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Abstract It is well-established that the dimensional reduc-
tion of the classical effective action of string theory at any
order of α′ on a circle of arbitrary radius remains invariant
under the higher-derivative extension of Buscher transfor-
mations. In this study, we investigate the extension of this
symmetry to higher-genus levels. By leveraging the validity
of Buscher rules for any genus of the world-sheet, we find
that the measure of the effective action remains invariant only
when reduced on a self-dual circle. Our findings indicate that
the invariance of the Lagrangian density under the higher-
derivative and higher-genus extension of the corresponding
restricted Buscher rules does not yield the one-loop effective
action at order α′3 as derived by the S-matrix method. This
result aligns with the general belief that quantum gravity has
no global symmetry.

The spacetime effective action in string theory features a
double expansion in terms of the world-sheet genus g and
the spacetime derivative parameter α′. Various methods are
available to determine the α′-expansion, including the non-
linear sigma model [1], T-duality [2], supersymmetry [3], and
S-matrix method [4,5]. The supersymmetry method, appli-
cable exclusively to superstring theory, leverages spacetime
supersymmetry to derive the effective action. In contrast, the
non-linear sigma model, and T-duality methods utilize the
conformal symmetry of the world-sheet-a fundamental sym-
metry present in all string theories, which is considered more
fundamental than supersymmetry.

In the non-linear sigma model, the α′-expansion of the
equations of motion at a given order of g can be determined
by ensuring that the 2-dimensional non-linear sigma model
remains conformally invariant up to that order. By employing
2-dimensional field theory techniques, one can compute the
beta functions of the field theory up to a given order of g.
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Setting the sum of these beta functions to zero,
∑g

n=0 βn =
0, allows for the derivation of the equations of motion [6],
from which the effective action can be obtained. The beta
function at each order of g has its own α′-expansion, which is
related to loop calculations in the 2-dimensional field theory.
Specifically, the beta function at order α′m corresponds to
(m + 1)-loop calculations. This method has been used at the
sphere level (β0 = 0) to determine the gravity couplings up
to order α′3 [8,9], and at the torus level (β0 +β1 = 0) to find
the cosmological constant of the bosonic string theory [7].

The conformal symmetry of the world-sheet theory
implies that the non-linear sigma model in two different
spacetime backgrounds, each with its own isometries, are
related by Buscher transformations [10,11], which are inde-
pendent of the genus of the world-sheet [12]. Consequently,
this conformal symmetry suggests that the spacetime effec-
tive action of string theory may be symmetric under an exten-
sion of the Buscher transformations, which receive α′- and
g-corrections. This symmetry has been applied at the sphere
level to determine NS–NS couplings up to order α′3 [13–
15], which are consistent with sphere-level S-matrix calcula-
tions. The corresponding Buscher transformations do receive
higher-derivative corrections [13]. It has been proposed in
[16] that certain NS–NS couplings at order α′3 in type II the-
ory, derived from one-loop S-matrix calculations, transform
covariantly under Buscher transformations. In this paper, we
examine the possibility that the sphere-level symmetry can
be extended to higher genus as well, by including genus and
higher-derivative corrections to the Buscher rules.

Consider the simple case where the background fields
in the sigma model are independent of the Killing coordi-
nate y. In this scenario, the two background NS–NS fields

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-025-14060-w&domain=pdf
http://orcid.org/0000-0002-8992-2372
mailto:garousi@um.ac.ir


  317 Page 2 of 5 Eur. Phys. J. C           (2025) 85:317 

�, Bαβ,Gαβ and �′, B ′
αβ,G ′

αβ are related by the following
Buscher rules [10]:

e2�′ = e2�

Gyy
; G′

μy = Bμy

Gyy
;G′

μν = Gμν − GμyGνy − Bμy Bνy

Gyy

G′
yy = 1

Gyy
; B′

μy = Gμy

Gyy
; B′

μν = Bμν − BμyGνy − Gμy Bνy

Gyy
(1)

where μ, ν denote any direction other than y. In above trans-
formation the metric is in the string frame. These global trans-
formations form a Z2 group. The aforementioned transfor-
mation is valid for any world-sheet genus (see e.g., [17,18]).
The measure of the tree-level effective action, given by
e−2�

√− det Gαβ , is invariant under this transformation. The
tree-level Lagrangian density, at any order ofα′, is also invari-
ant under the higher-derivative extension of the aforemen-
tioned transformations. The higher-derivative extension of
the Buscher rules also form a Z2 group [13–15].

