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Abstract—The objective of this paper is to present a groundwater potential zoning map for the Hezar Masjid highlands, located 

northeast of Mashhad, using the Random Forest (RF) machine learning model. The zoning map was developed based on the 

locations of 1,438 springs in the area and 16 factors influencing groundwater potential. The model's performance was assessed 

using various statistical criteria, including the area under the receiver operating characteristic (ROC) curve (AUC = 0.93), 

indicating excellent accuracy. 
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INTRODUCTION 

With the decline in alluvial groundwater 

resources, attention has increasingly turned to 

karst groundwater. Approximately 7 to 12 

percent of the Earth's surface crust consists of 

karst formations [2], and karst watersheds 

contribute significantly to drinking and 

agricultural water supplies. Therefore, 

identifying areas with high karst groundwater 

potential is both important and necessary. 

The findings of Nugroho et al. (2024) on 

groundwater potential demonstrated that the 

Random Forest (RF) machine learning model 

outperforms artificial neural networks and 

support vector machines [4]. Similarly, in 2024, 

Ragragui et al. investigated groundwater 

potential using machine learning and deep 

learning models, concluding that hybrid models 

deliver the best performance [5]. 

geographical location and springs 
The study area is located in the northeastern 

part of Mashhad city in Khorasan Razavi 

province, spanning a geographical range of 

36°07'35" to 37°37'30" north latitude and 

58°05'00" to 61°15'35" east longitude. Springs 

are indicative of locations with maximum 

groundwater potential in a given area. Therefore, 

all 1,438 existing springs in the region, along 

with three times as many non-spring points 

randomly selected within the area, were used in 

the model. 

MATERIALS & METHODS 

A. Selection and analysis of factors affecting 

groundwater potential: 

Due to the complexity of groundwater 

dynamics, selecting the factors influencing 

groundwater potential is highly challenging. 

However, based on the conditions of the study 

area and findings from previous research, 16 

factors were considered Table 1. 

Table 2. Groundwater Influencing Factors  

Data Layers 

Aspect  

Slope 

Convergence Index 

Sediment Power Index (SPI) 

Melton Ruggedness Number (MeRugNu) 

Multi-Resolution Ridge Top Flatness (MRRTF) 

Multi-Resolution Valley Bottom Flatness (MRVBF) 

Slope Length (LS) 

Lithology 

Distance to Faults 

Faults Density 

Distance to lineaments 

Lineaments density 

Distance to Streams 

Streams density 

Normalized Difference Vegetation Index (NDVI) 
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In factor analysis, multicollinearity refers to 

the lack of independence among dependent 

variables in the dataset. The variance inflation 

factor (VIF) is used to analyse multicollinearity 

in the dependent variable data “Eq. (1) “. 

VIF =
1

1 − 𝑅𝑘
2                                                 (1) 

Where: 𝑅𝑘
2 is the squared error rate for each 

regression run. 

 

B. Algorithm: 

The Random Forest (RF) algorithm, which is 

based on a collection of Classification and 

Regression Trees (CART) [1], serves as a 

powerful tool for analyzing complex 

relationships between various variables in 

hydrogeological studies. This algorithm operates 

by creating multiple decision trees, each trained 

on a random sample of the data and a random 

subset of features [3]. 

A decision tree is an effective machine 

learning tool used to classify data. It employs a 

tree structure to break down complex decisions 

into a series of simpler ones. Each node in the 

tree poses a question, and each branch represents 

a possible answer to that question. Ultimately, 

the leaves of the tree correspond to different 

classes into which the data is categorized. 

The RF model is trained using 75% of the 

data, and its performance and accuracy are 

evaluated with the remaining 25%. 

C. Model evaluation: 

The validation approach is based on 

calculating four parameters: true positive, true 

negative, false positive, and false negative. 

These parameters are determined by evaluating 

how accurately spring pixels are classified as 

springs or non-springs in the training and test 

datasets. 

Statistical metrics for model comparison 

include accuracy, precision, false positive rate 

(FP-Rate), Matthews correlation coefficient 

(MCC), root mean square error (RMSE), mean 

absolute error (MAE), and the Kappa index. 

Higher values of sensitivity, specificity, 

accuracy, precision, FP-Rate, and MCC indicate 

better model performance, especially when 

RMSE and MAE values are close to zero. 

A Kappa index value of 1 indicates a perfect 

model, whereas a value of -1 signifies an 

unreliable model. All equations used to calculate 

these parameters are provided in “Eq. (2)-(11) “. 

 

Accuracy =
TN +  TP

TP +  FPx +  TN +  TP
                         (2) 

Specificity =
TN

FP +  TN
                                                   (3) 

Sensitivity =
TP

TP +  FN
                                                   (4) 

FPRate =
FP

FP +  TN
                                                          (5) 

Precision =
TP

TP +  FP
                                                       (6) 

MCC =
TP ×  TN −  FP ×  FN

√(TP +  FP)(TP +  FN)(TN +  FP)(TN +  FN)
  (7) 

Kappa =
Accuracy −  B

1 −  B
                                                  (8) 

B =
(TP +  FN)(TP +  FP) +  (FP +  TN)(FN +  TN)

√TP +  TN +  FN +  FP
    (9) 

RMSE =  √
1

n
∑(XP − XA)2

n

i=1

                                            (10) 

MAE =  
1

n
∑|(XP − XA)|                                                  (11)

n

i=1

 

RESULTS 

Based on the calculations, all 16 selected 

factors have a variance inflation factor (VIF) 

below 10, indicating no significant 

multicollinearity. Therefore, all factors were 

retained and used for modelling. The resulting 

map was categorized into five classes "Fig. 1". 

 
Fig. 1 Groundwater Potential Zoning Map using RF model 
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As shown, most of the content from the 

validation and training datasets falls into the 

high and very high classes. The validation 

results indicate that the model has achieved an 

acceptable score in the statistical parameters 

Table 2. Finally, in terms of the area under the 

curve, the RF model performed well (AUC = 

0.93). 

Table 3 Model Metric of RF Model 

Model Metrics RF Model 

Accuracy 0.8908 

Precision 0.8456 

Specificity 0.9616 

Sensitivity 0.6667 

False Positive rate (FP-Rate) 0.0384 

Matthews correlation coefficient (MCC) 0.6850 

Root Mean Square Error (RMSE) 0.3304 

Mean Absolute Error (MAE) 0.1092 

Kappa 0.6773 

Area Under Curve (AUC) 0.9300 

CONCLUSION 

In this study, GIS, remote sensing, and 

machine learning algorithms have been used to 

assess groundwater potential. Additionally, the 

novel aspect of this study is its attempt to 

integrate as many variables as possible that 

influence groundwater potential, including 

geological, topographic, hydrological, climatic, 

and land cover factors. Sixteen factors were 

considered, confirming the multicollinearity 

analysis of their influence and the applicability 

of these layers for potential detection. The 

Random Forest model was selected due to its 

satisfactory results in other regions worldwide. 

The performance and stability of the model were 

evaluated using several statistical criteria, which 

provided very good results for its application in 

this area. Finally, the developed methodology in 

this study may be useful for identifying potential 

groundwater areas, especially in mountainous 

regions with difficult access and areas where 

expensive exploration geophysical methods are 

challenging to apply over large extents. 
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