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Abstract— This study navigates the landscape of the Internet 

of Things (IoT), spotlighting the escalating demand for robust 

processing solutions, thereby propelling the pervasive adoption 

of heterogeneous multi-core processors. Within this sphere, the 

ARM big.LITTLE architecture takes center stage, adeptly 

harmonizing high performance with energy efficiency. The 

investigation zooms in on the pivotal role of failure-sensitive 

applications in the IoT realm, critical domains like healthcare. 

The paper underscores the indispensable need for failure 

analysis concerning ARM big.LITTLE processors, unravel the 

complexities of data flow errors (DFE) and control flow errors 

(CFE). By providing insights into potential pitfalls and 

strategies for fortifying reliability, the study contributes to the 

evolving discourse on the resilience of ARM big.LITTLE 

processors in the context of failure-sensitive IoT applications. 

Also concludes by emphasizing the need for continued 

exploration of optimal task mapping and fault tolerance 

strategies, paving the way for future research to refine and 

extend the reliability analysis of ARM big.LITTLE platforms in 

evolving IoT landscapes. 

Keywords—IoT, Reliability, Heterogenous Multi-core 

processor, ARM big.LITTLE, ARM Cortex-A15, ARM Cortex A-
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I. INTRODUCTION 

The relentless evolution of technology, underscored by the 
emergence of the Internet of Things (IoT) and the advent of 
smart cities, has propelled us into an era where 
interconnectedness and data-driven capabilities define our 
digital landscape [1], [2]. In navigating this transformative 
journey, the reliability of computing systems takes center 
stage, particularly in the intricate tapestry of IoT and smart 
city environments. As the volume of data, diverse workloads, 
and the integration of intelligent devices surge 
unprecedentedly, the demand for robust processing 
architectures becomes paramount. Heterogeneous multi-core 
processors, a linchpin in addressing the computational 
demands of this connected world, promise a delicate balance 
between performance and efficiency [3], [4]. 

Departing from conventional monolithic architectures, 
heterogeneous multi-core processors usher in a paradigm shift 
in computational capabilities. Characterized by a diversity of 
cores optimized for distinct tasks, these processors enable the 
concurrent execution of a myriad of applications. In the 
context of IoT, where a multitude of devices collaborate, and 
smart cities, where urban infrastructure relies on intelligent 
decision-making, the versatility of heterogeneous multi-core 
processors becomes instrumental. They furnish the 
computational agility necessary to handle diverse workloads, 
optimizing performance and energy efficiency concurrently 
[1]. 

Within the expansive realm of heterogeneous multi-core 
processors, the ARM big.LITTLE architecture stands as a 

beacon of innovation. Forged by ARM Holdings, this 
architecture introduces a dynamic blend of high-performance 
and energy-efficient cores within a single System-on-Chip 
(SoC). The architectural prowess of ARM big.LITTLE lies in 
its adaptability—it intelligently allocates tasks to the most 
suitable core based on real-time processing demands. This 
dynamic allocation ensures optimal performance while 
conserving power, making it an ideal candidate for the diverse 
computing requirements posed by IoT devices and the 
intricate systems orchestrating smart cities [4]–[6]. 

The application of heterogeneous multi-core processors, 
notably represented by ARM big.LITTLE architecture, finds 
profound relevance in the expansive landscape of IoT. In IoT 
ecosystems, where sensors, actuators, and smart devices 
collaboratively generate and process real-time data, the need 
for efficient and responsive processing becomes paramount. 
ARM big.LITTLE's capability to seamlessly transition 
between high-performance and energy-efficient cores ensures 
that IoT devices can meet the demands of varying workloads, 
striking a delicate balance between computational power and 
energy conservation. This adaptability is essential for 
sustaining the growth and scalability of IoT applications. 

While the computational prowess of heterogeneous multi-
core processors is evident, the reliability of these systems 
becomes a critical consideration. In the context of IoT and 
smart cities, where uninterrupted functionality is paramount, 
ensuring the reliability of processors like ARM big.LITTLE 
is non-negotiable. The intricacies of unpredictable workloads, 
environmental factors, and the demand for real-time 
responsiveness underscore the imperative of reliability in 
these systems. This article undertakes the exploration of 
reliability evaluation in heterogeneous multi-core processors, 
shedding light on methodologies and strategies to fortify the 
robustness of these architectures, with a specific focus on 
ARM big.LITTLE [5], [7], [8]. 