At higher genus, the leading α′ order term of the effective
action is the cosmological constant term. The cosmological
constant of the bosonic string theory at g = 1, which is
non-zero (see e.g., [19,20]), is

√− det Gαβ C and may be
invariant under the Buscher transformation. More generally,
at the g-loop level, the measure of the effective action of ori-
ented closed string is e2(g−1)�

√− det Gαβ , which may also
be invariant under the Buscher transformation. However, this
measure is not invariant under the classical Buscher rules (1).
Given that the leading-order T-duality transformations hold
true at each genus order, it can be observed that the measure
remains invariant only when the Killing circle is self-dual,
i.e., Gyy = 1 for g > 0. Therefore, if one considers the fol-
lowing genus expansion for the effective action of oriented
closed string theory:

S ∼
∞∑

g=0

∫

dDx e2(g−1)�
√− det Gαβ Lg (2)

one may expect the Lagrangian density Lg to be invariant
under the following restricted Buscher transformation for
g > 0:

�′ = �; G′
μy = Bμy;G′

μν = Gμν − (GμyGνy − Bμy Bνy)

B′
μy = Gμy; B′

μν = Bμν − (BμyGνy − Gμy Bνy) (3)

The Lagrangian density Lg at genus g possesses its own
α′-expansion. At the leading order of α′, it may be invari-
ant under the aforementioned restricted Buscher transforma-
tions. Furthermore, all higher-order terms in α′ may be invari-
ant under the higher-derivative and higher-genus extensions
of these transformations.

Considering that the overall dilaton factor in the effective
action depends on the genus of the world-sheet, it is observed
that the higher-derivative extension of the restricted Buscher
transformations (3) should undergo a specific genus expan-
sion that respects the Euler characteristic of the oriented

world-sheet. Specifically, when the higher-genus expansion
is incorporated into the effective action, it should yield the
overall dilaton factor e2(n−1)� for n > 0. This principle
should similarly apply to higher-genus field redefinitions.
We investigate whether the effective action of string theory at
one-loop order remains invariant under the higher-derivative
extension of the aforementioned restricted Buscher transfor-
mations. Additionally, we consider the scenario where these
transformations receive a higher-genus expansion.

The extension of the classical Buscher transformation (1)
to the torus T (n) involves replacing Gyy with Qi j , where i
and j are the indices along the torus, and Qi j = Gi j + Bi j .
The self-dual restriction Gyy = 1 for the circular reduction
imposes the condition Qi j = δi j on the torus reduction. The
transformations of the NS–NS fields are then given by:

�′ = �; G′
μi = Bμi ;G′

μν = Gμν − (Gμi Gνi − Bμi Bνi )

B′
μi = Gμi ; B′

μν = Bμν − (Bμi Gνi − Gμi Bνi ) (4)

They indicate that the cosmological reduction of the loop
effective action lacks symmetry, in contrast to the classical
theory, which possesses the global O(d, d)-symmetry [21,
22]. However, there might be the global Z2-symmetry for
the torus reduction of the effective action for n < d. We
examine this symmetry specifically for circular reduction.

A similar question arises regarding the Z2-symmetry of
the effective action of unoriented type I string theory: Are
the genus corrections invariant under the restricted T-duality
transformations (3)? The first genus corrections in this case
correspond to the disk and projective-plane world-sheets.
Therefore, the open-closed string couplings are intrinsically
quantum effects and may be invariant under the restricted
T-duality transformations (3). In this context, the measure,
given by e−�

√− det Gαβ , is invariant under the Buscher
transformations (1). However, the Lagrangian density may
be invariant solely under the restricted Buscher transforma-
tion (3). This implies that the open-closed string couplings on
the Dp-brane world-volume which are quantum effect may
be invariant under the following restricted Buscher transfor-
mations:

A′
ã = Aã; �′ = �; G ′

μy = Bμy;G ′
μν = Gμν

−(GμyGνy − Bμy Bνy)

X ′μ = Xμ; A′
y = X y; B ′

μy = Gμy; B ′
μν = Bμν

−(BμyGνy − Gμy Bνy) (5)

where Aa is the world-volume gauge field, Xα are the
world-volume fields that embed the Dp-brane into space-
time, and the index ã denotes the world-volume direc-
tions other than the y-direction. In this case, the measure
e−�

√− det P[Gab + Bab] + Fab, where the pull-back is
P[Gab] = ∂a Xα∂bXβGαβ , is also invariant under classi-
cal transformations. However, the Lagrangian density may
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be invariant solely under the higher-derivative extension of
the above quantum transformation. In fact, we have per-
formed explicit calculations at order α′ for couplings involv-
ing the Riemann curvature, dilaton, the second fundamen-
tal form �ab

α , and Fab, considering the simple case where
Gμy = 0 = Bμy . We have attempted to fix the coupling con-
stants of these world-volume couplings by imposing invari-
ance under the higher-derivative extension of the classi-
cal Buscher transformation. However, we found that the T-
duality constraint yields zero results unless the couplings are
required to be invariant under the higher-derivative exten-
sion of the restricted transformation (5). Similar calculations
for classical couplings involving only the open string case
have been performed in [23]. This calculation indicates that
the open-closed couplings for non-zero Gμy and Bμy cannot
be invariant under the classical Buscher rules. They may, at
most, be invariant under the restricted Buscher transforma-
tions (5).

Let us examine the proposal that the one-loop effective
action of NS–NS fields in the heterotic theory is invariant
under the restricted Buscher transformation (3) for non-zero
Gμy and Bμy . Supersymmetry implies that the cosmological
constant is zero.1 Consequently, the leading α′-order action
consists of three independent terms: R, H2, and (∇�)2. Since
the dilaton remains invariant under the T-duality transforma-
tion (3), the T-duality constraint can be imposed in the case
of a constant dilaton. Therefore, we focus on the independent
couplings for the metric and the B-field only. The invariance
of the two couplings, R and H2, under the transformation (3)
determines the two coupling constants in terms of a single
factor as follows:

S0
1 ∼ a

∫

d10x
√−G

(

R − 1

12
H2

)

(6)

where a is the overall factor that cannot be fixed by T-duality.
The S-matrix method indicates that there are no one-loop cor-
rections to the leading-order classical effective action [25],
hence, a = 0.

At order α′, there is the freedom to use higher-derivative
field redefinitions at each genus. However, since the two-
derivative couplings at the one-loop level are zero, there is

1 It can be observed that a particular field redefinition can absorb
the tree-level effective Lagrangian e−2�(R + 4(∇�)2 − 1

12 H
2) into

the one-loop cosmological constant of the bosonic theory. Under such
field redefinitions, there would be no coupling in the tree-level effec-
tive action. A similar observation has been made in [24] for higher-
derivative field redefinitions in the tree-level effective action of non-
critical bosonic string theory. This apparent puzzle, where the field
redefinition absorbs the tree-level effective action into the one-loop
cosmological constant, is resolved by noting that this field redefinition
would also produce other higher-order couplings with overall dilaton
factors e−4�, e−6�, . . ., which are inconsistent with the Euler charac-
teristic of the world-sheet. Therefore, such field redefinitions are not
permissible.

no such freedom here. Using only the Bianchi identities and
integration by parts, we find that the basis consists of the
following 10 couplings:

S1
1 ∼ α′

∫

d10x
√−G

[
a1Hα

δεHαβγ Hβδ
εHγ εε

+a2Hαβ
δHαβγ Hγ

εεHδεε + a3Hαβγ H
αβγ HδεεH

δεε

+a7Hα
γ δHβγ δR

αβ + a4Rαβ R
αβ + a9Hαβγ H

αβγ R

+a5R
2 + a6Rαβγ δR

αβγ δ

+a10Hα
δεHαβγ Rβγ δε + a8∇γ Hαβδ∇δHαβγ

]
(7)

Here, a1, . . . , a10 represent the 10 coupling constants that
may be determined by T-duality. By imposing the constraint
that the circular reduction of these couplings be invariant
under the restricted Buscher transformation (3), we identify
the following two T-dual multiplets:

S1
1 ∼ α′

∫

d10x
√−G

[
a3(12R − H2)2 + a10

(
Hα

γ δHβγ δR
αβ − 1

4
Hαβ

δHαβγ Hγ
εεHδεε − 4Rαβ R

αβ

+Hα
δεHαβγ Rβγ δε − ∇γ Hαβδ∇δHαβγ

)]
(8)

This calculation is similar to the tree-level calculations [13],
where there are no two-derivative couplings at one-loop, i.e.,
a = 0 in (6), and hence no two-derivative corrections to
the transformation (3). Since there is no Riemann squared
term in the above T-dual multiplets, they can be removed
by using the tree-level equations of motion. This result is
consistent with the fact that there are no one-loop corrections
to the heterotic string theory for NS–NS couplings at order
α′ [26–29]. Since it is consistent with the S-matrix, we do not
consider the possibility that the transformations (3) receive
higher-genus corrections at order α′.

