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Abstract: Unmanned aerial vehicles (UAVs) have emerged as a promising technology to enhance
the performance and functionality of mobile networks. UAVs can act as flying base stations, relays,
or users to provide wireless services to ground users or devices. However, the optimal placement
and trajectory design of UAVs in mobile networks is a challenging problem, as it involves multiple
objectives, constraints, and uncertainties. In this paper, we provide a comprehensive survey of the
state-of-the-art research on UAV placement and trajectory optimization in cellular networks. We first
introduce the main objectives and challenges of UAV placement and trajectory optimization, such as
maximizing coverage, throughput, energy efficiency, or reliability, while minimizing interference,
delay, or cost. We also examine the primary models and assumptions employed for UAV placement
and trajectory optimization, including channel models, mobility models, network architectures,
and constraints. Additionally, we discuss the main methods and algorithms employed for UAV
placement and trajectory optimization. These include optimization techniques, heuristic algorithms,
machine learning approaches, and distributed solutions. Analytical results, numerical simulations, or
experimental tests are further discussed as the main performance metrics and evaluation methods
used for UAV placement and trajectory optimization. We also highlight the main applications and
scenarios of UAV placement and trajectory optimization, such as cellular offloading, emergency
communications, or aerial base stations. Finally, we identify some open problems and future research
directions on UAV placement and trajectory optimization in cellular networks.

Keywords: flying base station; UAV-assisted 5G; UAV positioning; UAV trajectory planning

1. Introduction

In the realm of wireless communications, unmanned aerial vehicles (UAVs) are emerg-
ing as a pivotal technology for enhancing cellular network services. These aerial platforms,
operating as high-altitude base stations, are instrumental in augmenting network coverage
and capacity. Their deployment is particularly advantageous in regions bereft of robust
ground infrastructure, as they can be maneuvered to optimize signal propagation, ensuring
superior service delivery. UAVs are adept at providing on-demand cellular connectivity,
catering to areas with high user density, such as during special events, or in response to
emergency situations where terrestrial networks may be compromised [1,2].

The drone industry has advanced significantly in recent years, leading to new applica-
tions of UAVs in various fields [3–6]. In the context of wireless networks, UAVs have been
deployed as flying base stations (FBSs) to extend the coverage of cellular networks and
enhance the quality of service (QoS) [7]. The primary application of UAVs is to provide
wider network coverage, especially during emergencies like earthquakes and floods, or
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when ground-based infrastructure is compromised. UAVs offer immediate and reliable
services in these situations, ensuring continued connectivity [8]. Additionally, UAVs are
deployed in areas where installing terrestrial base stations is impractical or uneconomical,
such as mountainous or rugged terrains, and during events with high traffic loads like
sports or cultural events [9,10]. As mentioned by “Fortune Business Insights”, the global
UAV market was valued at USD 27.43 billion in 2022 and is expected to grow to USD
91.23 billion by 2030 with an annual growth rate of 16.3%. Given that the price of UAVs
ranges from a few dollars to millions of dollars, the number of active UAVs in use is likely
in the millions.

UAVs offer unique advantages, including easy and low-cost deployment and a high
likelihood of Line of Sight (LoS) communication [11]. Their mobility allows UAVs to
enhance QoS and reduce impairments by changing positions as needed. This mobility
can also increase the number of covered network users and provide higher data rates by
expanding the coverage area and the number of UAVs [12].

The benefits of using UAVs in wireless networks are numerous. Firstly, UAVs provide
cost-effective and swift deployment compared to traditional infrastructure, which can be
both time consuming and expensive to install. Secondly, their ability to operate in hard-
to-reach or hazardous areas makes them invaluable for emergency response and disaster
recovery, ensuring connectivity when it is most needed. UAVs also offer flexibility in
network management, as they can be repositioned as needed to address fluctuating demand
or coverage gaps. Additionally, they can support high-capacity data transmission and
enhance network resilience by providing alternative communication links. Overall, UAVs
significantly enhance the efficiency, flexibility, and reliability of wireless networks [13–15].

The deployment environment for UAVs in wireless networks presents a complex and
multifaceted landscape. The spatial configuration of this environment can be conceptual-
ized in both two-dimensional (2D) and three-dimensional (3D) planes, which significantly
influence the strategic positioning and maneuverability of UAVs to optimize network
efficacy. The air-to-ground (A2G) channel model is paramount in this context, delineating
the signal transmission pathways between UAVs and terrestrial receivers. This model
causes a comprehensive consideration of various factors, including path loss, shadowing,
multipath fading, and Doppler shifts, which arise from the relative motion between UAVs
and ground entities [10,16].

The phenomenon of path loss in A2G communications is predominantly affected
by the UAV’s elevation and its proximity to the terrestrial receiver. Elevated altitudes
diminish path loss, which is primarily because of the establishment of a clearer line-of-
sight (LoS) trajectory, albeit potentially escalating free-space path loss because of increased
transmission distances [12]. Shadowing emerges when physical obstructions, such as
edifices or foliage, impede the signal trajectory, engendering fluctuations in the power of the
received signal. Conversely, multipath fading is the consequence of signal reflections from
assorted surfaces prior to reception, engendering interference patterns that can damage
signal integrity [11].

The attenuation criterion is indispensable for gauging signal deterioration over dis-
tances and through impediments, which informs the strategic placement and navigation
of UAVs to sustain robust communication links. The complexity escalates when the de-
ployment encompasses not just a solitary UAV but a fleet, causing concurrent operation.
This scenario demands advanced algorithms capable of managing resources, mitigating
interference, and executing real-time modifications in response to environmental dynamics
and user requirements [17]. A profound comprehension of these elements is imperative
for the formulation of efficacious UAV-assisted wireless network solutions, ensuring the
provision of communication services that are reliable, efficient, and versatile, catering to a
spectrum of operational scenarios [18].

The use of UAVs assumes that base stations are equipped with multiple antennas and
analog beamforming capabilities. Analog beamforming enhances spectral efficiency by
directing beams toward multiple users at different frequencies or time slots, improving
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coverage and capacity, particularly in mmWave bands that require high path loss and LoS
communication. This method reduces hardware complexity and power usage by using one
radio frequency chain per antenna array, extending the UAV’s battery life and flight time
while lowering equipment costs and weight [19].

However, analog beamforming presents limitations, such as the lack of spatial multi-
plexing, which restricts the transmission of multiple data streams simultaneously. This can
limit high-demand applications like video streaming or virtual reality due to data rate and
throughput constraints. Another challenge is fast and accurate beam tracking, as the UAV
must constantly adjust its beam direction and width to maintain a reliable link with user
equipment (UE). The UE must relay channel state information (CSI) back to the drone base
station, which can slow response times and increase system load, potentially decreasing
performance [20].

UAVs are typically battery-powered and have limited energy resources, necessitating
optimal positioning and effective path planning to maximize coverage and QoS while
extending the UAV lifetime. In addition to 3D positioning and trajectory planning, UAV
deployment must consider the impact of interference with neighboring base stations due to
strong LoS signals and channel modeling challenges in UAV-assisted 5G networks [21].

Extensive research has been conducted on 2D and 3D deployment strategies for drones
and stations in various wireless networks [22–24]. Studies have also explored drone move-
ments in wireless networks, the Internet of Things, and sensor networks [25,26]. According
to the issues raised, the main goal of this paper is to review positioning and trajectory
methods and classify them based on their assumptions of the problem environments and
solutions. The motivation and goal of this paper which are separated by “*” are as follows:
* Comprehensive survey: The paper provides an exhaustive review of the state-of-the-art
research on UAV placement and trajectory optimization in cellular networks, encompass-
ing a wide range of objectives, challenges, models, and methods. * Detailed Analysis of
Objectives and Challenges: It systematically introduces and categorizes the main objectives
(e.g., maximizing coverage, throughput, energy efficiency) and challenges (e.g., minimizing
interference, delay, and cost) involved in UAV placement and trajectory design. * Eval-
uation of Models and Assumptions: The paper critically examines the primary models
and assumptions used in the research, including channel models, mobility models, net-
work architectures, and constraints, offering insights into how these factors influence UAV
optimization. * Diverse Methods and Algorithms: A key contribution is the discussion
of various methods and algorithms for UAV placement and trajectory optimization, in-
cluding optimization techniques, heuristic algorithms, machine learning approaches, and
distributed solutions. * Performance Metrics and Evaluation Methods: The paper discusses
different performance metrics and evaluation methods, such as analytical results, numerical
simulations, and experimental tests, providing a comprehensive view of how UAV opti-
mization is assessed. * Applications and Scenarios: It highlights the practical applications
and scenarios where UAV placement and trajectory optimization are most impactful, such
as cellular offloading, emergency communications, and aerial base stations. * Identification
of Open Problems and Future Directions: The paper concludes by identifying unresolved
challenges and proposing future research directions, guiding ongoing and future work in
this rapidly evolving field.

As presented in Figure 1, in this paper, we have compared different literature works
from the point of view of UAV positioning (Section 2) and trajectory planning (Section 3).
In each section, we have compared the works of each perspective based on the consid-
ered environmental conditions in solving the problem. Therefore, in each section (UAV
deployment and trajectory planning), the related works have been compared based on the
dimension of the problem, the number of UAVs considered to solve the problem, path loss,
interference, considering the NLoS links, energy limitation, etc.

The rest of paper is as follows: in Section 2, the UAV deployment methods are reviewed.
Then, in Section 3, the trajectory planning papers are investigated. Finally, Section 4
concludes the paper.
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Figure 1. The topics addressed for each category.

2. Optimizing the Deployment of UAVs

Recently, the issue of deploying UAVs in wireless networks has been extensively
studied in the literature. Generally, these studies can be categorized in terms of problem
dimensions, considering the path loss, the LoS or NLoS links, the number of UAVs which
are used in the target area, energy constraints, and interference among cells. Addition-
ally, in real-world scenarios, wireless network users, especially mobile network users in
urban areas, are positioned at different heights. Considering the altitude of antennas at
base stations and UAVs, the altitude of users is also non-negligible. Therefore, another
category under the title of users’ altitudes is considered in this review. Subsequently, a
comprehensive review of the articles and previous works is conducted to investigate the
outstanding studies in each of these categories.