In the Internet of Things (IoT) realm, failure-sensitive 
applications play a pivotal role in critical domains such as 
healthcare. Consider a healthcare IoT application that 
monitors and regulates medication delivery to patients with 
chronic conditions. In this scenario, the failure of IoT devices, 
such as sensors or drug infusion pumps, could severely affect 
patient health. For instance, a failure to accurately measure 
vital signs or administer medication could lead to incorrect 
diagnoses, ineffective treatments, or potentially life-
threatening situations [8]. As these IoT applications become 
increasingly integrated into healthcare systems, ensuring their 
reliability and mitigating the risks associated with failures 
becomes imperative for patient safety and overall system 
effectiveness. 

The ARM big.LITTLE processor, known for its energy-
efficient architecture, is extensively utilized in healthcare IoT 
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devices due to its ability to balance high performance and 
power efficiency. In healthcare IoT, these processors may be 
employed in monitoring devices, wearable health trackers, or 
portable diagnostic tools. Failure analysis becomes crucial for 
ARM big.LITTLE processors in healthcare IoT, as any 
malfunction or downtime could compromise the real-time 
processing of patient data, leading to delayed diagnoses or 
incorrect medical interventions. Understanding the root 
causes of failures, whether they stem from hardware issues, 
software bugs, or external factors, is essential for enhancing 
the reliability of these processors in healthcare applications. 
Moreover, failure analysis aids in developing strategies for 
fault tolerance, resilience, and system recovery, ensuring 
uninterrupted and accurate healthcare services in IoT 
ecosystems. 

The paper is organized as follows, Section II  meticulously 
delineates our simulation and test injection methodology, 
offering insights into the precision of our approach. Section 
III shows the fault injection results and a nuanced soft fault 
sensitivity analysis across diverse system configurations. In 
Section IV, the article culminates in our conclusions and 
forward-thinking ideas for future endeavors, providing a 
cohesive narrative that traverses the landscape of related 
works, methodological intricacies, empirical findings, and 
overarching implications. 

II. SIMULATION AND FAULT INJECTION 

Within this section, we provide a comprehensive 
exploration of our simulation and test injection methodology 
tailored for a meticulous assessment of the reliability of 
heterogeneous multi-core processors. Our specific focus 
centers on the acclaimed ARM big.LITTLE architecture, 
utilizing the ODROID-XU3  as a representative platform. This 
choice stems from the ODROID-XU3's integration of ARM 
Cortex-A15 and Cortex-A7 cores in a big.LITTLE 
configuration, offering a real-world emulation of computing 
scenarios encountered in IoT and smart city applications [9]. 

A. Platform Model 

The ODROID-XU3 serves as the cornerstone for our 
reliability analysis, presenting a versatile board with 
indispensable features crucial for the evaluation of ARM 
big.LITTLE architecture. This board is equipped with two 
distinct clusters, each housing four ARM Cortex-A15 and 
Cortex-A7 cores, providing a balanced configuration for 
diverse computing workloads (Fig. 1.). 

A pivotal aspect of the ODROID-XU3 is its support for 
Dynamic Voltage and Frequency Scaling (DVFS), a feature 
integral to the dynamic adjustment of voltages and frequencies 
in response to the system's workload. DVFS, tightly 
intertwined with operating frequencies, facilitates real-time 
adaptations that are instrumental in optimizing power 
consumption while preserving performance levels. This 
capability is especially significant in the context of reliability 
assessments for heterogeneous multi-core processors, where 
efficiency and responsiveness are paramount. 

The ODROID-XU3's dual-cluster architecture, specific 
core configurations, and robust support for DVFS collectively 
establish it as a formidable platform for our in-depth reliability 
analysis. The inclusion of these features ensures a 
comprehensive exploration of the ARM big.LITTLE 
architecture's reliability, considering the nuanced dynamics 

introduced by varying workloads and dynamic adjustments 
facilitated by DVFS. 