At order α′2, by utilizing the Bianchi identities and per-
forming integration by parts, we determine that the basis
comprises 70 parity-even and 13 parity-odd couplings. Since
there are no 2-derivative and 4-derivative couplings at one-
loop order, the T-duality transformation (3) does not receive
2- and 4-derivative corrections. The constraint that the 83
couplings be invariant under the transformation (3) produces
four T-dual multiplets. None of them include a Riemann
cubed term, and all of them are removable by using the tree-
level equations of motion. This result is again consistent with
the fact that there are no one-loop corrections for NS–NS
couplings at order α′2 in the heterotic theory [26–29]. Since
it is consistent with the S-matrix, we do not consider the
possibility that the transformations (3) receive higher-genus
corrections at order α′2. Producing a zero result for the cou-
plings, even though consistent with the S-matrix calculation,
is not enough to verify the proposal that the one-loop effec-
tive action is invariant under T-duality. One should produce
some non-zero couplings that are derived using the S-matrix
method.
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The first nontrivial T-dual multiplet in the heterotic the-
ory, which is not removable by tree-level equations of motion,
should appear at order α′3 because the one-loop gravity cou-
plings at this order are non-zero [26–29]. Moreover, the one-
loop corrections to type II theories also begin at this order
[26]. Since type IIA string theory transforms under T-duality
to type IIB string theory, one may expect SA → SB . Given
that the T-duality transformation satisfies the Z2 group, it is
generally expected that the NS–NS part of the effective action
in these two theories will have the following structures:

SA = S1 − S2 ; SB = S1 + S2 (9)

where S1 is symmetric under the T-duality transformation,
whereas S2 is antisymmetric. At tree-level and at order α′3,
S2 = 0, because S1 which is fixed by T-duality produces
all 8-derivative NS–NS couplings in type II theories [30].
However, the gravity couplings at the one-loop level indicate
that both S1 and S2 are non-zero, i.e., S1 = t8t8R4 + · · · and
S2 = 1

8ε10ε10R4 + · · · . Some of the five-field couplings in
S1 and S2 have been found in [16] through one-loop S-matrix
calculations.

We have performed the calculation at α′3 order for parity-
even couplings in the heterotic theory. The basis, which
includes all independent terms with more than two fields,
contains 937 couplings. Since there are no 2-, 4-, and 6-
derivative couplings at one-loop order, we must examine the
invariance of these 937 couplings under the T-duality trans-
formation (3), up to Bianchi identities and total derivative
terms in the base space. We have identified 9 T-dual multi-
plets. However, all of them are removable using the tree-level
equations of motion. The calculation is similar to the one
considered in [15].

We have also considered the 872 independent couplings
found in [31], where the equations of motion are used, and
assumed a constant dilaton. We examine different coupling
constants for these couplings in type IIA and type IIB. We
impose the condition that the transformation of the circular
reduction of type IIA couplings under the T-duality transfor-
mation (3) matches the circular reduction of the couplings in
type IIB. We found that this constrains all coupling constants
in types IIA and IIB to be zero. This is in contrast to the pro-
posal made in [16] that the one-loop couplings in type IIA
transform to type IIB under T-duality.

We have also performed the above calculation in the het-
erotic theory, assuming that the one-loop T-duality transfor-
mation (3) receives genus corrections at order α′3, resulting
in some non-zero contributions from the tree-level effective
action. In this case, the non-zero couplings that T-duality pro-
duces for gravity are exactly t8t8R4 + 1

8ε10ε10R4, which is
not the one-loop effective action of heterotic theory at this
order [27]. Instead, it is the classical effective action of type
II theory that has already been found [15] by imposing the
classical Buscher rules (1).

Therefore, our calculations indicate that the invariance of
the spacetime effective actions or the covariance of the D-
brane effective actions in string theory under the derivative
extension of the global Buscher transformations is valid only
for the classical theory. Given that string theory is a candidate
for quantum gravity, this result is consistent with the general
belief that quantum gravity has no global symmetry ( see e.g.,
[32]).
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