2.1. Dimension of the Problem

The dimension of the problem is the most fundamental category in solving optimiza-
tion problems for UAV deployment. Some articles solely address the solution of the 2D
deployment problem and finding the x and y coordinates of UAVs. Another approach
involves the initial identification of the optimal two-dimensional positions for UAVs, which
is followed by the application of heuristic algorithms to determine the optimal altitude for
the UAV. Another category of papers focuses on determining the position of the UAVs in
all three dimensions concurrently. In the subsequent section, a review is presented on the
works that tackle the issue of deploying UAVs in three dimensions.

Zhang in [22] investigates a communication system utilizing multiple base stations
mounted on UAVs to minimize the required number of UAVs and improve the coverage
rate through optimization of the UAV’s three-dimensional locations, user clustering, and
frequency band allocation. The Quality of Service (QoS) requirements and the service
capability of each UAV are considered, which makes the problem challenging. The authors
propose a three-stage method for solving the formulated Mixed-Integer Programming
(MIP) problem. Firstly, to ensure that each UAV can serve more users, the maximum service
radius of UAVs is determined based on the minimum required signal power for users.
Secondly, an algorithm based on the Artificial Bee Colony (ABC) algorithm is suggested
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to minimize the required number of UAVs. Lastly, the three-dimensional positions and
frequency bands of each UAV are designed to enhance the power of target signals and
reduce interference.

In [27], an approach for deploying a three-dimensional multi-UAVs system is proposed
to meet QoS requirements for various user distributions. The system maximizes the
achievable power for all ground users in the presence of channel interference. The proposed
method is divided into two separate algorithms. In the first algorithm, it is demonstrated
that the x and y coordinates of the UAV can be found using the ean-shift technique and
prior knowledge about the user locations provided by the Global Positioning System
(GPS). This is accomplished by ensuring that the UAVs communicate with the maximum
number of users. Once the x and y coordinates of the UAVs are determined, their altitude
and transmission power are optimized separately. Since these problems fall into the
category of non-convex optimization problems, a successive convex optimization method
is used to approximate their non-convex constraints. In the second algorithm, a block
coordinate descent method is employed to jointly optimize the altitudes of UAV and
power transmission by tightening the obtained bounds to approximated ones. It is then
demonstrated that the proposed algorithm converges.

Wang et al. in [28] address the challenge of deploying UAVs equipped with Visible
Light Communication (VLC) to enhance the energy efficiency of UAV-based networks. In
their model, communication and illumination services are provided to ground users by
UAVs. Due to the interference caused by ambient lighting in VLC links, it is crucial to
consider the illumination distribution in the target area for optimal UAV deployment. This
challenge is formulated as an optimization problem that jointly optimizes UAV deployment,
user allocation, and energy efficiency, while accounting for users’ communication and
illumination requirements. To tackle this, they propose an algorithm that integrates Gated
Recurrent Units with Convolutional Neural Networks, allowing UAVs to model and predict
long-term and future illumination distributions. Based on these predictions, the primary
non-convex optimization problem is divided into two subproblems, which are solved using
a low-complexity iterative algorithm. The proposed approach is then employed to deploy
drones and allocate users with the goal of minimizing total transmission power.

In [29], a method for the joint optimization of three-dimensional UAV placement and
path loss exponent is proposed. Additionally, they optimize the path loss exponent for
different deployment heights of UAV in non-urban environments. The authors of [30]
solve a three-dimensional coverage problem and a task offloading problem for UAV clouds
concurrently. The aim is to provide Internet of Things (IoT) services with specified delays.
It proposes an effective heuristic solution based on the optimization algorithm of ion
movement for solving the main mixed-integer problem.

In [23], a UAV deployment and user allocation problem with balanced load distribu-
tion is proposed. Initially, a clustering method for UAV deployment is introduced, which is
followed by a user allocation strategy aiming at minimizing the maximum traffic of the
subareas. The minimization is subject to capacity constraints and subarea shapes. A UAV
deployment algorithm is proposed using a backtracking search for system load reassign-
ment. Finally, the height of each UAV is adjusted to reduce system energy consumption.
Based on user allocation and placement algorithms, results are close to optimal.

In [31], an algorithm to maximize the coverage range of users with different QoS
requirements is proposed. Also, ref. [32] aims to maximize the summation of the data rate
provided for users considering constraints on direct communication and fairness in data
rate provisioning. IT also provides an algorithm for convexifying the proposed non-convex
mathematical model.

Mozaffari et al. in [33] propose a framework for UAV-BS network planning along with
low-latency UAV-UE allocation. In the network planning section, a method based on short-
ened hexagonal structures is proposed to ensure complete coverage of the desired area with
the minimum number of UAVs. Additionally, a three-dimensional cell allocation scheme
is suggested by considering UAV-UE latency. Firstly, a spatial distribution for UAV-UEs
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is estimated. Then, based on this distribution and DBS locations, three-dimensional UAV
allocation is derived considering minimal latency achieved by optimal transport theory.

In [9], an optimal three-dimensional deployment method is presented by consider-
ing the backhaul in both user-centric and network-centric scenarios. It examines UAV
robustness after selecting the UAV location and its coverage area. The authors propose an
optimal UAV-BS deployment algorithm with backhaul, maximizing the number of served
users plus the overall user delivered data rate. This article also provides an analytical
expression for the probability of a backhaul connection for UAVs that can use either LTE
with millimeter-wave backhaul or millimeter-wave access.

In [34], the three-dimensional deployment of UAVs with the objective of maximizing
the number of ground users covered by the UAV is investigated. The authors propose an
optimal three-dimensional placement method that maximizes the number of covered users
using minimal required transmission power. UAV-BSs are separated into both horizontal
and vertical dimensions, solving the deployment problem without losing efficiency.

Mozaffari et al. in [35] examine the optimal three-dimensional deployment of multiple
UAV equipped with directional antennas to maximize the coverage area. They study the
efficient deployment of FBSs to maximize the coverage area. Additionally, the authors
determine the minimum number of UAVs needed to serve all ground users within a
specified area. Furthermore, they present a method to find the optimal three-dimensional
locations of UAVs equipped with directional antennas using circle packing theory, ensuring
maximum overall coverage of the area. They consider various UAV-BSs sets to provide
a wireless downlink service for a circular geographical area with a radius of 5 km. It is
assumed that the UAVs are homogeneous and have the same transmission power and
altitude. In the proposed model, each UAV utilizes a directional antenna with a specific
bandwidth, and the UAVs operate using the same frequency band. The objective is to
optimize the deployment of UAVs in three-dimensional space while their coverage area is
maximized. Avoiding mutual interference using circle packing theory is also considered.
The results provide detailed guidelines on how to adjust the location and especially the
altitude of UAVs optimally based on antenna bandwidth, coverage size, and the number
of UAVs.

In [36], the optimal three-dimensional location of FBSs with the aim of maximizing
the number of covered users is determined. They also discuss finding the optimal three-
dimensional location of a drone cell while the number of users whose signal-to-noise ratio
(SNR) requirements are met is maximized.

In [37], the authors divide the problem of optimizing three-dimensional UAV deploy-
ment into three subproblems. First, they dynamically solve the two-dimensional UAV
deployment problem using the k-means clustering algorithm. Then, they compute the opti-
mal heights for the UAVs using game theory. Finally, they solve the problem of allocating
users to UAVs. In [38], a three-dimensional deployment scheme to minimize the number of
UAVs needed to cover all users with different QoS requirements is proposed. They first
establish the relation between the altitude of UAV and their coverage range, and then they
propose an algorithm that considers both the altitude and horizontal position of UAVs.

A framework for the dynamic deployment and mobility of UAVs is proposed in [39]
to enable reliable and energy-efficient IoT communications. Here, four UAVs are deployed
to collect data from IoT devices which are distributed uniformly in a geographical area of
1 km by 1 km. Then, using tools from optimization theory, the optimal three-dimensional
positions of the UAV and tool-UAV dependencies are extracted. It tries to minimize the
uplink transmission power of all devices while ensuring reliable communications. The
result demonstrates that UAVs can be optimally utilized to enable efficient energy-wise
telecommunications. In this system, sensors are activated at different time intervals, and it
is necessary to find the new optimal positions of the UAVs. The system also determines
the time intervals for device activation, the time required to compute the new point, and
the UAV’s ability to move between points. In the first phase, the optimal positions of the
UAVs are found in two steps. As the first step, a fixed UAV position is considered, and
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the devices are classified to optimize energy consumption (assigned to UAVs). In the next
step, by keeping the classification fixed, the UAV’s positions are optimized in all three
dimensions. These two phases are repeated consecutively. In the second phase, based on
the positions found at different times, the process of routing between the available positions
is accomplished.

2.2. The Number of UAVs

Some of the studies in the literature have solved the problem with a single UAV. In
these articles, throughout the problem, there is only one UAV that must be deployed. The
optimal position of that one UAV must be determined to maximize the number of covered
users. Generally, problem solving for deploying one drone is much less challenging than
finding multiple UAVs’ positions. However, other studies, such as [22], have solved the
problem with multiple UAVs and obtained the positions of several UAVs simultaneously.
The articles that solve the problem with multiple UAVs fall into two categories: articles
with a fixed number of UAVs and articles that minimize the required number of UAVs.
First, studies that have solved the problem with multiple drones are discussed.

In [40], the deployment of UAVs with low efficiency and mobility for emergency
scenarios in a wireless communication system equipped with multiple UAVs is investigated.
The positions of the UAVs, the user allocation, and the transmission power of ground users
are jointly optimized to maximize the energy efficiency of all ground users. When a UAV is
removed from the field due to failure or battery depletion, the movement of other UAVs
with minimal energy cost is also examined. The authors also present an alternate algorithm
based on the Successive Convex Approximation (SCA) technique to solve the optimization
problems.