 
Fig. 1. ODROID-XU3 Diagram [10] 

The gem5 simulator serves as a crucial tool in replicating 
the intricate behavior of the ARM big.LITTLE architecture 
within a controlled environment. Leveraging gem5's versatile 
capabilities, we can meticulously configure various 
parameters to ensure an accurate emulation of the ODROID-
XU3 platform. This simulator proves invaluable in creating 
scenarios that allow for in-depth analysis of the system's 
response to diverse workloads and fault conditions. Our 
simulation methodology involves precision tuning of gem5 
settings to closely mirror the intricacies of the selected 
platform. Notably, we have conducted simulations in two 
modes: bare metal and OS-based, aiming for a more 
comprehensive and detailed analysis of the system's 
performance and reliability under different conditions. 

B. Benchmark 

In our reliability analysis, we turn to the Mibench 
benchmark suite, a versatile set of workloads carefully 
selected for their representation of real-world application 
scenarios. Mibench encompasses a diverse range of 
benchmarks spanning automotive, consumer, and 
telecommunications applications, making it a comprehensive 
and representative suite for our evaluation. 

Mibench workloads encapsulate various computing 
patterns, including signal processing, data compression, and 
automotive control applications. Each benchmark within the 
suite is designed to stress specific aspects of system 
performance, enabling a thorough examination of the 
ODROID-XU3 platform under diverse scenarios. These 
features make Mibench an ideal choice for our reliability 
analysis, ensuring that our evaluation covers a broad spectrum 
of workloads relevant to the complexities of IoT and smart 
city applications. 

The selection of Mibench is particularly relevant in the 
context of IoT. IoT environments are characterized by the 
collaboration of diverse devices, each with unique 
computational demands. Mibench's diverse set of benchmarks 
allows us to simulate realistic workloads encountered in IoT 
scenarios, where devices must efficiently process data from 
various sensors, actuators, and smart devices. By 
incorporating Mibench in our reliability analysis, we ensure 
that our evaluation reflects the intricate computing 
requirements inherent in IoT ecosystems. This choice aligns 
with the broader goal of understanding the reliability of the 
ODROID-XU3 platform within the context of emerging 
technologies such as IoT and smart cities. 
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C. Fault Injection 

In our reliability analysis, the introduction of controlled 
faults is paramount to assess the robustness of the ARM 
big.LITTLE architecture on the ODROID-XU3 platform 
under real-world conditions. Fault injection allows us to 
emulate various fault scenarios and observe the system's 
response, shedding light on its vulnerability and recovery 
mechanisms. 

One of the fault injection techniques employed is the bit 
flip, a method where a bit within the system's memory or 
registers is intentionally toggled. This type of fault can 
simulate the impact of cosmic radiation, electrical noise, or 
other environmental factors leading to transient errors. In 
addition to bit flips, we explore various fault types, including 
transient and intermittent faults, mirroring the unpredictability 
encountered in dynamic computing environments. These fault 
types are essential to comprehensively evaluate the ODROID-
XU3 platform's resilience under diverse fault conditions. 

The incorporation of fault injection techniques is 
particularly relevant in the context of IoT. In IoT ecosystems, 
devices are exposed to diverse and often unpredictable 
environmental conditions. The reliability of processing units, 
like the ARM big.LITTLE architecture, is crucial in ensuring 
uninterrupted functionality in scenarios where IoT devices are 
deployed. Fault injection provides insights into how well the 
ODROID-XU3 platform can handle unexpected faults, 
making it a valuable tool for assessing reliability in the context 
of IoT applications. By simulating faults that may arise from 
external influences, we gain a deeper understanding of the 
ARM big.LITTLE architecture's robustness in sustaining 
reliable operations within the intricate landscape of IoT and 
smart cities. 

The overarching goal of our simulation and fault injection 
endeavors is to evaluate the reliability of the ODROID-XU3 
platform with the ARM big.LITTLE architecture. By 
subjecting the system to diverse workloads, environmental 
conditions, and fault scenarios, we aim to unravel its 
robustness. The insights gained from this comprehensive 
evaluation will inform strategies to enhance the reliability of 
heterogeneous multi-core processors, specifically focusing on 
ARM big.LITTLE architecture, in the context of IoT and 
smart city applications. 

