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Abstract: Actuator saturation and time delay are practical issues in practical control
systems, significantly affecting their performance and stability. This paper addresses,
for the first time, the stabilization problem of fractional-order (FO) nonlinear systems
under these two practical constraints. Two primary methodologies are employed: the
vector Lyapunov function method, integrated with the M-matrix approach, and the second
one is the Lyapunov-like function method, which incorporates diffusive realization and
the Lipchitz condition. An optimization framework is proposed to design stabilizing
controllers based on the derived stability conditions. The proposed methods are validated
numerically through their application to the FO Lorenz and Liu systems, demonstrating
their effectiveness in handling actuator saturation and time delay.

Keywords: stability condition; fractional order; time delay; saturation; chaotic system

1. Introduction
Fractional-order systems (FOSs) have garnered substantial attention in scientific re-

search due to their inherent capability to model memory and hereditary properties. These
properties are pivotal in accurately capturing the dynamics of natural and engineered
systems, which are often characterized by non-local interactions and long-term dependen-
cies. Unlike integer-order derivatives, fractional derivatives provide a robust mathematical
framework to describe such behaviors, enabling the analysis of complex phenomena over
multiple time scales. Applications of fractional calculus (FC) have been extensively doc-
umented in areas such as anomalous diffusion, viscoelastic materials, control systems,
and electrochemical processes, highlighting its interdisciplinary relevance [1–9]. From a
control perspective, fractional-order (FO) models excel in capturing systems with inherent
memory effects, offering advantages over traditional integer-order approaches. This has
been demonstrated in diverse engineering domains, including robotics, signal processing,
and materials science [10–16]. Furthermore, fractional derivatives inherently encapsulate
the influence of historical states on the current dynamics, providing a more comprehensive
representation of system behavior, particularly in systems with hereditary or viscoelastic
properties. Stability analysis of FOSs has become a cornerstone in advancing their practi-
cal utility. Stability is crucial not only for understanding the inherent dynamics of these
systems but also for designing robust control strategies that accommodate uncertainties,
time delays, and actuator constraints. This study aims to contribute to the ongoing dis-
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course by addressing stability challenges in FOSs and proposing novel solutions tailored to
real-world applications.

1.1. Motivation and Background

The stability and control of FOSs are critical for their effective deployment in practical
scenarios, particularly in systems where nonlinearity, input saturation, and time delays
play a significant role. Fractional derivatives provide a compelling physical interpreta-
tion, wherein the system’s present state depends not merely on the instantaneous rate of
change but also on the cumulative historical dynamics. This attribute underscores the
indispensability of FC in modeling and analyzing systems with long-term dependencies.

A significant challenge in the control of FOSs arises from actuator saturation, a phe-
nomenon that stems from the physical limitations of actuators [17]. If left unaddressed,
actuator saturation can lead to degraded performance and, in extreme cases, instability of
the closed-loop system. Extensive research has focused on mitigating these effects through
advanced control strategies. For instance, stability analysis under saturation has been well
studied in linear FOSs, leveraging analytical methods to estimate the domain of attraction
while incorporating actuator constraints [18–20]. Nonlinear FOSs introduce additional
complexities due to their sensitivity to initial conditions and external perturbations. The
authors of [21] addressed this issue by deriving sufficient stabilization conditions using the
Gronwall–Bellman lemma and sector-bounded conditions. Other studies have explored
uncertain FOSs with saturation constraints, employing the Lipschitz condition to design
state feedback controllers that ensure stability [22]. Recent advancements include the devel-
opment of adaptive backstepping control strategies tailored to incommensurate FOSs under
input saturation [23]. These strategies utilize frequency-distributed models and indirect
Lyapunov methods to account for control constraints. Moreover, the stochastic stability of
FOSs with actuator saturation has been rigorously analyzed, with stability criteria derived
using stochastic system theory and FO calculus [24]. Additional research has explored
delay-dependent stability in uncertain FOS, particularly those with distributed delays and
input saturation. These studies employ Lyapunov–Krasovskii functionals to derive robust
stability conditions, expressed as linear matrix inequalities (LMIs), incorporating time
delays into their analysis [25]. Despite these advancements, the combined effects of time
delays and saturation control in FOSs remain underexplored, underscoring the need for
comprehensive stability analyses that integrate these critical factors.

