
979-8-3503-7467-4/24/$31.00 ©2024 IEEE

Reliability analysis in ARM big.LITTLE
heterogeneous multi-core processor for IoT

Mahin Moradiyan

Dependable Distributed Embedded Systems (DDEmS)

Laboratory
Computer Engineering Department

Ferdowsi University of Mashhad

Mashhad, Iran
m_moradiyan@mail.um.ac.ir

Yaser Sedaghat
Dependable Distributed Embedded Systems (DDEmS)

Laboratory
Computer Engineering Department

Ferdowsi University of Mashhad

Mashhad, Iran
y_sedaghat@um.ac.ir

Abstract— This study navigates the landscape of the Internet

of Things (IoT), spotlighting the escalating demand for robust

processing solutions, thereby propelling the pervasive adoption

of heterogeneous multi-core processors. Within this sphere, the

ARM big.LITTLE architecture takes center stage, adeptly

harmonizing high performance with energy efficiency. The

investigation zooms in on the pivotal role of failure-sensitive

applications in the IoT realm, critical domains like healthcare.

The paper underscores the indispensable need for failure

analysis concerning ARM big.LITTLE processors, unravel the

complexities of data flow errors (DFE) and control flow errors

(CFE). By providing insights into potential pitfalls and

strategies for fortifying reliability, the study contributes to the

evolving discourse on the resilience of ARM big.LITTLE

processors in the context of failure-sensitive IoT applications.

Also concludes by emphasizing the need for continued

exploration of optimal task mapping and fault tolerance

strategies, paving the way for future research to refine and

extend the reliability analysis of ARM big.LITTLE platforms in

evolving IoT landscapes.

Keywords—IoT, Reliability, Heterogenous Multi-core

processor, ARM big.LITTLE, ARM Cortex-A15, ARM Cortex A-

7.

I. INTRODUCTION

The relentless evolution of technology, underscored by the
emergence of the Internet of Things (IoT) and the advent of
smart cities, has propelled us into an era where
interconnectedness and data-driven capabilities define our
digital landscape [1], [2]. In navigating this transformative
journey, the reliability of computing systems takes center
stage, particularly in the intricate tapestry of IoT and smart
city environments. As the volume of data, diverse workloads,
and the integration of intelligent devices surge
unprecedentedly, the demand for robust processing
architectures becomes paramount. Heterogeneous multi-core
processors, a linchpin in addressing the computational
demands of this connected world, promise a delicate balance
between performance and efficiency [3], [4].

Departing from conventional monolithic architectures,
heterogeneous multi-core processors usher in a paradigm shift
in computational capabilities. Characterized by a diversity of
cores optimized for distinct tasks, these processors enable the
concurrent execution of a myriad of applications. In the
context of IoT, where a multitude of devices collaborate, and
smart cities, where urban infrastructure relies on intelligent
decision-making, the versatility of heterogeneous multi-core
processors becomes instrumental. They furnish the
computational agility necessary to handle diverse workloads,
optimizing performance and energy efficiency concurrently
[1].

Within the expansive realm of heterogeneous multi-core
processors, the ARM big.LITTLE architecture stands as a

beacon of innovation. Forged by ARM Holdings, this
architecture introduces a dynamic blend of high-performance
and energy-efficient cores within a single System-on-Chip
(SoC). The architectural prowess of ARM big.LITTLE lies in
its adaptability—it intelligently allocates tasks to the most
suitable core based on real-time processing demands. This
dynamic allocation ensures optimal performance while
conserving power, making it an ideal candidate for the diverse
computing requirements posed by IoT devices and the
intricate systems orchestrating smart cities [4]–[6].

The application of heterogeneous multi-core processors,
notably represented by ARM big.LITTLE architecture, finds
profound relevance in the expansive landscape of IoT. In IoT
ecosystems, where sensors, actuators, and smart devices
collaboratively generate and process real-time data, the need
for efficient and responsive processing becomes paramount.
ARM big.LITTLE's capability to seamlessly transition
between high-performance and energy-efficient cores ensures
that IoT devices can meet the demands of varying workloads,
striking a delicate balance between computational power and
energy conservation. This adaptability is essential for
sustaining the growth and scalability of IoT applications.