III. EXPERIMENTAL RESULTS 

In this section, we unveil the results stemming from our 
thorough evaluation of the ODROID-XU3 platform, 
harmonized with the ARM big.LITTLE architecture. Our 
assessment leveraged not only the MiBench benchmark suite 
but also Matrix multiplication scenarios, all orchestrated 
through the sophisticated gem5 simulator. These experimental 
findings offer profound insights into the platform's nuanced 
performance across diverse conditions and its adeptness in 
withstanding faults. This contribution adds substantial depth 
to our understanding of the platform's reliability within the 
intricate landscapes of IoT and smart city applications. 

A. Fault Injection 

For our fault injection methodology, we developed a 
software injector inspired by the approach outlined in [11]. In 
the course of our experiments, this injector introduces faults 
into the register bank of a designated core within the large 
cluster and another core within the small cluster. By changing 
one bit of the target register's value, the fault is simulated. 

These target registers encompass a spectrum of elements, 
spanning general-purpose registers to specific-purpose 
registers like PC and LR. Specifically, Cortex-A15 comprises 
16 general-purpose 32-bit registers, while Cortex-A7 boasts 
31 general-purpose 32-bit registers. As the fault injection 
process is identical for both cores, the fault injection is 
executed solely on the first 16 general-purpose registers of 
Cortex-A7, ensuring a consistent and controlled experimental 
environment. 

In our injection experiments, we employed a selection of 
programs from the MiBench benchmark suite. This suite 
encompasses various programs tailored for assessing the 
performance of embedded systems, with a specific focus on 
applications pertinent to IoT devices. Also, we have used 
matrix multiplication: 

• Bitcount: This program counts the number of set bits 
in an integer. It is a simple arithmetic operation, which 
can be relevant for IoT devices with low-power 
requirements. 

• JPEG Compression (JPEG): IoT devices with image 
processing capabilities might benefit from evaluating 
the performance of JPEG compression. 

• GSM Encryption (GSM): Assessing the performance 
of encryption algorithms like A5/1 used in GSM can 
be relevant for IoT devices that require secure 
communication. 

• Patricia Tries (Patricia): IoT devices involved in 
networking and IP address lookup may find this 
program useful. 

• FFT: Fast Fourier Transform is commonly used in 
signal processing applications, which may be relevant 
for certain IoT scenarios. 

• Matrix multiplication benchmark: with matrices of 20 
× 20 elements and data size of 32 bits. 

The benchmarks employed for each core involve running 
the same application code on both types of cores, enabling a 
direct comparison of results to detect errors. Despite utilizing 
identical program code, it's crucial to note that each core 
operates with its instance of the program, residing in a 
dedicated memory section. This distinction implies that, even 
though the program code remains consistent, each core 
accesses different memory addresses within the shared 
memory. This architectural setup ensures that the evaluation 
captures any divergences or errors that may arise due to the 
unique memory interactions of each core, providing a 
comprehensive assessment of the platform's reliability under 
varied conditions. 

Coresight, stands as an advanced debugging and tracing 
technology seamlessly integrated into the architecture of both 
large and small cores. This pivotal feature plays a crucial role 
in significantly augmenting the platform's capabilities for 
debugging and trace operations [7], [12]. Coresight offers 
valuable insights into the intricate internal system behavior, 
particularly during fault injection tests. Its seamless 
integration contributes to the comprehensive understanding of 
system dynamics, aiding in the identification and analysis of 
issues that may arise under fault conditions. Figure 2 visually 
underscores the strategic placement and functionality of 
Coresight within the architecture, emphasizing its integral role 
in enhancing the system's diagnostic capabilities. 
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B. Data Flow Error 

Data Flow Error is a category of error that pertains to 
discrepancies or alterations in the flow of data within a system 
[13], [14]. It encompasses instances where the expected or 
actual data movement deviates from the established patterns 
or protocols Throughout our extensive evaluation, 
deliberately injecting over 5000 errors into the register bank 
for each benchmark unveiled the nuanced effects of data 
errors. On average, approximately 7% of injected faults 
manifest as errors in the large core, while around 10% result 
in errors in the small core. This discrepancy underscores the 
substantial impact of Coresight in adeptly recording and 
analyzing the system's response to errors. Additionally, it 
highlights differences in the maximum execution frequency of 
each core type, contributing to a comprehensive 
understanding of how data errors influence the reliability of 
the ARM big.LITTLE architecture. 