Time delays present another major challenge in the stability analysis of dynamical
systems. Considerable research has addressed this issue, often focusing on FOSs with linear
components and pure delays. For instance, characteristic polynomial methods have been
employed to derive stability conditions for such systems [26]. Additionally, the Mittag–
Leffler function has been utilized to develop decentralized FO controllers for nonlinear
FOSs, accounting for its effects in stabilizing time-delayed systems [27]. The problem of
asymptotic stabilization in nonlinear FOSs with time delays has also been addressed using
innovative control strategies. A notable contribution in this area was the development
of two novel stabilization methods for FOSs with multiple time delays [28]. This work
introduced a stabilization control criterion that integrates a Lyapunov-like function with
the M-matrix method, offering a more robust solution for managing the complexities of
time delays in nonlinear systems. Another key study extended the application of vector
Lyapunov functions to FOSs with time delays, proposing a new stability condition that
specifically addressed the challenges posed by time delays in FOSs [29]. A time-delay
feedback controller was designed in [30] to suppress the chaos of the FO chaotic jerk
system, where delay-independent stability and bifurcation conditions were established.
Additionally, a mixed controller, which includes a time-delay feedback controller and an
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FO PD controller, was designed to eliminate the chaos of the FO system. The problems
of stability and stabilization of the FO power system with time delays were investigated
in [31]. Based on the theory of FC and the Lyapunov functional technique, the relevant
stability criteria were obtained. Meanwhile, Lyapunov functionals were constructed, and
the free-weighing matrix technique was introduced to reduce the conservatism of the
criteria. In [32], some novel asymptotic stability criteria were deduced for different forms of
multivariable fractional-order systems (MFOSs) with FO parameters between 0 and 1 under
time delays based on the M-matrix. Initially, the general asymptotic stability condition
of ordinary systems was extended to MFOSs. Subsequently, the stability of linear and
nonlinear MFOSs was investigated, and their asymptotic stability criterion was derived
using the M-matrix method. Moreover, ref. [33] focused on the stabilization of nonlinear
FO time-delay systems in the presence of faults. In this research, a general class of nonlinear
FOSs was considered, where faults caused variations in the system dynamics and actuators.

In summary, while significant progress has been made in understanding the stability
and control of FOSs under both saturation and time delays, further research is needed to
fully comprehend the interplay between these two factors. Developing a more integrated
approach could yield valuable insights for creating advanced control strategies that ensure
the stability of real-world FOSs operating under practical constraints.

1.2. Contributions

The present study addresses a crucial gap in the research on FOS, where the combined
effects of time delay and input saturation have been less explored in prior literature. While
these factors are highly relevant in practical applications, previous studies have largely
neglected their combined influence on system behavior. This paper introduces several
key contributions to overcome these challenges by proposing a novel approach to stability
analysis and control design for nonlinear FOSs under both saturation control and time
delay constraints.

The key contributions of this paper are as follows:

• Addressing saturation limitations: Two innovative approaches are presented to man-
age the challenges posed by input saturation, a prevalent constraint in practical
control and robotic systems. By incorporating the Lipchitz condition into the sat-
uration model, this paper ensures that the FOSs remain stable even when control
inputs are constrained. This method offers a robust solution to the issues related to
input saturation.

• Addressing time-delay limitations: Recognizing the shortcomings of traditional
Lyapunov-like function methods in analyzing time-delayed FOS, this paper utilizes
the M-matrix and vector Lyapunov function techniques as critical tools. These meth-
ods create a rigorous framework for overcoming the stability challenges induced by
time delays, ensuring system stability under these complex conditions.