While the computational prowess of heterogeneous multi-
core processors is evident, the reliability of these systems
becomes a critical consideration. In the context of IoT and
smart cities, where uninterrupted functionality is paramount,
ensuring the reliability of processors like ARM big.LITTLE
is non-negotiable. The intricacies of unpredictable workloads,
environmental factors, and the demand for real-time
responsiveness underscore the imperative of reliability in
these systems. This article undertakes the exploration of
reliability evaluation in heterogeneous multi-core processors,
shedding light on methodologies and strategies to fortify the
robustness of these architectures, with a specific focus on
ARM big.LITTLE [5], [7], [8].

In the Internet of Things (IoT) realm, failure-sensitive
applications play a pivotal role in critical domains such as
healthcare. Consider a healthcare IoT application that
monitors and regulates medication delivery to patients with
chronic conditions. In this scenario, the failure of IoT devices,
such as sensors or drug infusion pumps, could severely affect
patient health. For instance, a failure to accurately measure
vital signs or administer medication could lead to incorrect
diagnoses, ineffective treatments, or potentially life-
threatening situations [8]. As these IoT applications become
increasingly integrated into healthcare systems, ensuring their
reliability and mitigating the risks associated with failures
becomes imperative for patient safety and overall system
effectiveness.

The ARM big.LITTLE processor, known for its energy-
efficient architecture, is extensively utilized in healthcare IoT

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

31

20
24

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
iti

es
, I

nt
er

ne
t o

f T
hi

ng
s a

nd
 A

pp
lic

at
io

ns
 (S

C
Io

T)
 |

97
9-

8-
35

03
-7

46
7-

4/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

Io
T6

25
88

.2
02

4.
10

57
01

43

Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

2

devices due to its ability to balance high performance and
power efficiency. In healthcare IoT, these processors may be
employed in monitoring devices, wearable health trackers, or
portable diagnostic tools. Failure analysis becomes crucial for
ARM big.LITTLE processors in healthcare IoT, as any
malfunction or downtime could compromise the real-time
processing of patient data, leading to delayed diagnoses or
incorrect medical interventions. Understanding the root
causes of failures, whether they stem from hardware issues,
software bugs, or external factors, is essential for enhancing
the reliability of these processors in healthcare applications.
Moreover, failure analysis aids in developing strategies for
fault tolerance, resilience, and system recovery, ensuring
uninterrupted and accurate healthcare services in IoT
ecosystems.

The paper is organized as follows, Section II meticulously
delineates our simulation and test injection methodology,
offering insights into the precision of our approach. Section
III shows the fault injection results and a nuanced soft fault
sensitivity analysis across diverse system configurations. In
Section IV, the article culminates in our conclusions and
forward-thinking ideas for future endeavors, providing a
cohesive narrative that traverses the landscape of related
works, methodological intricacies, empirical findings, and
overarching implications.

II. SIMULATION AND FAULT INJECTION

Within this section, we provide a comprehensive
exploration of our simulation and test injection methodology
tailored for a meticulous assessment of the reliability of
heterogeneous multi-core processors. Our specific focus
centers on the acclaimed ARM big.LITTLE architecture,
utilizing the ODROID-XU3 as a representative platform. This
choice stems from the ODROID-XU3's integration of ARM
Cortex-A15 and Cortex-A7 cores in a big.LITTLE
configuration, offering a real-world emulation of computing
scenarios encountered in IoT and smart city applications [9].

A. Platform Model

The ODROID-XU3 serves as the cornerstone for our
reliability analysis, presenting a versatile board with
indispensable features crucial for the evaluation of ARM
big.LITTLE architecture. This board is equipped with two
distinct clusters, each housing four ARM Cortex-A15 and
Cortex-A7 cores, providing a balanced configuration for
diverse computing workloads (Fig. 1.).