Ref. [41] considers the problem of designing an efficient network to collect data from
sensors in the target area using FBSs. In this regard, a joint optimization problem for
deploying UAVs and allocating sensors in smart environments with a large number of
sensors is formulated. Given the complexity of the optimal solution, a probabilistic learning
method is used to find an approximate solution close to the global answer. Additionally, a
penalty method is employed to deal with difficult and conflicting constraints.

In [16], the study examines the optimal deployment and movement of multiple UAVs
for collecting data from IoT network nodes with energy being the key consideration. The
authors present an analytical model to determine the ideal altitude for a UAV to maximize
the covered area. They identify the optimal altitude by comparing the average path loss
against a predefined threshold. At lower altitudes, shadowing effects reduce the likelihood
of LoS communication between the transmitter and receiver, leading to a smaller coverage
radius. At higher altitudes, although LoS communication is more likely, the increased
distance causes higher path loss, reducing coverage efficiency. Thus, determining the
optimal UAV altitude requires considering both the distance and LoS probability together.

In [42], evolutionary algorithms to find the optimal deployment of Low-Altitude
Platforms (LAPs) and portable base stations for disaster relief scenarios are utilized. In this
work, by deploying UAVs in optimal locations, the number of base stations required for full
coverage of the desired area was minimized. A framework for the joint deployment and
task assignment of UAVs was provided, serving ground users. Additionally, the problem
of joint deployment and task assignment was examined using concepts from game theory
and queuing theory.

A proactive drone-cell deployment framework to reduce the overload caused by flash
crowd traffic in 5G networks is proposed in [43]. This approach assumed the cell placement
problem as a clustering problem and considered users under the coverage of each drone as
a cluster. Placing the drone at the center of each cluster ensures that the drone cell has the
minimum sum of squared distances with all cluster members. Finally, a constraint bisecting
k-means method was proposed to solve the drone placement problem. Traffic models for
three social activity scenarios: stadium, parade, and gathering, were also investigated.
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In [44], the problem of deploying multiple drones/UAVs and developing drone map-
ping to areas with high traffic demand using a neural network-based objective function
is addressed. They investigate the problem of deploying multiple drones in such a way
that the mapping method allocates drones to areas with high traffic demand using a neural
network-based cost function.

Ref. [45] presents a study on optimizing the placement of drone base stations (DBSs)
to enhance the coverage and service quality of 5G cellular networks. The paper addresses
the reduced antenna coverage in 5G networks due to higher data transmission rates and
the impact of environmental events on network coverage. The authors propose a fuzzy
clustering algorithm to select specific candidate points for DBS placement, modeled as a
P-median optimization problem, where P is the number of antennas needed to cover users.

In [46], an active deployment method for cache-enabled drones considering the content
of messages to improve the Quality of Experience (QoE) for users is proposed. In this
approach, drones cache the desired content based on a caching prediction model, which
can reduce data packet transmission delay.

An adversarial search to find optimal locations for UAVs to address disasters and
improve public communication security is used in [47]. The authors of [48] obtained
optimal paths and positions for multiple drones, considered as aerial base stations for
collecting data in the IoT, using the optimal transportation theory framework. Lyu et
al. proposed a polynomial-time solvable algorithm for the deployment of mobile base
stations, where drones are placed in a spiral path to cover ground users until all users are
covered [49].

The authors of [50] provided an overview of optimization methods for solving the
aerial base station placement problem. Additionally, they presented a general form of
mathematical relationships for the drone base station deployment problem.

In [51], a macro-base station and multiple drone base stations are considered. The
authors initially proposed an algorithm to find the three-dimensional locations of the drone
base stations, allocate users to base stations, and allocate bandwidth for the access and
backhaul of DBSs. Then, they optimized the locations of the DBSs using a particle swarm
optimization algorithm to enhance efficiency.

In [52], a framework for using drones as an aerial backhaul network for ground base
stations is proposed. Previous studies on drone network planning analyzed issues related
to user association, three-dimensional deployment, backhaul connectivity, and optimizing
the number of drones to be deployed in the network. However, there has been no real work
focusing on signal transmission challenges. Additionally, articles such as [23,27,28,30,33],
which were reviewed before, also address the problem in a multi-drone/UAV scenario.

2.3. Path Loss

After the problem dimension, the most important factor to categorize related works is
path loss. Many studies in the literature consider path loss as the primary factor affecting
service quality and incorporate it into problem solving. However, many other studies have
disregarded path loss due to the complexity and non-linearity of the problem. Articles
such as [22,23,29–33], which were discussed in the last section, have considered path loss
in their respective problems. Moreover, in [53], a mathematical model to optimize UAV
positions and user allocation in an IoT network is proposed. The objective of this model is
to maximize user connectivity by minimizing the number of FBSs, considering network
constraints such as path loss. Since the proposed optimization model is NP-hard and
obtaining the optimal solution is exponentially complex, the authors proposed a linear
scheme and an algorithm with low time complexity. Therefore, the solution obtained from
the proposed method is close to the optimal solution but not exactly. The goal of [54] is to
maximize the coverage of a UAV by three-dimensional deployment and allocate the desired
bandwidth to users. It proposed a search algorithm to solve the problem and reduce its
time complexity. Lai et al. in [55] presented an algorithm for deploying UAVs to provide



Vehicles 2024, 6 1777

on-demand services to a group of users. Their goal is to maximize the number of covered
users while meeting their data rate requirements.

2.4. Interference

In order to make the assumed problem more realistic, it is crucial to consider the
frequency interference among users within a cell and the interference between adjacent
cells, as has been explored in some previous works. However, some prior studies have
solely focused on intra-cell interference, neglecting inter-cell interference. Articles such
as [22,27–29] have taken intra-cell interference into account in their problem formulations.

Additionally, Kalantari et al. in [56] calculated the minimum required number of
UAVs and their optimal three-dimensional locations to cover users using an exploratory
algorithm. In their proposed method, UAVs adjust their altitude to reduce interference with
other antennas and users and obtain their coverage range. They achieve this by lowering
their altitude in densely populated areas and increasing it in less populated areas.

Mozaffari et al. in [57] investigated finding optimal cell boundaries and deployment
locations for non-interfering multiple UAVs. They optimized the deployment and commu-
nication of drone cells to meet user rate requirements while using the minimum transmit
power of the drones. Furthermore, Mozaffari et al. in [58] first obtained the optimal altitude
of drones to maximize coverage and minimize transmission energy. Then, they examined
the maximum coverage problem using two drones in two scenarios: without interference
and with interference. They determined the optimal altitude and positions of the drones in
both interference scenarios and also obtained the optimal distance between the two drones
to minimize interference.

Sobouti et al. in [59] explore the use of UAVs as flying small cell base stations (BSs) to
provide network coverage for IoT applications. They address the challenge of deploying
fixed infrastructure for IoT networks, which may not always be the best or most economical
solution. The advancements in UAV technology offer an alternative by using them as
flying BSs.

2.5. Non-Line-of-Sight Link

Consideration of line-of-sight (LoS) or non-line-of-sight (NLoS) links is an important
aspect to consider in previous works. Some articles such as [24,27,28,32] have aimed to sim-
plify the problem by disregarding obstacles in the scenario and thus considering an empty
environment, relying solely on LoS links. However, articles like [22,23,29–31,33,53–55]
have taken obstacles into account in the problem and solved it assuming the existence of
NLoS links.

2.6. Energy Limitation

Energy serves as a significant limitation in problems associated with the utilization
of drones/UAVs. Given the limited energy source and high energy consumption of UAV
flights, it is essential to consider energy constraints in drone/UAV deployment problems.
Moreover, it makes the problem more realistic. However, many previous works have
disregarded energy constraints due to the complexity of the problem and the difficulty and
time-consuming nature of solving it, assuming UAV energy to be infinite in the problem.
Nevertheless, there are also articles in previous works that have addressed this issue.

In [60], the problem of minimizing the total energy loss of drones and the loss of data
transmission from IoT devices is considered. The key to solving this problem is to calculate
the deployment location of connection points and the number of these points when drones
are collecting data. They propose a particle swarm optimization-based encoding scheme
that confines the drone connection positions in one dimension. Therefore, the number of
connection points to calculate is equal to the number of dimensions of the objective problem.
This problem is considered as a dynamic dimensional optimization problem. During
dimension tuning, the best individual for dynamic search is added or removed. A joint
search among multiple individuals can significantly improve the local search optimization.
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The swarm intelligence algorithms used in [60] include the Flower Pollination Algorithm
(FPA), the Salp Swarm Algorithm (SSA), and the Sine Cosine Algorithm (SCA).

De Freitas et al. in [61] studied the use of drone relays to enhance the connectivity
of ground wireless networks. In this work, aerial drones were optimally employed to
ensure the transmission of sensor messages to destinations. Additionally, the deployment
of multiple drones as wireless relays to provide service for ground sensors was investigated.
Specifically, this work addressed the balance between connections among drones and
maximizing the coverage area covered by drones. However, the use of drones as aerial
base stations and their potential interference in LoS communications was not considered.
Alzenad et al. in [10] proposed an algorithm to find the optimal location of drone base
stations (DBSs) in two dimensions with the objective of maximizing the number of covered
users while minimizing their energy consumption for transmission.

In [62], the three-dimensional placement of drone base stations with the objective of
maximizing the number of covered users with different QoS requirements while minimizing
energy consumption is considered. They modeled the problem as a multi-centralized
circular placement problem. To achieve this, they divided the drone placement problem
into vertical and horizontal parts and formulated it as a Mixed-Integer Second-Order Cone
Problem (MISOCP). They proposed an improved genetic algorithm to solve it.

