN proved to be the most reliable and consistent performer across all scenar-
ios, making it the best choice for GWQI prediction. Multiple studies have also highlighted 
the strong predictive capabilities of this model (Sakizadeh 2016; Kulisz et al. 2021; Sajib 
et al. 2023). It was closely followed by MGGP and GP, which also performed exceptionally 
well. Jibrin et  al. (2024) also demonstrated the outperformance of their GP model com-
pared to the ANFIS and DTR models in their study. Although ANN demonstrated superior 
performance, its high computational time could limit its applicability compared to alter-
natives like GP. Furthermore, while MLR achieved the highest performance in the third 
scenario, its results in other scenarios were less robust, placing it in the fourth position 
overall. KNN tendency to overfit to the training data limited its performance, but it still 
ranked fifth due to commendable testing results. However, this result highlights the need 
for careful validation when using KNN to avoid overfitting. This was also the case in vari-
ous studies (Khiavi et al. 2023; Sahour et al. 2023; El-Rawy et al. 2024). Beside MGGP, 
other tree-based models like GBR, RFR, XGBR, AB and DTR, did not perform as well 
in this study, likely due to their preference for nonlinear regression tasks. Notably, stud-
ies that relied solely on such tree-based models or variants like the M5P model (Norouzi 
and Moghaddam 2020; Elbeltagi et  al. 2022), might have benefitted from incorporating 
a broader range of ML models for GWQI prediction. Lastly, SVR ranked lowest across 
all scenarios, demonstrating its inability in capturing the underlying relationships inherent 
in GWQI estimation as effectively as other models. While some studies in the literature 
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support this finding (Kouadri et al. 2021; Elbeltagi et al. 2022; Sajib et al. 2023), the effec-
tiveness of ML models is significantly influenced by the data at hand and the appropriate 
tuning of hyperparameters. This can lead to scenarios where models like SVR or RFR out-
perform ANN in certain studies (Mohammed et al. 2023; Sahour et al. 2023).

The results of this study emphasize the importance of selecting appropriate ML mod-
els for GWQI prediction. While all models demonstrated commendable performance, the 
scenario-based approach highlights how the proper choice of models and input parameters 
can lead to better predictive accuracy and reliability. As noted in the literature review in the 
introduction, most studies have employed Pearson correlation analysis prior to modeling, 
while only a few have integrated it directly into their modeling processes. This method 
relies on the available data, and one distinguishing aspect of this study, compared to pre-
vious research, is the utilization of a more stable choice of scenario design. These find-
ings contribute to the broader literature on water quality modeling, suggesting that a more 
comprehensive selection of ML models could improve the accuracy of groundwater quality 
assessments in future studies. Furthermore, future studies could benefit from the splitting 
method applied in this research, which divides the data into three scenarios based on Sn 
ranges. This approach may lead to a more thorough investigation of the results, ultimately 
contributing to more reliable outcomes. Additionally, while this study demonstrated the 
effectiveness of the ML models in predicting GWQI, indicating a reduced necessity for 
more complex methods such as deep learning or hybrid models for this specific task, future 
research can explore these models to demonstrate that their use, even if they perform bet-
ter, may not be essential. Lastly, one limitation of this study, similar to others in the lit-
erature, is the restricted scope of the study area, which is typically confined to a single 
location. Future research could incorporate data from diverse regions across the globe to 
improve the evaluation of ML models for this task.

5 � Conclusions

Analysis of groundwater quality is essential as it serves as one of the most important 
water resources, particularly for drinking purpose in arid and semi-arid regions. For such 
analysis, availability of groundwater quality observations is in need. Since measuring all 
groundwater quality parameters may not be feasible in some regions, estimating GWQI 
based on available water quality parameters is inevitable. Thus, the main challenges of 
GWQI predictions include data availability, assessment of data-driven estimation models, 
and quantifying how much precision can be obtained when not all water quality parameters 
are known. This study took a step forward to address these challenges for a case study in 
an arid region, where groundwater has been used for drinking and agricultural purposes. 
In this regard, eleven ML methods were exploited to estimate GWQI considering three 
scenarios with different sets of input data. In addition to comprehensive assessment of 
various ML models in predicting GWQI, a special aspect of this study lies in its unique 
scenario-based approach, which highlights how varying data availability can impact on 
model performances. This approach not only enhances the understanding of the strength 
and weakness of each model but also offers a more practical framework (compared to tra-
ditional methods such as Pearson correlation) for future GWQI assessments. Comparing 
performances of different ML models indicated that ANN, MGGP, GP, GBR and MLR 
achieved the most robust estimations for GWQI across different scenarios. Among these 
models, ANN was among the first three ML models for all scenarios, while MGGP and 
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GP were among the first three ML models for two scenarios. This study also addresses 
critical limitations in existing studies by incorporating reliability analyses and confidence 
limit assessments, which are often overlooked. The analyses facilitate choosing more reli-
able estimation models that can be effectively utilized in real-world applications to pre-
dict groundwater quality, thereby aiding decision-makers in water resources management. 
The reliability analysis showed that GP, MGGP, MLR, ANN, GBR and XGBR reach the 
highest reliability percentages for different scenarios. Specifically, ANN constantly ranked 
among the top ML models for reliability. Furthermore, checking confidence limits of ML-
based estimation models revealed that most models forecasted GWQI predictions closely 
aligned with the observed values, especially for the second and third scenarios. Particu-
larly, GWQI estimations carried out by ANN, MGGP and GP demonstrate remarkable 
consistency with benchmark values. Moreover, KNN and AB tended to underestimate 
and overestimate GWQI, respectively. These findings highlight the effectiveness of ANN, 
MGGP and GP in providing robust and reliable GWQI predictions. Indeed, further studies 
on groundwater quality data from various regions are required to delineate performances 
of data-driven models for predicting GWQI, whereas this study along with previous ones 
are limited to a specific study area. While hybrid models or deep learning techniques 
could potentially enhance prediction accuracy, this study indicates that simpler models can 
achieve reliable results without the complexities of implementation. In this regard, future 
studies could further explore the trade of between complexity and accuracy of ML-based 
models for estimating GWQI. Finally, the robust performance of ML models, like ANN 
and MGGP, offers a reliable foundation for future research aimed at improving groundwa-
ter management strategies.
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