A pivotal aspect of the ODROID-XU3 is its support for
Dynamic Voltage and Frequency Scaling (DVFS), a feature
integral to the dynamic adjustment of voltages and frequencies
in response to the system's workload. DVFS, tightly
intertwined with operating frequencies, facilitates real-time
adaptations that are instrumental in optimizing power
consumption while preserving performance levels. This
capability is especially significant in the context of reliability
assessments for heterogeneous multi-core processors, where
efficiency and responsiveness are paramount.

The ODROID-XU3's dual-cluster architecture, specific
core configurations, and robust support for DVFS collectively
establish it as a formidable platform for our in-depth reliability
analysis. The inclusion of these features ensures a
comprehensive exploration of the ARM big.LITTLE
architecture's reliability, considering the nuanced dynamics

introduced by varying workloads and dynamic adjustments
facilitated by DVFS.

Fig. 1. ODROID-XU3 Diagram [10]

The gem5 simulator serves as a crucial tool in replicating
the intricate behavior of the ARM big.LITTLE architecture
within a controlled environment. Leveraging gem5's versatile
capabilities, we can meticulously configure various
parameters to ensure an accurate emulation of the ODROID-
XU3 platform. This simulator proves invaluable in creating
scenarios that allow for in-depth analysis of the system's
response to diverse workloads and fault conditions. Our
simulation methodology involves precision tuning of gem5
settings to closely mirror the intricacies of the selected
platform. Notably, we have conducted simulations in two
modes: bare metal and OS-based, aiming for a more
comprehensive and detailed analysis of the system's
performance and reliability under different conditions.

B. Benchmark

In our reliability analysis, we turn to the Mibench
benchmark suite, a versatile set of workloads carefully
selected for their representation of real-world application
scenarios. Mibench encompasses a diverse range of
benchmarks spanning automotive, consumer, and
telecommunications applications, making it a comprehensive
and representative suite for our evaluation.

Mibench workloads encapsulate various computing
patterns, including signal processing, data compression, and
automotive control applications. Each benchmark within the
suite is designed to stress specific aspects of system
performance, enabling a thorough examination of the
ODROID-XU3 platform under diverse scenarios. These
features make Mibench an ideal choice for our reliability
analysis, ensuring that our evaluation covers a broad spectrum
of workloads relevant to the complexities of IoT and smart
city applications.

The selection of Mibench is particularly relevant in the
context of IoT. IoT environments are characterized by the
collaboration of diverse devices, each with unique
computational demands. Mibench's diverse set of benchmarks
allows us to simulate realistic workloads encountered in IoT
scenarios, where devices must efficiently process data from
various sensors, actuators, and smart devices. By
incorporating Mibench in our reliability analysis, we ensure
that our evaluation reflects the intricate computing
requirements inherent in IoT ecosystems. This choice aligns
with the broader goal of understanding the reliability of the
ODROID-XU3 platform within the context of emerging
technologies such as IoT and smart cities.

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

32
Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

3

C. Fault Injection

In our reliability analysis, the introduction of controlled
faults is paramount to assess the robustness of the ARM
big.LITTLE architecture on the ODROID-XU3 platform
under real-world conditions. Fault injection allows us to
emulate various fault scenarios and observe the system's
response, shedding light on its vulnerability and recovery
mechanisms.

One of the fault injection techniques employed is the bit
flip, a method where a bit within the system's memory or
registers is intentionally toggled. This type of fault can
simulate the impact of cosmic radiation, electrical noise, or
other environmental factors leading to transient errors. In
addition to bit flips, we explore various fault types, including
transient and intermittent faults, mirroring the unpredictability
encountered in dynamic computing environments. These fault
types are essential to comprehensively evaluate the ODROID-
XU3 platform's resilience under diverse fault conditions.

The incorporation of fault injection techniques is
particularly relevant in the context of IoT. In IoT ecosystems,
devices are exposed to diverse and often unpredictable
environmental conditions. The reliability of processing units,
like the ARM big.LITTLE architecture, is crucial in ensuring
uninterrupted functionality in scenarios where IoT devices are
deployed. Fault injection provides insights into how well the
ODROID-XU3 platform can handle unexpected faults,
making it a valuable tool for assessing reliability in the context
of IoT applications. By simulating faults that may arise from
external influences, we gain a deeper understanding of the
ARM big.LITTLE architecture's robustness in sustaining
reliable operations within the intricate landscape of IoT and
smart cities.