Khodashahi et al. in [63] considered a wireless sensor network with a mobile base
station. In this work, after clustering the nodes and selecting cluster heads, the optimal
location of the base station is determined based on the most efficient energy consumption
for delivering data to the cluster heads. In other words, the base station location for the
next round is determined in a way that minimizes the energy cost for data communications,
where sending data through a step from all cluster heads to the base station prevents data
overflow.

Liu et al. in [64] aim to maximize fair coverage while minimizing energy consumption
and meeting backhaul requirements at different times. The authors devised a fairness index
to ensure equal communication opportunities and area coverage ratios to prevent excessive
QoS in covered locations to ensure fair QoS allocation. Then, they proposed an alternating
proximal stochastic gradient-based approach for optimizing drone sites that repeatedly
executes two optimization phases. This approach smoothens the way for fast single-point
first-order methods to address challenging problems with constraints. Additionally, papers
such as [27–30,32,40], as previously mentioned, have also considered energy constraints in
their problem formulations.

2.7. User’s Altitude

Given the prevalence of high raised buildings in urban areas, the significance of users’
altitude relative to ground antennas and drones cannot be overlooked. It is essential to
consider this parameter when engaging in problem-solving activities. Among the previ-
ous studies, only three articles [33,65,66] have considered the height of users. In [33], users
themselves are drones, and the objective is to provide services to other drones. As far as the
study has shown, this aspect has not been considered in any of the previous works. He et al.
in [65] assumed that users are located on surfaces at different heights for the three-dimensional
placement of drones. They formulated an optimal coverage model and an optimal connectivity
model, both of which are NP-hard. To tackle this problem, they designed a meta-heuristic PSO
algorithm and obtained an efficient solution. However, their results are not optimal due to
the use of the PSO algorithm. Additionally, the required data rate parameter for users is not
considered in their proposed method, but the required number of drones and the path loss
under different conditions are compared in the numerical results. Ref. [66] discusses a method
for deploying UAVs to ensure optimal network coverage for the IoT. It aims to determine
the minimum number of UAVs required for effective IoT network coverage and to find their
optimal positions. The authors propose an iterative algorithm that updates the number of
required UAVs with each iteration. They also introduce a mathematical model to solve for the
optimal positions of the UAVs after linearizing the problem.
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2.8. Insight for Future Studies

Previous works in the field of drone/UAV placement, despite being numerous, have
not provided a complete and comprehensive solution to this problem. Most relevant
articles in this area either overlook some of the real-world constraints or deal with the
problem approximately using heuristic or metaheuristic methods due to the NP hardness
of the problem or the consideration of only part of the real-world constraints. In this
paper, a method is proposed that can accurately solve the problem without losing its
generality by considering important real-world constraints such as user heights, intra- and
inter-cell interference, energy constraints, the presence of NLoS links, and also the data
rate constraints in backhauls. Table 1 provides a general comparison of articles in the
field of drone placement. Current hot research topics in the positioning of UAVs within
wireless networks include the development of dynamic deployment strategies tailored for
5G and upcoming 6G networks. These strategies aim to optimize UAV positions to enhance
network coverage, capacity, and reliability, particularly in challenging environments such
as high-density urban areas or remote regions. One new research hot topic is using tethered
UAVs. In these applications, UAVs are connected to the base with a line that can provide
energy and other requirements. On one hand, this connection limits their mobility, but
on the other hand, it increases the UAV’s performance. Another key area of focus is the
design of energy-efficient positioning algorithms, which seek to maximize UAV flight
duration while maintaining optimal communication performance by leveraging advanced
optimization techniques and machine learning models such as “Large Language Models”.
Another significant research interest is the application of artificial intelligence, particularly
deep reinforcement learning, to enable UAVs to autonomously adjust their positions in
response to real-time changes in network conditions, user demands, and environmental
factors. Additionally, there is a growing interest in optimizing UAV positioning to support
edge computing tasks, where UAVs can act as mobile edge nodes to process data closer
to the source, reducing latency and improving the overall network quality of service.
Research is also exploring the integration of UAVs in hybrid terrestrial and non-terrestrial
networks, where their optimal positioning can ensure seamless connectivity and robustness
in diverse operational scenarios, such as disaster recovery, emergency response, and rural
connectivity. Finally, addressing the challenges of interference management, spectrum
allocation, and secure communication for UAV-assisted networks represents another critical
area of research with the aim of developing scalable and resilient solutions for future
wireless communication networks.

Table 1. Comparison of the literature in the field of deployment of UAVs.

Paper 2D/3D Users Altitude Interference Energy Limitations Single/Multi UAV LOS/NLOS Attenuation

[16] 3D - - - Multi Both Path loss

[22] 3D - + - Multi Both Path loss

[23] 3D - - - Multi Both Path loss

[27] 3D - + + Multi LoS -

[28] 3D - + + Multi LoS -

[29] 3D - + + Single Both Path loss

[30] 3D - - + Multi Both Path loss

[31] 3D - - - Single Both Path loss

[32] 3D - - + Single LoS Path loss

[33] 3D + + - Multi Both Path loss

[34] 3D - - - Single LoS -

[35] 3D - + + Multi Both Path loss
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Table 1. Cont.

Paper 2D/3D Users Altitude Interference Energy Limitations Single/Multi UAV LOS/NLOS Attenuation

[36] 3D - - - Single Both Path loss

[37] 3D - + - Single LoS -

[38] 3D - - - Multi Both Path loss

[39] 3D - - + Multi Both Path loss

[40] 2D - + Energy efficiency Multi LoS Path loss

[41] 2D - - - Multi Both Path loss

[42] 2D - - - Multi - -

[43] 2D - - - Multi Both Path loss

[44] 2D - + - Multi LoS Path loss

[45] 2D - - - Multi LoS Path loss

[46] 2D - + - Multi Both Path loss

[47] 2D - + - Multi Both Path loss

[48] 2D - - + Multi LoS Path loss

[49] 2D - - - Multi LoS Path loss

[51] 3D - + - Multi LoS Path loss

[52] 2D - + - Multi Both Path loss

[53] 2D - - - Multi Both Path loss

[54] 2D - - - Single Both Path loss

[55] 3D - - - Single Both Path loss

[56] 3D - + - Multi Both Path loss

[57] 3D - + + Multi Both Path loss

[58] 3D - + + Multi Both Path loss

[59] 2D - + - Multi LoS Path loss

[60] 2D - - + Single - -

[62] 3D - - + Single Both Path loss

[63] 2D - - + Multi - -

[64] 2D - - + Single LoS -

[65] 3D + - - Multi Both Path loss

[66] 3D - + - Multi Both Path loss

3. Optimizing the Trajectory of UAVs

Achieving the solution to the drone/UAV placement dilemma is a necessary step
toward optimizing their paths. Previous research on path optimization can also be catego-
rized based on multiple factors, including problem dimension, network path loss, NLoS
links, number of UAVs, energy constraints, and interference investigation. Furthermore,
the consideration of user mobility, particularly in cellular networks, as a significant factor
necessitating drone mobility, can also be considered as another subject for classifying prior
research. In the following section, the literature is reviewed based on the consideration of
these categories.

3.1. Dimension of the Problem

The majority of the analyzed literature on optimizing drone trajectory approaches the
problem from a two-dimensional perspective. To clarify, drones remain at a fixed altitude
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and do not vary their height during their journey. However, it is worth noting that some
articles have approached the issue from a three-dimensional perspective, which is a matter
that we will examine further.

Zhou et al. in [67] presented flight path planning for drones based on the optimization
of the bat algorithm (BA) in a static environment. Their main goal is for drones to find a
collision-free, shorter, and safer flight path between the starting and ending points in a
complex three-dimensional battlefield environment. Based on the standard features of the
bat algorithm and the artificial bee colony algorithm, they proposed a new modification
of the bat algorithm called the improved bat algorithm (IBA). The IBA mainly utilizes the
ABC algorithm to improve the bat algorithm and solve the problem of the BA’s inability to
perform local search.

Hua et al. in [68] investigated simultaneous uplink and downlink transmission net-
works with the help of drones, where one drone acting as a transmitter is connected to
multiple access points and another drone acting as a base station collects data from mul-
tiple sensor nodes. Their goal is to maximize the system power by jointly optimizing
the three-dimensional drone path, communication scheduling, and transmission power
between drones and sensors. They initially considered a specific case where the path
between the UAV-BS and UAV-AP is predetermined. Although the resulting problem is
a non-convex optimization problem, they obtained a global solution using the polyblock
outer approximation (POA) method based on the hidden uniform structure of the problem.
Subsequently, for the general case considering the optimization of the three-dimensional
drone path, an efficient iterative algorithm was proposed to optimally solve the subdivided
problems based on the successive convex approximation technique.

In [69], Feng et al. focused on maximizing the energy received by all energy re-
ceivers by jointly optimizing the UAV’s three-dimensional coverage, radiation pattern, and
charging time. The optimization problem is non-convex, which is primarily due to the
consideration of drone altitude and wireless coverage. To solve this, the authors proposed
a low-complexity iterative approach, breaking the main problem into four subproblems
and optimizing them sequentially. First, they applied a convex optimization algorithm
without constraints to determine the global optimal two-dimensional position. Then, they
calculated the optimal drone altitude. Next, they introduced a multi-objective evolutionary
algorithm based on decomposition to adjust the antenna element phases for improved
performance. Finally, with these variables optimized, the problem was reformulated into a
single-variable optimization for charging time, which was solved using standard convex
techniques. To minimize the UAV’s flight distance, the branch and bound method, framed
as a traveling salesman problem, was used.

You et al. in [70] used drones in a wireless sensor network to collect data from multiple
sensor nodes. Their goal was to maximize the collected data from sensor nodes considering
the scheduling program with three-dimensional drone movement. In this system, commu-
nication is not specifically considered as LoS, the effect of communication interruption is
also considered, and the data collection rate is proportional to the communication channel
model. To solve the problem of three-dimensional space movement, the path is optimized
iteratively, once horizontally and once vertically.