In TABLE I. a comprehensive summary unfolds, detailing 
the experimental fault injection results in the general-purpose 
register under the bare metal simulation mode. This table 
meticulously outlines the fault-to-error conversion for all 
benchmarks, providing essential insights into the system's 
behavior under fault conditions. Additionally, it includes 
crucial information about the kernel responsible for 
generating each error. Significantly, a discernible discrepancy 
in the total number of errors surfaces between the two types of 
kernels for each benchmark. This variance in error 
occurrences illuminates each core type's nuanced behavior 
and distinctive characteristics, offering valuable insights into 
their respective responses to fault injections. 

TABLE I.  BARE METAL INJECTION FOR DFE 

Type 

of core 

Fault injection 

Benchmark Number of Fault Undetected 

C
or

te
x-

A
15

 

Bitcount 5029 328 (6.52%) 

JPEG 5038 362 (7.18%) 

GSM 5126 353 (6.88%) 

Patricia 5019 341 (6.79%) 

FFT 5056 348 (6.88%) 

MM 5108 372 (7.28%) 

C
or

te
x-

A
7 

Bitcount 5029 498 (9.9%) 

JPEG 5038 537 (10.65%) 

GSM 5126 522 (10.18%) 

Patricia 5009 519 (10.36%) 

FFT 5056 520 (10.28%) 

MM 5108 551 (10.78%) 

 
TABLE II. presents a comprehensive summary 

delineating the experimental results of error injection in the 
general-purpose register under OS-based simulation mode 
with Ubuntu 18.04 operating system. This table systematically 
outlines the fault-to-error conversion for all benchmarks, 
providing crucial insights into the system's behavior under 
fault conditions. Additionally, it includes pertinent 
information about the kernel responsible for generating each 
error. A discernible difference in the total number of surfaced 
errors is evident between the two kernel types for each 
criterion, shedding light on the nuanced behavior and 

distinctive features inherent in each core type. This 
information offers valuable insights into their respective 
responses to fault injection, contributing to a comprehensive 
understanding of the system's reliability under varied 
conditions in the simulation mode based on the Ubuntu 18.04 
operating system. 

C. Control Flow Error 

An aspect of fault-to-error conversion is Control Flow 
Error (CFE), a type of error that deviates from the primary 
system flow [11], [15]. To enhance our understanding of the 
reliability of these systems, deliberate error injections were 
performed using the following methods, enabling the 
evaluation of system resilience to CFE: 

• Injecting a Bit-Flip in PC and LR Registers: Simulating 
faults by inducing bit-flips in critical registers, 
specifically the Program Counter (PC) and Link Register 
(LR), to observe the impact on the system's control flow. 

• Injecting a Bit-Flip in a Branch Instruction: Deliberately 
introducing bit-flips within branch instructions to assess 
the system's response to altered control flow conditions. 

TABLE II.  OS-BASED INJECTION FOR DFE 

Type 

of core 

Fault injection 

Benchmark Number of Fault Undetected 

C
or

te
x-

A
15

 

Bitcount 5087 297 (5.83%) 

JPEG 5013 322 (6.42%) 

GSM 5109 318 (6.22%) 

Patricia 5108 309 (6.04%) 

FFT 5019 314 (6.29%) 

MM 5099 327 (6.41%) 

C
or

te
x-

A
7 

Bitcount 5087 431 (8.47%) 

JPEG 5013 463 (9.23%) 

GSM 5109 452 (8.84%) 

Patricia 5108 449 (8.79%) 

FFT 5019 453 (9.02%) 

MM 5099 472 (9.25%) 

 

• Replacing a Branch Instruction with a Non-Branch 
Instruction: Experimenting with the substitution of a 
branch instruction with a non-branch instruction, 
simulating a scenario where the expected control flow is 
intentionally disrupted. 