The overarching goal of our simulation and fault injection
endeavors is to evaluate the reliability of the ODROID-XU3
platform with the ARM big.LITTLE architecture. By
subjecting the system to diverse workloads, environmental
conditions, and fault scenarios, we aim to unravel its
robustness. The insights gained from this comprehensive
evaluation will inform strategies to enhance the reliability of
heterogeneous multi-core processors, specifically focusing on
ARM big.LITTLE architecture, in the context of IoT and
smart city applications.

III. EXPERIMENTAL RESULTS

In this section, we unveil the results stemming from our
thorough evaluation of the ODROID-XU3 platform,
harmonized with the ARM big.LITTLE architecture. Our
assessment leveraged not only the MiBench benchmark suite
but also Matrix multiplication scenarios, all orchestrated
through the sophisticated gem5 simulator. These experimental
findings offer profound insights into the platform's nuanced
performance across diverse conditions and its adeptness in
withstanding faults. This contribution adds substantial depth
to our understanding of the platform's reliability within the
intricate landscapes of IoT and smart city applications.

A. Fault Injection

For our fault injection methodology, we developed a
software injector inspired by the approach outlined in [11]. In
the course of our experiments, this injector introduces faults
into the register bank of a designated core within the large
cluster and another core within the small cluster. By changing
one bit of the target register's value, the fault is simulated.

These target registers encompass a spectrum of elements,
spanning general-purpose registers to specific-purpose
registers like PC and LR. Specifically, Cortex-A15 comprises
16 general-purpose 32-bit registers, while Cortex-A7 boasts
31 general-purpose 32-bit registers. As the fault injection
process is identical for both cores, the fault injection is
executed solely on the first 16 general-purpose registers of
Cortex-A7, ensuring a consistent and controlled experimental
environment.

In our injection experiments, we employed a selection of
programs from the MiBench benchmark suite. This suite
encompasses various programs tailored for assessing the
performance of embedded systems, with a specific focus on
applications pertinent to IoT devices. Also, we have used
matrix multiplication:

• Bitcount: This program counts the number of set bits
in an integer. It is a simple arithmetic operation, which
can be relevant for IoT devices with low-power
requirements.

• JPEG Compression (JPEG): IoT devices with image
processing capabilities might benefit from evaluating
the performance of JPEG compression.

• GSM Encryption (GSM): Assessing the performance
of encryption algorithms like A5/1 used in GSM can
be relevant for IoT devices that require secure
communication.

• Patricia Tries (Patricia): IoT devices involved in
networking and IP address lookup may find this
program useful.

• FFT: Fast Fourier Transform is commonly used in
signal processing applications, which may be relevant
for certain IoT scenarios.

• Matrix multiplication benchmark: with matrices of 20
× 20 elements and data size of 32 bits.

The benchmarks employed for each core involve running
the same application code on both types of cores, enabling a
direct comparison of results to detect errors. Despite utilizing
identical program code, it's crucial to note that each core
operates with its instance of the program, residing in a
dedicated memory section. This distinction implies that, even
though the program code remains consistent, each core
accesses different memory addresses within the shared
memory. This architectural setup ensures that the evaluation
captures any divergences or errors that may arise due to the
unique memory interactions of each core, providing a
comprehensive assessment of the platform's reliability under
varied conditions.

Coresight, stands as an advanced debugging and tracing
technology seamlessly integrated into the architecture of both
large and small cores. This pivotal feature plays a crucial role
in significantly augmenting the platform's capabilities for
debugging and trace operations [7], [12]. Coresight offers
valuable insights into the intricate internal system behavior,
particularly during fault injection tests. Its seamless
integration contributes to the comprehensive understanding of
system dynamics, aiding in the identification and analysis of
issues that may arise under fault conditions. Figure 2 visually
underscores the strategic placement and functionality of
Coresight within the architecture, emphasizing its integral role
in enhancing the system's diagnostic capabilities.