Ding et al. in [71] addressed the issue of three-dimensional drone paths and spectrum
allocation, considering drone energy consumption and fairness for ground users. To do this,
they first defined drone energy consumption as a function of three-dimensional mobility.
Then, considering energy constraints, they maximized operational fairness. They proposed
a new algorithm based on deep reinforcement learning (DRL). The proposed method allows
the drone to control its speed and direction to save energy and reach the desired destination
while having enough energy and allocating spectrum bands to achieve fairness.

Wang et al. in [72] examined two types of drones in a secure network with the help
of drones. One drone flies to transfer confidential data to a mobile phone user, while the
second drone helps by creating artificial noise to distract attackers. Considering the mobility
of drones and users, the authors aimed to increase stealthiness in the worst-case scenario
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for mobile phone users. This challenge was addressed by optimizing the three-dimensional
drone path and considering constraints such as time allocation, maximum speed, collision
avoidance, positioning error, and energy uptake.

Amrallah et al. examined a wireless communication network for post-disaster areas
using UAV technology in [73,74]. Their optimization goal was to maximize the number of
ground users visited by optimizing the UAV’s flight trajectory. Next, a cost-aware multi-
armed bandit algorithm is used to address this issue considering the limited energy for
both the UAV and ground users.

3.2. Number of UAVs

In the majority of articles investigating the optimal path finding of drones/UAVs,
unlike articles on drone/UAV deployment, the problem assumption revolves around the
presence of a single drone/UAV and determining its optimal path. Ghafoor et al. proposed
a new approach for the trajectory of a mobile sink in wireless sensor networks in [75]. Their
proposed approach is based on the Hilbert space-filling curve; however, their proposed
approach is different from previous work. This means that the order of the curve changes
based on node density. They also first investigate the trajectory of the sink based on the
order of the Hilbert curve, which depends on the network size. Second, they calculate the
order of the Hilbert curve based on node density to modify the trajectory of the mobile sink.

Zhan et al. in [76] designed a path for drone movement to collect data from the
maximum number of sensors. Their goal is to maximize the collected data, and they used
the traveling salesman approach and convex optimization method. The drone’s movement
path was compared in four passing path modes: zigzag, rectangular, based on density,
and the proposed method. Zhang and colleagues in [77] considered a cellular network
consisting of a drone and several ground base stations. The drone is tasked with flying
from a starting point to an end point and must be in communication with one of the ground
base stations during the flight. The goal is to minimize the drone’s mission completion time
by optimizing its path while considering the constraints of maximum drone speed and
minimum signal-to-noise ratio that must be maintained over time. It is noteworthy that the
drone is serviced by ground base stations. The drone’s path must be properly adjusted to fly
between two consecutive points in less time than the expected delay and also comply with
the communication constraints with ground stations. The desired problem is non-convex.
The authors have reached an approximate solution close to the optimal solution using
convex optimization techniques and the shortest path algorithms in the graph.

Zhang et al. in [78] considered the drone as a relay that performs reinforcement
and transmission tasks. Meaning, it establishes communication between the user and the
ground base station, which cannot establish direct communication due to the long distance.
The goal is to minimize the probability of communication interruption by optimizing the
drone’s path and transmission power. In each of the consecutive time intervals, in the first
interval, the mobile device sends a signal to the drone, and in the next interval, the drone
amplifies the received signal and sends it to the base station. The probability of interruption
in time interval t depends only on the location and energy parameters in time intervals t
and t + 1.

Wu et al. in [79] aim to maximize user throughput. Users can freely move on the
ground, and the drone’s path along with multi-objective communication planning is op-
timized. If the path is circular, users outside the circle cannot establish communication,
leading to increased delay. However, if the path is such that the drone can fly close to the
users and even hover above all of them to serve them all, the objective function increases.
To address this issue, binary variables have been expanded into continuous variables, and
the new problem has been solved with a suitable algorithm using the block coordinate
descent method. However, even if user scheduling is fixed, optimizing the drone’s path is
still difficult due to its non-convexity. Finally, an iterative algorithm has been presented for
the problem using block coordinate descent and convex optimization techniques. With the
drone’s path, the problem becomes a linear programming problem. It should be noted that
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any convex function with the first-order Taylor expansion at any point globally has a lower
bound; thus, the problem can be solved.

Bulut et al. in [80] consider a drone with a mission to fly from a starting point
to an endpoint and must find a path where its communication with one of the ground
stations does not drop for more than a specified time interval. The maximum flight time is
predetermined, and the goal is to minimize the length of the flight path so that the flight
time does not exceed the maximum predetermined time. Since the speed is constant, the
minimum path is equivalent to the minimum time. The path is dynamically determined,
meaning that at each point, it is decided where to go next to comply with the threshold
constraint of minimum communication interruption time and minimize the length of
the path. It is necessary to note that the drone may need to pass through redundant
locations. In this system, it is assumed that the drone flies at a constant speed and altitude.
Communications are of LTE and 5G types, and all ground stations have the same altitude.
Dynamic programming is used to solve the problem, which leads to an approximate
solution. Initially, a network coverage over the area with the drone and ground stations
is considered. If the drone can go to point (i, j) from a neighboring point, the constraint
of communication interruption time is met, and its cost is less than the costs of paths
previously calculated, the optimal new path from that neighboring point will be utilized.

Bayerlein et al. in [81] examine the optimal path of a drone that serves a number
of users as a base station. User locations, drone altitude, and speed are assumed to be
constant. The initial and final drone locations are specified, and the maximum flight time
is given. The objective is to maximize the total data transmission during the flight time.
The authors assume that the drone can adapt to the network topology, meaning it operates
autonomously in the environment and learns the best path on its own. Movement decisions
are made by a Q-learning-based system. That is, at time t, the drone observes a position,
performs an action, and subsequently receives a reward. The goal is for the drone to learn a
behavior that maximizes its received reward. Drone decisions are made based on a greedy
algorithm and stop when the flight time ends.

Deruyck et al. in [82] consider a terrestrial network with several base stations that
cannot satisfy their users. A drone flies as an FBS over the network and provides traffic
that is not feasible with the terrestrial network. Users are clustered, users close to each
other are placed in a cluster, and the problem is solved based on a clustering algorithm.
That is, the drone is located at the center of a cluster at each step. Since the target area is
square-shaped, the initial drone location is at the center of this square. In the next step, it is
calculated which cluster has the lowest cost to go to, and that cluster is selected as the next
destination. This process continues until all clusters are met.

The system proposed by Zeng et al. in [83] consists of a fixed source and destination
and a drone (relay) whose objective is to maximize throughput by optimizing the drone’s
path and power allocation between the source and relay at a specified time. The maximum
relay speed and its source and destination points are defined. Data transmission is per-
formed by storing transmitted data from the source in a buffer and then transmitting it to
the destination. The drone can improve communication quality and system performance
by changing its location at any time.

He et al. in [84] propose an energy-efficient path planning algorithm based on multi-
objective particle swarm optimization (MOPSO) to shorten the length of the mobile sink
path and balance the load of proposed node sensors. The goal of their proposed algorithm
is to reduce data delivery delay and increase network lifetime. To shorten the length of
the mobile sink path, they design a mechanism to select potential visit points within the
communication ranges of sensor nodes instead of sensor node locations. Additionally,
considering the characteristics of the mobile sink path, an effective path encoding method
is designed to create a path containing an unlimited number of visit points.

Qian et al. in [85] present a method in which a drone acts as a mobile server and
offloads computational tasks to a group of ground mobile phone users moving according to
a random waypoint model. The goal of their solution is to maximize the average throughput
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while considering energy consumption and customer requirements. Their proposed Monte
Carlo tree search (MCTS) algorithm has helped them achieve this goal.

Fontanesi et al. in [86] propose a transfer learning (TL) method in which they use a
teacher policy trained in one domain to assist the agent in learning the path in another
domain. The agent designs a path in the new domain based on future relations with
the environment while continuing exploratory and learning activities. They use a Deep
Q-Network based on the Lyapunov model to solve the path design problem under 6 GHz,
ensuring connectivity constraints. Additionally, Zhou et al. in [87] study a cognitive safe
communication network of drones considering the high flexibility and mobility of a drone
and the possibility of establishing LoS links.

In [88], Zhang et al. focus on emergency networks equipped with drones, where drones
act as FBSs to collect data from ground users in disaster-stricken areas. They formulate
an optimization problem for the drone path with energy constraints of user devices and
the location of ground obstacles to maximize the connectivity efficiency of long-distance
drone networks during flight duration. In [89], Li et al. propose a drone-assisted data
collection method to collect data from multiple ground users. Their goal is to optimize the
path, altitude, speed, and data links of the drone with ground users to minimize the total
mission time. They target emergency applications in their proposed method, as mission
time is the main concern there.

Gong et al. in [90] considered a scenario where a drone collects data from a set of
sensors in a straight line. They considered that the drone could move or remain stationary
while communicating with the sensors. Their goal was to minimize the total flight time
of the drone from the starting point to the destination while allowing each sensor to
successfully upload a certain amount of data using a specified amount of energy.

Huang et al. in [91] integrated deep reinforcement learning with drone navigation
using the multiple-input multiple-output (MIMO) technique to design a deep Q-network
for optimizing the drone’s path by selecting an optimal policy.

Samir and colleagues in [92] considered a single-hop vehicular network assisted by
drones, where sensors on vehicles generate time-sensitive data streams, and drones are
used to collect and process these data while maintaining the minimum data age threshold.

However, there are also works that have addressed the problem with multiple drones.
Tashtarian et al. in [93] studied the motion control problem of mobile sinks in deadline-
based and event-driven applications to maximize network lifetime. In these applications,
when an event-driven sensor node records an event, it must determine the visit time and
deadline based on the amount of received data and the type of event. Then, the mobile sink
needs to determine its trajectory for collecting data from active sensor nodes in single-hop
transmission to increase the network lifetime. They showed that this problem is NP-hard
when there is no predefined structure such as a virtual network or meeting points in the
network. They proposed a decision tree-based algorithm and dynamic programming to
determine an approximately optimal deadline-based trajectory (ODT) by considering the
geographical locations of active sensor nodes and the characteristics of recorded events.