• Removing a Branch Instruction: Deliberately eliminating 
a branch instruction to gauge the system's adaptability 
and resilience when faced with a sudden absence of 
expected branching. 

To scrutinize the effect of control flow errors, the 
aforementioned fault injection techniques were employed to 
simulate scenarios where control flow errors are intentionally 
manipulated. More than 5000 faults were injected for each 
benchmark, allowing for a comprehensive investigation into 
how the system responds to deliberate alterations in control 
flow, providing valuable insights into its resilience and 
adaptability. 
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TABLE III. presents a comprehensive summary of the 
experimental results for control flow error injection in the 
previously mentioned scenarios in bare metal simulation 
mode. This table meticulously captures the fault-to-error 
conversion for all metrics, offering essential insights into the 
system's behavior under fault conditions. Crucially, it includes 
pertinent information about the kernel responsible for 
generating each error. A noticeable disparity in the total 
number of surfaced errors emerges between the two kernel 
types for each criterion. This discernible variation in fault 
occurrences sheds light on the nuanced behavior and 
distinctive features inherent in each core type, providing 
valuable insights into their respective responses to fault 
injection.  presents a comprehensive summary of the 
experimental results for control flow error injection in the 
previously mentioned scenarios. 

 In TABLE IV. provides a comprehensive summary of 
experimental results for control flow error injection in the 
previously mentioned scenarios under OS-based simulation 
mode. This table accurately shows the fault-to-fault 
conversion for all metrics and provides essential insights into 
system behavior under fault conditions. 

TABLE III.  BARE METAL INJECTION FOR CFE 

Type 

of core 

Fault injection 

Benchmark Number of Fault Undetected 

C
or

te
x-

A
15

 

Bitcount 5012 345 (6.88%) 

JPEG 5160 372 (7.2%) 

GSM 5138 381 (7.41%) 

Patricia 5201 361 (6.94%) 

FFT 5018 368 (7.33%) 

MM 5098 391 (7.66%) 

C
or

te
x-

A
7 

Bitcount 5012 512 (10.21%) 

JPEG 5160 531 (10.29%) 

GSM 5138 564 (10.97%) 

Patricia 5201 529 (10.17%) 

FFT 5018 538 (10.72%) 

MM 5098 576 (11.29%) 

D. Reliability Analyse 

In this section, we delve into the comprehensive analysis 
of the reliability of the ODROID-XU3 platform equipped with 
ARM big.LITTLE architecture, building upon the 
experimental results and insights garnered from fault 
injections, data flow errors (DFE), and control flow errors. 
(CFE). 

The capabilities of the tested board reveal a notable 
observation – many faults do not transition into errors, 
highlighting a positive aspect of ARM big.LITTLE systems. 

This resilience to error manifestation underlines the 
robustness of the architecture in mitigating the impact of 
various faults. However, a crucial determinant in the fault-to-
error conversion process is the presence or absence of the 
operating system. This factor significantly influences whether 
a fault evolves into an error, emphasizing the intricate 
interplay between hardware and software components in 

shaping the reliability dynamics of the ARM big.LITTLE 
architecture. 

TABLE IV.  OS-BASED INJECTION FOR CFE 

Type 

of core 

Fault injection 

Benchmark Number of Fault Undetected 

C
or

te
x-

A
15

 

Bitcount 5019 298 (5.93%) 

JPEG 5113 309 (6.04%) 

GSM 5029 314 (6.24%) 

Patricia 5201 319 (6.13%) 

FFT 5167 340 (6.58%) 

MM 5128 349 (6.8%) 

C
or

te
x-

A
7 

Bitcount 5019 465 (9.26%) 

JPEG 5113 479 (9.36%) 

GSM 5029 477 (9.48%) 

Patricia 5201 496 (9.53%) 

FFT 5167 499 (9.65%) 

MM 5128 512 (9.99%) 

Error Detection Rate (EDR) is a critical reliability analysis 
factor that quantifies the effectiveness of a system in 
identifying and detecting errors. It provides a quantitative 
measure of the platform's capability to recognize faults or 
anomalies within its operation. In the context of the ODROID-
XU3 platform with ARM big.LITTLE architecture, 
understanding the Error Detection Rate involves assessing 
how well the system can identify errors resulting from 
intentional fault injections, data flow errors (DFE), and 
control flow errors (CFE). 