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

33
Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

4

B. Data Flow Error

Data Flow Error is a category of error that pertains to
discrepancies or alterations in the flow of data within a system
[13], [14]. It encompasses instances where the expected or
actual data movement deviates from the established patterns
or protocols Throughout our extensive evaluation,
deliberately injecting over 5000 errors into the register bank
for each benchmark unveiled the nuanced effects of data
errors. On average, approximately 7% of injected faults
manifest as errors in the large core, while around 10% result
in errors in the small core. This discrepancy underscores the
substantial impact of Coresight in adeptly recording and
analyzing the system's response to errors. Additionally, it
highlights differences in the maximum execution frequency of
each core type, contributing to a comprehensive
understanding of how data errors influence the reliability of
the ARM big.LITTLE architecture.

In TABLE I. a comprehensive summary unfolds, detailing
the experimental fault injection results in the general-purpose
register under the bare metal simulation mode. This table
meticulously outlines the fault-to-error conversion for all
benchmarks, providing essential insights into the system's
behavior under fault conditions. Additionally, it includes
crucial information about the kernel responsible for
generating each error. Significantly, a discernible discrepancy
in the total number of errors surfaces between the two types of
kernels for each benchmark. This variance in error
occurrences illuminates each core type's nuanced behavior
and distinctive characteristics, offering valuable insights into
their respective responses to fault injections.

TABLE I. BARE METAL INJECTION FOR DFE

Type

of core

Fault injection

Benchmark Number of Fault Undetected

C
or

te
x-

A
15

Bitcount 5029 328 (6.52%)

JPEG 5038 362 (7.18%)

GSM 5126 353 (6.88%)

Patricia 5019 341 (6.79%)

FFT 5056 348 (6.88%)

MM 5108 372 (7.28%)

C
or

te
x-

A
7

Bitcount 5029 498 (9.9%)

JPEG 5038 537 (10.65%)

GSM 5126 522 (10.18%)

Patricia 5009 519 (10.36%)

FFT 5056 520 (10.28%)

MM 5108 551 (10.78%)

TABLE II. presents a comprehensive summary

delineating the experimental results of error injection in the
general-purpose register under OS-based simulation mode
with Ubuntu 18.04 operating system. This table systematically
outlines the fault-to-error conversion for all benchmarks,
providing crucial insights into the system's behavior under
fault conditions. Additionally, it includes pertinent
information about the kernel responsible for generating each
error. A discernible difference in the total number of surfaced
errors is evident between the two kernel types for each
criterion, shedding light on the nuanced behavior and

distinctive features inherent in each core type. This
information offers valuable insights into their respective
responses to fault injection, contributing to a comprehensive
understanding of the system's reliability under varied
conditions in the simulation mode based on the Ubuntu 18.04
operating system.

C. Control Flow Error

An aspect of fault-to-error conversion is Control Flow
Error (CFE), a type of error that deviates from the primary
system flow [11], [15]. To enhance our understanding of the
reliability of these systems, deliberate error injections were
performed using the following methods, enabling the
evaluation of system resilience to CFE:

• Injecting a Bit-Flip in PC and LR Registers: Simulating
faults by inducing bit-flips in critical registers,
specifically the Program Counter (PC) and Link Register
(LR), to observe the impact on the system's control flow.

• Injecting a Bit-Flip in a Branch Instruction: Deliberately
introducing bit-flips within branch instructions to assess
the system's response to altered control flow conditions.

TABLE II. OS-BASED INJECTION FOR DFE

Type

of core

Fault injection

Benchmark Number of Fault Undetected

C
or

te
x-

A
15

Bitcount 5087 297 (5.83%)

JPEG 5013 322 (6.42%)

GSM 5109 318 (6.22%)

Patricia 5108 309 (6.04%)

FFT 5019 314 (6.29%)

MM 5099 327 (6.41%)

C
or

te
x-

A
7

Bitcount 5087 431 (8.47%)

JPEG 5013 463 (9.23%)

GSM 5109 452 (8.84%)

Patricia 5108 449 (8.79%)

FFT 5019 453 (9.02%)

MM 5099 472 (9.25%)

• Replacing a Branch Instruction with a Non-Branch
Instruction: Experimenting with the substitution of a
branch instruction with a non-branch instruction,
simulating a scenario where the expected control flow is
intentionally disrupted.