Pan et al. in [94] proposed a deep learning trained with genetic algorithm (DL-GA),
which is a combination of the advantages of deep learning and genetic algorithms. The GA
collects states and paths from various collection scenarios and then uses them to train the
deep neural network to quickly provide an optimized path while encountering familiar
scenarios that can meet the needs in a timely manner.

Xia et al. in [95] proposed a multi-drone path-planning method. The proposed method
for creating an optimization model is based on the unit time distance rather than traditional
station division, which simplifies the calculation of cost functions. Meanwhile, virtual
parts are introduced to adapt to the different lengths of drone paths to reduce the total
arrival time of drones at the destination. In the proposed model, non-linear constraints are
transformed into cost functions, and to minimize the cost function, a sequential gradient-
based optimization algorithm is presented, which separates the conflicting constraints with
the goal of saving planning time in each iteration.
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Samir et al. jointly optimize the trajectory and radio resources for multiple drones to
deliver sensitive and critical data in vehicular networks on highways during accidents and
disaster conditions [96]. Their aim is to minimize the number of deployed drones for full
service to all vehicles. The formulated problem is the NP-hard type. To solve this problem,
the authors have used a sequence of convex approximations. Then, they presented an
efficient algorithm to solve this sequential problem.

Jiang et al. investigated the optimal path of drones equipped with multiple antennas
to maximize the sum rate in relay communications [97]. The output of the relay-based
drone system is maximized by jointly optimizing the drone path and the transmission
power of the source/relay.

Dogancay studied path planning for multiple drones for passive emitter localiza-
tion [98]. In this work, a set of path points leading to minimum localization is determined
using the angle of arrival and time difference of arrival information. However, Dogancay’s
work is limited to localization and does not directly address any wireless communication
problem. Ultimately, controlling the independent motion of UAVs requires low complexity,
and therefore, implementable algorithms for UAV movement can achieve the maximum ef-
ficiency spectrum under realistic traffic scenarios. Finding a movement path that minimizes
such interference becomes more challenging when BSs do not reside in the same location.
The author also proposed an optimal movement pattern for multiple mobile phone BSs
to maximize the lifetime of a wireless sensor network (WSN) and, accordingly, examined
three movement patterns: random, grid, and spiral movement patterns.

Fadlullah et al. proposed a dynamic motion control algorithm for drones in [99]. This
algorithm considers drones experiencing overcrowding and communication delays due to
queuing above a threshold. To alleviate congestion in drones, their coordinates’ center and,
if necessary, their path radius are adjusted by this algorithm.

In [100], He et al. aim to optimize a three-dimensional path for multiple drones
using ground devices (GDs) to select the target drone for offloading processing. Initially,
they developed a three-dimensional mobile edge computing system with the assistance
of multiple drones, allowing GDs to update tasks and enable real-time mobility. Then,
they developed objective functions fairly distributing tasks among drones for computation,
communication, and system energy consumption during flight.

Hu et al. investigated how to construct a path for a group of energy-limited drones
dynamically operating in different positions in a wireless network in [101]. In their model,
a group of drone base stations (DBSs) cooperatively dispatched to clusters of ground users
with dynamic and unexpected requests. Their goal was to maximize the coverage range of
users using a Value Decomposition-based Reinforcement Learning (VD-RL) approach.

3.3. Path Loss

Since the path loss is the most important factor for the attenuation, in previous works,
various articles have considered path loss as the main factor in service quality in the
problem of finding the optimal path.

Ji et al. in [102] have investigated the problem of secure transmission in a drone relay
network with caching and device-to-device communications, assuming the presence of
eavesdropping. Specifically, drone users and device-to-device (D2D) users are equipped
with cache memory, which can retrieve some popular content for shared service to other
users. The authors have formulated an optimization problem to maximize the minimum
concealment among users by jointly optimizing the user allocation, drone scheduling,
transmission power, and drone path in a limited period. The joint design problem is
a non-convex mixed-integer optimization problem. To efficiently solve this problem,
the authors have proposed an alternating iterative algorithm based on alternating block
coordinate descent and successive convex approximation methods. In particular, the user–
drone communication and scheduling, drone path, and transmission power are alternately
optimized in each iteration, and the convergence of the algorithm has been proven.
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Ji et al. in [103] have introduced a drone-based data transmission system using caching.
Their goal is to minimize power consumption among receiver users from the drone by
placing the cache memory and jointly optimizing the drone path and transmission power
in a limited period. The optimization variables related to the cache memory, drone path,
and transmission power are optimized alternately in three different blocks and periodically.
Also, a comparison in the case of one, two, or three drones has been studied.

Wu et al. in [104] jointly optimize the user scheduling and drone path to maximize the
average data rate among ground users. They consider a wireless communication system
where drones serve a number of ground users. Drones operate periodically. The selection of
the duration of the period has a significant impact on the system’s performance. A larger T
provides more time for drones to be close to users and create a stronger channel. However,
it increases the delay time for other users. So, the T value must be chosen properly. Each
drone must return to the initial point at the end of each period. Also, drone paths are
planned considering speed constraints and avoiding collisions.

Tang et al. in [105] aim to maximize the average power by jointly designing the
transmission power and movement path for an active network of UAVs. The common
method to deal with this problem is based on alternative optimization, with repeated
updates of power and path until convergence, resulting in a subproblem of finding a
non-convex path. To develop more efficient methods, the authors have proposed a new
alternating optimization method by combining power and path in an intermediate variable
and then updating the power and path variables again. This new variable decomposes
the main problem by turning it into two convex subproblems, namely a subproblem of
maximizing operational power and an easier feasibility subproblem. Therefore, both of
these subproblems can be solved globally. Tang et al. also propose an algorithm with
low complexity to ensure the solvability of the subproblem by utilizing the Alternating
Directional Method of Multipliers (ADMM), whose update step is performed in closed-form
solutions.

Zhao et al. in [106] provide a NOMA-based network that utilizes UAVs and BSs
simultaneously to cover users located on the ground. Their goal is to maximize the data
rate by jointly optimizing NOMA precoding and the UAV’s flight path. To achieve this,
they decompose the problem into two stages. First, they maximize the sum rate of the users
served by the UAV. Afterwards, they obtain the optimal NOMA encoding vectors through
two different schemes with distinct constraints. The first scheme focuses on eliminating
BS interference for the users served by the drone, while the second scheme limits the
interference to a specific threshold. In both cases, the initially non-convex optimization
problems are transformed into solvable forms using an iterative algorithm.

Zeng et al. in [107] consider a drone that delivers a shared file to a set of ground
terminals. Their goal is to optimize the trajectory to minimize the drone mission time.
The height is a constant and the minimum safe flight altitude. The obtained trajectory is
formed by a number of waypoints, and it is an extension of the traveling salesman problem
with the difference that it is not necessary to return to the starting point. Since the drone
can communicate with more than one user simultaneously, it does not need to be above
all users, so the number of line segments forming the trajectory is reduced. Therefore,
these waypoints and the instantaneous speed of the drone along the paths connecting
these waypoints must be optimally determined. The problem is reconstructed so that the
paths are designed to meet the minimum connection time constraint, during which the
horizontal distance between the drone and the terminal is less than a specified value. The
optimal speed of the drone for the given waypoints is also obtained by solving a linear
programming problem.

In their work [108], Xu et al. consider a drone as an energy transmitter, which is tasked
with charging a number of energy receivers on the ground. Their goal is to optimize the
drone’s path and maximize the amount of energy transferred to the energy receivers (ERs).
To ensure fair energy transfer, the problem is transformed into maximizing the minimum
received energy of ERs. The solution to this problem suggests finding points where the



Vehicles 2024, 6 1787

drone hovers for a certain period at each of these points and flies between these points at
its maximum speed. Then, the path must be specified in such a way that it meets all these
points and minimizes the time or, in other words, the minimum flight distance. Ground
users have fixed points; therefore, initially, specific points for the drone that have the
highest transmitted energy to users are created, and then the drone moves between these
points using an optimal routing algorithm. The optimal routing algorithm is also designed
based on the selected points. Initially, a number of points are selected as optimal points
for the drone to hover, and then a smooth movement according to the drone’s maximum
speed is created on these points.

In [109], Nguyen et al. developed a drone-assisted IoT system that maximizes the
amount of data collected from IoT devices while depending on the shortest flight paths of
drones. Then, a deep reinforcement learning-based method was developed to determine
the best path and operational power in a covered area. After training, the drone was able
to independently collect all the data from user nodes and improve the total data rate while
using fewer resources.

3.4. Interference

Some of the reviewed articles have overlooked the presence of interference within or
between cells in order to simplify the problem of finding drone paths. However, articles
such as [68,69,102,104,106] have considered this issue.

The first feature Huang et al. pointed out in [110] is the different perspectives on
users based on their QoS requirements, categorizing them into delay-sensitive and delay-
tolerant groups and jointly optimizing various parameters. Their objective is to maximize
the minimum rate of delay-sensitive users while minimizing the power allocation to
different users and the drone trajectory. They solved the problem by breaking it down into
two optimization subproblems: bandwidth/power allocation and routing, which were
optimized sequentially in two separate blocks while keeping the other fixed.

In [111], Chowdhury et al. address the problem of finding an optimal path for a drone
to improve the coverage of a ground mobile phone network. They assume that a drone trav-
els from one point to another within a specified time range and can simultaneously assist
the mobile phone network with coverage during its mission. Considering the downlink link
with cellular network interference constraints, the authors model an optimization problem
to maximize the fair data rate of the mobile phone network and explore dynamic program-
ming techniques to find the optimal drone path. They also investigate optimal drone paths
and compare the capacity and performance of three different coverage methods.