The EDR is typically expressed as a percentage and is 
calculated using the formula [7], [16]: 

 

��� =  � ��	
�� 
� �������� ���
��
�
��� ��	
�� 
� �������� ������� × 100 (1) 

 
Here, the "Number of Detected Errors" represents the 

count of errors successfully identified by the platform during 
the experimental evaluation. The "Total Number of Injected 
Faults" corresponds to the intentional faults or errors injected 
into the system for testing purposes. A higher Error Detection 
Rate indicates a more robust and reliable system, as it implies 
that a significant proportion of injected faults were 
successfully detected. Conversely, a lower EDR may indicate 
potential vulnerabilities in error detection mechanisms, 
highlighting areas for improvement in the system's reliability.  

In Fig. 2., we present a comprehensive evaluation of the 
platform's reliability using the EDR factor. This evaluation 
involves the systematic analysis of intentional fault injections, 
data flow errors (DFE), and control flow errors (CFE). The x-
axis of Figure 1 represents different fault injection scenarios 
and benchmarks, while the y-axis signifies the Error Detection 
Rate as a percentage. Each data point on the graph corresponds 
to a specific condition, providing a visual representation of 
how well the platform identifies errors under various 
circumstances. 

Based on the results depicted in Fig. 2., several key 
conclusions can be drawn.  The analysis underscores  that, to 
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Fig. 2. Error Detectin Rate Analysis 

minimize power consumption and ensure reliability, ARM 
big.LITTLE architectures serve as apt choices for IoT 
systems. The ability to strategically map tasks onto different 
clusters based on their importance and workload nature 
contributes to the overall efficiency and dependability of the 
system. 

This conclusion aligns with the observation that the 
ODROID-XU3 platform is equipped with ARM big.LITTLE 
architecture, exhibits resilience and effectiveness in handling 
intentional fault injections. The Error Detection Rate serves as 
a valuable metric for quantifying the platform's robustness 
under varied conditions, providing insights that can inform 
strategic decisions in IoT and diverse computing applications. 
The platform's heterogeneous nature and adaptability across 
different benchmarks highlight its suitability for addressing 
the challenges of reliability and energy efficiency in 
contemporary computing scenarios. 

IV. CONCLUSION AND FUTURE WORK 

In summary, our investigation into the dynamic landscape 
of the Internet of Things (IoT) has brought to light the 
escalating demand for robust processing solutions, propelling 
the widespread adoption of heterogeneous multi-core 
processors, exemplified prominently by the ARM 
big.LITTLE architecture. With a targeted focus on critical 
sectors such as healthcare, where the reliability of failure-
sensitive applications takes precedence, our study accentuates 
the vital need for tailored failure analysis specific to ARM 
big.LITTLE processors. This study is a thorough reliability 
analysis of the ODROID-XU3 platform under diverse 
conditions. Employing deliberate fault injections, evaluating 
data flow errors (DFE), scrutinizing control flow errors (CFE), 
and considering the Error Detection Rate factor collectively 
underscore the platform's resilience and adaptability. 
Particularly noteworthy is the ARM big.LITTLE 
architecture's effective fault management with minimal power 
consumption, positioning it as a promising solution for 
Internet of Things (IoT) systems. Our findings underscore the 
significance of strategic task mapping across different clusters 
based on workload characteristics, contributing significantly 
to heightened reliability and efficiency in computing 
environments.  

Future work may delve into exploring the scalability of 
ARM big.LITTLE architectures for larger systems, examining 
real-world applications to broaden the scope of performance 
analysis. Further investigation into advanced fault injection 
techniques and the integration of additional metrics could 

refine the evaluation process. Continuous refinement of fault 
tolerance mechanisms and exploration of adaptive strategies 
based on dynamic workload characteristics will advance the 
reliability and performance of ARM big.LITTLE 
architectures in evolving computing paradigms. The ongoing 
pursuit of these directions will contribute to a deeper 
understanding and optimization of heterogeneous computing 
platforms. 
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