• Removing a Branch Instruction: Deliberately eliminating
a branch instruction to gauge the system's adaptability
and resilience when faced with a sudden absence of
expected branching.

To scrutinize the effect of control flow errors, the
aforementioned fault injection techniques were employed to
simulate scenarios where control flow errors are intentionally
manipulated. More than 5000 faults were injected for each
benchmark, allowing for a comprehensive investigation into
how the system responds to deliberate alterations in control
flow, providing valuable insights into its resilience and
adaptability.

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

34
Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

5

TABLE III. presents a comprehensive summary of the
experimental results for control flow error injection in the
previously mentioned scenarios in bare metal simulation
mode. This table meticulously captures the fault-to-error
conversion for all metrics, offering essential insights into the
system's behavior under fault conditions. Crucially, it includes
pertinent information about the kernel responsible for
generating each error. A noticeable disparity in the total
number of surfaced errors emerges between the two kernel
types for each criterion. This discernible variation in fault
occurrences sheds light on the nuanced behavior and
distinctive features inherent in each core type, providing
valuable insights into their respective responses to fault
injection. presents a comprehensive summary of the
experimental results for control flow error injection in the
previously mentioned scenarios.

 In TABLE IV. provides a comprehensive summary of
experimental results for control flow error injection in the
previously mentioned scenarios under OS-based simulation
mode. This table accurately shows the fault-to-fault
conversion for all metrics and provides essential insights into
system behavior under fault conditions.

TABLE III. BARE METAL INJECTION FOR CFE

Type

of core

Fault injection

Benchmark Number of Fault Undetected

C
or

te
x-

A
15

Bitcount 5012 345 (6.88%)

JPEG 5160 372 (7.2%)

GSM 5138 381 (7.41%)

Patricia 5201 361 (6.94%)

FFT 5018 368 (7.33%)

MM 5098 391 (7.66%)

C
or

te
x-

A
7

Bitcount 5012 512 (10.21%)

JPEG 5160 531 (10.29%)

GSM 5138 564 (10.97%)

Patricia 5201 529 (10.17%)

FFT 5018 538 (10.72%)

MM 5098 576 (11.29%)

D. Reliability Analyse

In this section, we delve into the comprehensive analysis
of the reliability of the ODROID-XU3 platform equipped with
ARM big.LITTLE architecture, building upon the
experimental results and insights garnered from fault
injections, data flow errors (DFE), and control flow errors.
(CFE).

The capabilities of the tested board reveal a notable
observation – many faults do not transition into errors,
highlighting a positive aspect of ARM big.LITTLE systems.

This resilience to error manifestation underlines the
robustness of the architecture in mitigating the impact of
various faults. However, a crucial determinant in the fault-to-
error conversion process is the presence or absence of the
operating system. This factor significantly influences whether
a fault evolves into an error, emphasizing the intricate
interplay between hardware and software components in

shaping the reliability dynamics of the ARM big.LITTLE
architecture.

TABLE IV. OS-BASED INJECTION FOR CFE

Type

of core

Fault injection

Benchmark Number of Fault Undetected

C
or

te
x-

A
15

Bitcount 5019 298 (5.93%)

JPEG 5113 309 (6.04%)

GSM 5029 314 (6.24%)

Patricia 5201 319 (6.13%)

FFT 5167 340 (6.58%)

MM 5128 349 (6.8%)

C
or

te
x-

A
7

Bitcount 5019 465 (9.26%)

JPEG 5113 479 (9.36%)

GSM 5029 477 (9.48%)

Patricia 5201 496 (9.53%)

FFT 5167 499 (9.65%)

MM 5128 512 (9.99%)

Error Detection Rate (EDR) is a critical reliability analysis
factor that quantifies the effectiveness of a system in
identifying and detecting errors. It provides a quantitative
measure of the platform's capability to recognize faults or
anomalies within its operation. In the context of the ODROID-
XU3 platform with ARM big.LITTLE architecture,
understanding the Error Detection Rate involves assessing
how well the system can identify errors resulting from
intentional fault injections, data flow errors (DFE), and
control flow errors (CFE).