Ref. [112] examines the challenge of optimizing the flight paths of multiple UAVs
to minimize interference in next-generation wireless networks. The paper tackles the
issue of co-channel interference among UAVs when they are used as FBSs in beyond 5G
networks. The unit disk graph (UDG) model is employed to create interference-aware UAV
trajectories.

3.5. Non-Line-of-Sight Link

In previous works, the existence of obstacles has been disregarded in order to simplify
the problem of finding the optimal path. In this case, the assumption is that the com-
munication link between the drone/UAV and users is LoS. However, some articles have
acknowledged the inclusion of the NLoS link in their investigation.

Hu et al. in [113] considered scenarios where drones are tasked with real-time sensing
and solved the distributed drone path design problem using reinforcement learning. The
authors first extracted a sensing and transmission protocol for coordinating multiple
drones. To evaluate the performance of this protocol, they examined the successful data
transmission probability using Markov chain Monte Carlo methods. Then, after formulating
the drone path problem under the reinforcement learning framework, they proposed an
improved multi-agent Q-learning algorithm for effective problem solving.
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Zhang et al. in [114] studied a cellular drone system where a drone collectively
performs sensing and data transmission tasks to a base station. By optimizing data sensing
and transmission on the drone, the drone’s energy efficiency is maximized. Zhang et al.
divided this non-convex problem into two subproblems: data sensing optimization and
data transmission optimization to the base station. In the data sensing optimization section,
they designed the drone’s path and speed using convex optimization and differential
methods. In the data transmission optimization section, transmission power is optimized
using extremum principles.

3.6. Energy Limitation

In the problem of finding an optimal drone path, energy is one of the most challenging
and important constraints. Since the flight and movement of drones constitute a significant
portion of their energy consumption, many previous works have considered this crucial
factor in their problem-solving approaches.

Tang et al. in [115] proposed a combination of enhanced optimization algorithms,
including improved particle swarm optimization (PSO), artificial potential, the path ex-
ploration state change strategy, and the energy-based scheduling mechanism to optimize
global or local path planning. In their proposed model, the PSO algorithm improves based
on adaptive inertia weight updating and the mutation mechanism related to the number of
iterations, resulting in smoother global paths. Then, the artificial potential algorithm is used
for optimization to solve the problem of inaccessible target points and local minima. Finally,
the model comprehensively considers site information to achieve drone task scheduling.

Zhou et al. in [67] studied a secure cognitive drone communication network with a
high flexibility of drones and the ability to establish LoS links. The secondary network’s
average concealment with optimized drone movement path and transmission power is
maximized. The problem formulation encompasses two practical location estimation cases:
worst-case and outage-constrained scenarios. To solve the non-convex problems in this
formulation, an iterative algorithm based on the S-procedure for the worst-case and a
Bernstein-type inequality-based iterative algorithm for the outage-constrained case are
presented, which have found suboptimal solutions to the respective main problems.

Di Franco et al. in [116] proposed a drone path-planning algorithm for the visual
sensing of a specific geographical area. The proposed algorithm covers the entire area under
examination while minimizing the overall energy consumption for the drone. To achieve
this, the authors computed the optimal set of path points and the optimal speed for the
drone along the path between these points. Considering an avoidance of collisions, no-fly
zones, and altitude constraints, the optimal drone paths minimizing fuel consumption were
calculated using mixed-integer linear programming (MILP).

Another example of path optimization in the work of Mozaffari et al. in [39] is
observable. Specifically, they considered a scenario of an IoT network aided by UAVs,
where five UAVs are utilized for data collection from ground IoT devices. A set of 500 IoT
devices is uniformly distributed within a 1 km by 1 km geographical area. The IoT network
varies over time, where the total active IoT devices change over time based on a beta
distribution. Thus, to effectively serve the IoT devices, UAVs need to update their locations
according to the active device locations. In this model, predefined time slots are assumed
during which UAVs collect data from active IoT devices. At the end of each time slot (i.e.,
update time), UAVs update their locations according to the IoT device activation pattern.
With such a time-variable network, the objective is to find the optimal paths for UAVs so
that they can update their locations with minimal energy consumption while serving the
IoT devices along optimal routes.

Alsharoa et al. in [117] considered a wireless relay system composed of several mobile
users. In this system, users seek to transfer data to a common destination, but their distances
from each other are such that direct communication is not possible. The authors’ goal is to
optimize the energy consumption of the relay and the trajectories of the drones to maximize
the total data transmission from ground users to the destination. Each drone is assigned
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a predetermined path, which can be adjusted if necessary based on the drone’s energy
constraints and path constraints.

Zeng et al. in [118] proposed another wireless relay system, where the transmission of
signals from mobile devices to the base station is performed by a relay drone responsible
for the encryption and transmission of the signal. The drone performs decryption and
transmission operations and can improve communication quality by changing its location
and transferred energy. In the first stage of each time interval, the mobile device sends the
signal to the drone. Then, in the second stage, the drone decrypts, encrypts, and transmits
the signal to the base station. The probability of communication link failure is defined
as the probability that the received signal falls below a predetermined threshold. The
objective function minimizes the probability of link failure by optimizing the drone’s path
and transmission energy. Since the problem is non-convex, the authors decomposed it into
two subproblems. Since the first subproblem is still non-convex, it is solved separately
for each time interval. In the first phase of each time interval, the mobile device sends the
signal to the drone, and in the second phase, the drone decrypts, encrypts, and transmits
the signal. The probability of communication failure means that the signal-to-noise ratio
received falls below a lower threshold, which depends only on the transmission power in
that time interval.

Lyu et al. in [119] considered a single-cell communication system consisting of a drone,
a ground base station, and several mobile terminals. In this system, the ground base station
is located at the center of the cell. The optimal solution is obtained such that if the distance
of a mobile terminal from the ground base station is less than this value, it is served by
the ground base station, and if it is greater than this value, it is served by the drone. The
drone’s path is circular with constant speed and altitude, and it is centered at the location of
the ground base station. In each time interval, mobile terminals that are close to the drone
and can establish communication with it are scheduled. Thus, the objective is to maximize
the minimum power of all mobile terminals by optimizing the radius of the drone’s path
and the threshold distance from the ground base station to the user.

Zeng et al. in [120] considered a drone flying horizontally at a constant speed and com-
municating with a ground terminal, which was responsible for transmitting information
to it. The objective is to maximize the energy efficiency of the transmission by calculating
the total number of information bits sent to the ground terminal. This is achieved by opti-
mizing the drone’s path and considering its energy consumption. In general, the authors
presented a mathematical model for calculating the optimal circular path around a ground
station considering the speed, acceleration, energy consumption, and other constraints of
the drone.

Koyuncu et al. in [121] investigate the problem in two static and dynamic modes. In
the static mode, terminals have a constant density function, but in the dynamic mode, their
density changes over time. In the static mode, the goal is to find the optimal locations for
drones to minimize the average energy consumption. However, in the dynamic mode,
the objective is to find the optimal drone path while considering the constraint that the
total distance traveled does not exceed a certain value, aiming to minimize the average
energy consumption.

Wang et al. in [122] proposed an architecture for data offloading from smartphones
to satellites in low Earth orbit using drones as relays. By doing so, they improved the
connection time of smartphones, energy management, and drone path for network capacity
enhancement. Their approach involves using non-linear integer programming (NLIP)
for simulating the problem. Li et al. in [123] proposed an internal deep Q network for
minimizing the packet loss of sensor devices. They performed this by optimizing device
charging decisions, data collection strategies, and the instantaneous patrol speed of drones.

Wang et al. in [124] proposed an IoT network using drones, where a low-altitude drone
platform serves as both a mobile data aggregator and an aerial anchor node to assist ground
base stations in data collection and device localization. They introduced this method with
the goal of minimizing the maximum energy consumption of all devices.
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Zhan et al. in [125] considered a scenario where multiple drones collect data from a
group of ground sensor nodes. They examined the trade-off between aerial costs, which
include the energy consumption of propulsion and operational costs of all drones, and
ground costs, which are defined as the energy consumption of all sensor nodes. Their goal
was to minimize the weighted sum of these two costs by jointly optimizing the drone paths,
time allocation, and transmission power of all sensor nodes.

Kouroshnezhad et al. in [126] determined drone paths for servicing IoT devices based
on a connected graph. Their proposed method, known as Semi-dynamic Mobile Anchor
Guidance, uses a weighted search algorithm to determine the shortest energy path for
conservative planning with the goal of dynamically meeting nodes.

Building on prior work, [127] used fuzzy logic to optimize the positioning and trajec-
tory of FBSs in advanced cellular networks, particularly for enhancing emergency response
capabilities. While a detailed analysis awaits a full review of the paper, it is likely to intro-
duce the role of FBSs in next-generation (5G and beyond) networks, highlighting the critical
role of efficient deployment and movement strategies in emergency situations. The paper
is expected to discuss how fuzzy logic can be applied to address uncertainties inherent
in 3D positioning, which is a key factor for guaranteeing reliable communication during
emergencies. Furthermore, it is anticipated that the authors formulate an optimization
problem aimed at minimizing the number of deployed FBSs while maximizing network
coverage and connectivity for emergency services. The solution likely involves a fuzzy
logic-based algorithm that takes into account various constraints like energy consumption,
coverage area, and quality of service.

3.7. User Mobility

The movement of users and their change in positions result in exiting the coverage
range of base stations. In order to adequately cover and attend to them, the UAVs need
to relocate to more advantageous positions. Although the mobility of users is a prevalent
constraint in cellular networks, particularly in urban areas, only a few previous studies
have incorporated this assumption into their problem formulation. One reason for this
is that most previous works have been in the field of wireless sensors and IoT networks,
where drones have mainly been used for data collection from fixed points. However,
articles like [96,115] have taken user mobility into account in their problems and addressed
the problem of finding optimal drone paths.