The EDR is typically expressed as a percentage and is
calculated using the formula [7], [16]:

��� = � ��	
��
� �������� ���
��
�
��� ��	
��
� �������� ������� × 100 (1)

Here, the "Number of Detected Errors" represents the

count of errors successfully identified by the platform during
the experimental evaluation. The "Total Number of Injected
Faults" corresponds to the intentional faults or errors injected
into the system for testing purposes. A higher Error Detection
Rate indicates a more robust and reliable system, as it implies
that a significant proportion of injected faults were
successfully detected. Conversely, a lower EDR may indicate
potential vulnerabilities in error detection mechanisms,
highlighting areas for improvement in the system's reliability.

In Fig. 2., we present a comprehensive evaluation of the
platform's reliability using the EDR factor. This evaluation
involves the systematic analysis of intentional fault injections,
data flow errors (DFE), and control flow errors (CFE). The x-
axis of Figure 1 represents different fault injection scenarios
and benchmarks, while the y-axis signifies the Error Detection
Rate as a percentage. Each data point on the graph corresponds
to a specific condition, providing a visual representation of
how well the platform identifies errors under various
circumstances.

Based on the results depicted in Fig. 2., several key
conclusions can be drawn. The analysis underscores that, to

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

35
Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 2. Error Detectin Rate Analysis

minimize power consumption and ensure reliability, ARM
big.LITTLE architectures serve as apt choices for IoT
systems. The ability to strategically map tasks onto different
clusters based on their importance and workload nature
contributes to the overall efficiency and dependability of the
system.

This conclusion aligns with the observation that the
ODROID-XU3 platform is equipped with ARM big.LITTLE
architecture, exhibits resilience and effectiveness in handling
intentional fault injections. The Error Detection Rate serves as
a valuable metric for quantifying the platform's robustness
under varied conditions, providing insights that can inform
strategic decisions in IoT and diverse computing applications.
The platform's heterogeneous nature and adaptability across
different benchmarks highlight its suitability for addressing
the challenges of reliability and energy efficiency in
contemporary computing scenarios.

IV. CONCLUSION AND FUTURE WORK

In summary, our investigation into the dynamic landscape
of the Internet of Things (IoT) has brought to light the
escalating demand for robust processing solutions, propelling
the widespread adoption of heterogeneous multi-core
processors, exemplified prominently by the ARM
big.LITTLE architecture. With a targeted focus on critical
sectors such as healthcare, where the reliability of failure-
sensitive applications takes precedence, our study accentuates
the vital need for tailored failure analysis specific to ARM
big.LITTLE processors. This study is a thorough reliability
analysis of the ODROID-XU3 platform under diverse
conditions. Employing deliberate fault injections, evaluating
data flow errors (DFE), scrutinizing control flow errors (CFE),
and considering the Error Detection Rate factor collectively
underscore the platform's resilience and adaptability.
Particularly noteworthy is the ARM big.LITTLE
architecture's effective fault management with minimal power
consumption, positioning it as a promising solution for
Internet of Things (IoT) systems. Our findings underscore the
significance of strategic task mapping across different clusters
based on workload characteristics, contributing significantly
to heightened reliability and efficiency in computing
environments.

Future work may delve into exploring the scalability of
ARM big.LITTLE architectures for larger systems, examining
real-world applications to broaden the scope of performance
analysis. Further investigation into advanced fault injection
techniques and the integration of additional metrics could

refine the evaluation process. Continuous refinement of fault
tolerance mechanisms and exploration of adaptive strategies
based on dynamic workload characteristics will advance the
reliability and performance of ARM big.LITTLE
architectures in evolving computing paradigms. The ongoing
pursuit of these directions will contribute to a deeper
understanding and optimization of heterogeneous computing
platforms.

REFERENCES

[1] V. Tambe, G. Bansod, S. Khurana, and S. Khandekar, “Reliability and

availability of IoT devices in resource constrained environments,”
International Journal of Quality and Reliability Management, pp.
1648–1662, 2022.

[2] S. Tian, W. Ren, Q. Deng, S. Zou, and Y. Li, “A Predictive Energy
Consumption Scheduling Algorithm for Multiprocessor
Heterogeneous System,” IEEE Transactions on Green
Communications and Networking, pp. 979–991, 2022.

[3] U. Ahmed, J. C. W. Lin, and G. Srivastava, “Heterogeneous Energy-
aware Load Balancing for Industry 4.0 and IoT Environments,” ACM
Transactions on Management Information Systems, 2022.

[4] C. Wang, X. Yu, L. Xu, and W. Wang, “Energy-Efficient Task
Scheduling Based on Traffic Mapping in Heterogeneous Mobile-Edge
Computing: A Green IoT Perspective,” IEEE Transactions on Green
Communications and Networking., pp. 972–982, 2023,

[5] M. N. M. Najib and D. A. Ramli, “Analysis of Smart IoT Portal Based
on Advanced RISC Machines (ARM) Processor for Fanless Heat
Maintenance, ” Lecture Notes in Electrical Engineering. Springer
Singapore, 2022.

[6] M. Z. Khan, O. H. Alhazmi, M. A. Javed, H. Ghandorh, and K. S.
Aloufi, “Reliable internet of things: Challenges and future trends,”
Electronics, pp. 1–22, 2021.

[7] M. Pena-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y.
Morilla, and P. Martin-Holgado, “Online error detection through trace
infrastructure in ARM microprocessors,” IEEE Transactions on
Nuclear Science, 2019.

[8] N. Taimoor and S. Rehman, “Reliable and Resilient AI and IoT-Based
Personalised Healthcare Services: A Survey,” IEEE Access , pp. 535–
563, 2022.

[9] G. S. Rodrigues, F. Rosa, Á. B. De Oliveira, F. L. Kastensmidt, L. Ost,
and R. Reis, “Analyzing the Impact of Fault-Tolerance Methods in
ARM Processors under Soft Errors Running Linux and Parallelization
APIs,” IEEE Transactions on Nuclear Science, pp. 2196–2203, 2017.

[10] ODROID-XU3 Hardware. (2017). Retrieved from
https://wiki.odroid.com/old_product/odroid-
xu3/hardware/xu3_hardware

[11] H. A. H. Ahmad, Y. Sedaghat, and M. Moradiyan, “LDSFI: A
lightweight dynamic software-based fault injection,” 2019 9th
International Conference on Computer and Knowledge Engineering
(ICCKE), pp. 207–213.

[12] S. M. A. Zeinolabedin, J. Partzsch, and C. Mayr, “Real-Time Hardware
Implementation of ARM CoreSight Trace Decoder,” IEEE Design and
Test, pp. 69–77, 2021.

[13] A. Lindoso, M. Garcia-Valderas, and L. Entrena, “Analysis of neutron
sensitivity and data-flow error detection in ARM microprocessors
using NEON SIMD extensions,” Microelectronics Reliability, p.
113346, 2019.

[14] M. Didehban, H. So, P. Gali, A. Shrivastava, and K. Lee, “Generic Soft
Error Data and Control Flow Error Detection by Instruction
Duplication,” IEEE Transactions on Dependable and Secure
Computing, pp. 78–92, 2024.

[15] H. A. H. Ahmad and Y. Sedaghat, “Software-based Control-Flow Error
Detection with Hardware Performance Counters in ARM Processors,”
Proceedings - 2022 CPSSI 4th International Symposium on Real-Time
and Embedded Systems and Technologies (RTEST).

[16] P. M. Aviles, A. Lindoso, J. A. Belloch, and L. Entrena, “Evaluating
reliability through soft error triggered exceptions at ARM Cortex-A9
microprocessor,” Microelectronics Reliability, p. 114323, 2021.

8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT2024)
Department of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, IRAN.

May 14-15, 2024

36
Authorized licensed use limited to: UNIVERSIDAD DE VIGO. Downloaded on June 30,2024 at 14:51:14 UTC from IEEE Xplore. Restrictions apply.