In [128], Hou and colleagues proposed a neural network (NN)-based method for
optimizing discrete variables. They used a deep reinforcement learning-based pointer
network called Advantage Pointer-Critic (APC) and a deep unfolding NN for optimizing
continuous variables. To do this, they first created a Markov decision process to describe
user interactions; then, they trained the APC network using the Advantage Actor–Critic
method. The APC networks consisted of a pointer network and a multi-layer perceptron.
From the perspective of deep unfolding NN, they first developed a coordinate descent
method for optimizing FBS paths and transmission power; then, they incorporated the
algorithm into a trainable-parameter-layer NN.

Sobouti et al. in [18] investigate methods to improve energy efficiency in cellular
networks using FBSs. These UAV-based stations are crucial for expanding network coverage
and quality of service, but their energy consumption poses a challenge. The authors propose
a two-stage approach to optimize the 3D trajectories of multiple FBSs. In the first stage, they
determine the minimum number of FBSs required and their optimal positioning for each
network state. The second stage focuses on trajectory planning, where energy consumption
and flight distances are considered to find the most efficient path for each FBS. This stage
utilizes a binary linear problem (BLP) model to optimize travel between the starting and
ending points while factoring in obstacles and avoiding collisions. Finally, the authors
introduce a FBS set management (FSM) technique to manage the set of active FBSs and
their power consumption efficiently, as the number of stations required can fluctuate.
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3.8. Insight for Future Studies

Previous studies on optimizing drone paths have focused on three aspects: control
and navigation, localization, and wireless communications. Specifically, in works related to
drone/UAV communications, path optimization has been performed considering energy
consumption, data rate, and reliability. For the effective use of drones in wireless networks,
drone paths need to be optimized considering wireless metrics such as operational power,
coverage, and the additional energy constraints of the drones. While optimizing both path
and communications is a challenging task, it can significantly improve the performance of
wireless networks managed by drones. Table 2 presents a comparison of previous works in
the field of optimizing drone movement paths. Generally, path planning and the security
of communications are studied well in vehicle applications, including UAVs [129,130].

Table 2. Comparison of the literature in the field of optimizing the trajectory of UAVs.

Paper 2D/3D Users
Mobility Interference Energy

Limitations
Single/Multi

UAV LoS/NLoS Attenuation

[18] 3D + + + Multi Both Path loss

[25] 3D - + - Multi LoS Path loss

[26] 3D + + + Multi LoS -

[67] 3D - - - Single LoS -

[68] 3D - + + Single LoS Path loss

[69] 3D - + + Single LoS Path loss

[70] 3D - - - Single LoS Rician fading

[71] 3D - + + Single LoS -

[72] 3D + + + Dual LoS Path loss

[76] 2D - - - Single LoS -

[77] 2D - - - Single LoS -

[78] 2D - - + Single - Path loss,
channel fading coefficients

[80] 2D - - + Single - -

[81] 2D - - - Single Both
Path loss,

small-scale fading,
obstacle shadowing

[84] 2D - - Energy
efficient Single - -

[85] 3D Random
waypoint - + Single LoS Free-space path loss

[86] 2D - - - Single LoS -

[87] 2D - + + Multi LoS -

[88] 2D + - + Single Both Fading

[89] 3D + - - Single LoS -

[90] 2D - - + Single LoS -

[91] 2D - - - Single LoS -

[92] 2D - - - Multi LoS -

[93] 2D - - + Multi - -

[94] 2D - - + Multi LoS -

[95] 2D - - + Multi - -
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Table 2. Cont.

Paper 2D/3D Users
Mobility Interference Energy

Limitations
Single/Multi

UAV LoS/NLoS Attenuation

[96] 2D + - - Multi LoS -

[97] 2D + - - Multi LoS Path loss

[100] 3D + - + Multi LoS -

[101] 2D - - - Multi LoS -

[102] 2D - + + Single LoS Path loss

[103] 2D - + + Multi LoS Path loss

[104] 2D - + + Multi LoS Path loss

[105] 2D - - + Single LoS Path loss

[106] 2D - + - Single LoS Path loss

[107] 2D - - + Single LoS Path loss and
Rician fading

[108] 2D - - + Single LoS Path loss

[110] 2D - + + Single LoS -

[111] 2D - + - Single - Path loss

[112] 3D - + + Multi Both -

[113] 2D - - - Multi Both Path loss

[114] 2D - - + Single Both Path loss

[115] 2D + - + Single LoS -

[117] 2D + - + Multi Both Path loss

[118] 3D - - + Single - Path loss

[121] 2D - - + Multi LoS Path loss

[122] 3D + + + Single LoS -

[123] 2D - - - Single LoS -

[124] 3D - - + Single LoS -

[125] 2D - - + Multi LoS -

[126] 2D - - + Single LoS -

[127] 3D + - + Multi Both Path loss

Hot research topics in the trajectory planning of UAVs within wireless networks
include the development of adaptive path optimization algorithms that enable UAVs to
dynamically adjust their flight paths in real time to maximize network coverage, minimize
energy consumption, and reduce latency. Nowadays, the usage of machine learning
and artificial intelligence techniques, such as reinforcement learning and deep learning,
helps create intelligent UAV trajectory models that can autonomously navigate complex
environments while maintaining optimal communication links with ground users and
other network nodes. Another significant research interest involves the integration of UAV
trajectory planning with non-terrestrial networks (NTNs), such as satellite and high-altitude
platform systems (HAPSs), to provide seamless connectivity in remote or underserved
areas. Additionally, research is exploring the impact of UAV trajectories on network
performance metrics, such as throughput, spectral efficiency, and interference management,
and developing algorithms that consider these factors to optimize the overall quality of
service. Multi-UAV coordination for collaborative trajectory planning is another emerging
area, where the focus is on designing decentralized algorithms that enable a fleet of UAVs
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to work together to enhance coverage, capacity, and network resilience. Furthermore,
addressing challenges related to UAV trajectory security, such as preventing eavesdropping
and jamming attacks, is becoming increasingly critical in ensuring secure and reliable
communication in UAV-assisted networks. Finally, research is also focusing on the impact
of environmental factors, such as wind, weather, and obstacles, on UAV trajectories and
developing robust path-planning strategies that account for these uncertainties to ensure
safe and efficient flight paths in diverse operating conditions. Moreover, trajectory planning
for tethered UAVs is also drawing attention these days. Managing connected tethered
UAVs presents a formidable challenge to tackle.

This survey has examined various research articles, categorizing them based on their
approaches to the problem environment. Recognizing the importance of solution methods,
the paper compares a selection of these works in Table 3. This comparison reveals that
most prior studies lack real-world applicability, often neglecting crucial considerations
in their problem formulations. Furthermore, as the application of UAVs in wireless net-
works is increasingly prevalent, and positioning and trajectory optimization are critical to
the performance of any method, this article provides researchers with a comprehensive
understanding of the key challenges in this field.

Table 3. Comparison of different works in the field of optimizing the trajectory of UAVs from the
point of view of problem solving.

[89] [90] [123] [124] [91] [68] [125] [92] [109] [128] [18] [127]

Trajectory design * * * * * * * * * *

3D trajectory * * * * *

Uplink * * * * * * *

Downlink * * * *

Obstacle consideration * *

Dynamic environment * * * * * * *

Sum-rate maximization * * * * * * *

Energy optimization * * * *

Time minimization * * * *

Mathematical solution * * * * * *

4. Conclusions

The integration of UAVs into mobile networks offers significant potential to enhance
network performance, providing critical services such as coverage extension, improved
throughput, and increased energy efficiency. However, the challenges of optimal UAV
placement and trajectory design remain complex, involving a balance of multiple objectives
and constraints. This survey has reviewed the current state of research in this domain,
highlighting the objectives, models, and methods used in UAV placement and trajectory
optimization. The analysis reveals that while significant progress has been made through
various optimization techniques, heuristic algorithms, machine learning approaches, and
distributed solutions, there remain several open challenges that require further investi-
gation. Future research should focus on addressing these challenges, particularly in the
areas of dynamic and adaptive optimization, real-time decision making, and the integra-
tion of UAVs in more complex and heterogeneous network environments. Advances in
these areas will be crucial for realizing the full potential of UAVs in enhancing mobile
network performance. In our future research, we explore the development of hybrid opti-
mization frameworks that combine up-to-date machine learning methods with traditional
optimization techniques to better adapt to the dynamic nature of UAV-assisted wireless
networks.
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Abbreviations

Full Name Abbreviation
Unmanned aerial vehicles UAV
flying base stations FBS
quality of service QoS
line of sight LoS
non-line of sight NLoS
air-to-ground A2G
user equipment UE
channel state information CSI
Mixed-Integer Programming MIP
Artificial Bee Colony ABC
Global Positioning System GPS
Visible Light Communication VLC
Gated Recurrent Units GRU
Convolutional Neural Network CNN
Internet of Things IoT
signal-to-noise ratio SNR
Successive Convex Approximation SCA
Low-Altitude Platform LAP
drone base stations DBSs
Quality of Experience QoE
base stations BSs
Flower Pollination Algorithm FPA
Salp Swarm Algorithm SSA
Sine Cosine Algorithm SCA
Mixed-Integer Second-Order Cone Problem MISOCP
bat algorithm BA
improved bat algorithm IBA
polyblock Outer Approximation POA
deep reinforcement learning DRL
multi-objective particle swarm optimization MOPSO
Monte Carlo tree search MCTS
transfer learning TL
multiple-input multiple-output MIMO
optimal deadline-based trajectory ODT
deep learning trained with genetic algorithm DL-GA
wireless sensor networkv WSN
non-linear integer programming NLIP
Value Decomposition-based Reinforcement Learning VD-RL
device-to-device D2D
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Alternating Directional Method of Multipliers ADMM
particle swarm optimization PSO
Advantage Pointer–Critic APC
binary linear problem BLP
FBS set management FSM
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