• Development of a stable controller: This paper makes a substantial contribution by de-
veloping an optimized stable controller that accounts for practical system constraints.
The controller is designed to guarantee stability in the presence of both saturation and
time-delay conditions. Furthermore, a new stability criterion for delayed nonlinear
FOSs with saturation constraints is introduced, which significantly broadens the scope
of existing stability analysis techniques.

• Adaptation of the Lyapunov-like function: This research modifies the Lyapunov-like
function by incorporating diffusive realization and the Lipchitz condition, providing
a rigorous criterion for asymptotic stability. This approach effectively resolves the sta-
bility challenges of interconnected FOSs operating under saturation control, ensuring
robustness in practical applications.
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• Application of vector Lyapunov functions with M-matrix methods: The study applies
vector Lyapunov functions in combination with M-matrix methods to establish strong
stability conditions. This integration enhances the analytical framework for assessing
system stability, particularly in cases involving both time delays and saturation con-
straints, thereby expanding the potential applicability of the proposed methodologies.

• Application to two significant FO systems: FO Lorenz and FO Liu as illustrative
examples: The study of stability and control of the FO Lorenz and FO Liu systems
is essential not only for understanding their theoretical behavior but also for inves-
tigating their practical relevance in automation and robotics, where stability and
precise coordination between system components are critical. By applying the pro-
posed analysis to these FO chaotic systems, we aim to deepen the understanding of
their complex dynamics and validate the effectiveness of the advanced stabilization
techniques introduced in this work.

These contributions collectively offer a comprehensive stability analysis and con-
trol framework for nonlinear FOSs subjected to both time delay and saturation control.
The proposed methodologies provide significant insights for future research and prac-
tical applications and demonstrate the potential to advance the state-of-the-art in FO
control strategies.

This paper is structured into six key sections, each contributing to a rigorous analysis
of fractional-order (FO) nonlinear systems under saturation control. Section 2 establishes
the theoretical groundwork with essential theorems and definitions. Section 3 presents
the primary contributions, including stability conditions and the impact of time delays
on FO systems. Section 4 focuses on the optimization and practical implementation of a
stable controller. Section 5 validates the proposed approach through numerical simulations,
demonstrating its real-world applicability. Finally, Section 6 summarizes key findings,
emphasizes the practical significance of the study, and outlines potential future research
directions in FO system control.

2. Fundamental Concepts
FC is an extension of classical calculus that allows the differentiation and integration

of arbitrary (non-integer) order. The two most commonly used definitions are the Riemann–
Liouville and Caputo fractional derivatives. The Riemann–Liouville derivative is defined
as [1,3]

Dv
a H(t) =

1
Γ(n − v)

dn

dtn

∫ t

a
(t − τ)n−v−1H(τ)dτ, (1)

where n = ⌈v⌉, 0 < v < n, and Γ(.) is the Gamma function. This definition is suitable for
theoretical analysis but has initial value problems with physical interpretations.

The Caputo fractional derivative, often preferred in practical applications, is defined
as [3]

CDv
a H(t) =

1
Γ(n − v)

∫ t

a
(t − τ)n−v−1 dn H(τ)

dτn dτ. (2)

• v is the order of the derivative, which can be fractional (non-integer). It characterizes
the “memory” or “hereditary” properties of the system. The smaller the value of v,
the stronger the memory effects.

• H(t) is the function to be differentiated. This could represent a physical quantity such
as position, temperature, or voltage, depending on the application.

• a is the lower bound of the fractional derivative and represents the starting point of
the integral. Physically, this is often the initial time t = a.

• Γ(·) is the Gamma function, a generalization of the factorial for non-integer values,
ensuring the proper scaling of fractional operations.
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It is advantageous because it allows for standard initial conditions, such as H(0) and
H′(0), which are consistent with classical systems.

In the entirety of this paper, we adopt the Caputo definition of the fractional derivative,
as it is particularly suited for practical applications and allows for the use of standard
initial conditions.

If we consider a general non-linear FOS given by

CDv
t x = H(x, t) (3)

where x ∈ Rn represents the state of Equation (3), v is an FO derivative that includes
v ∈ (0, 1) and the function H : Rn ×R → Rn holds the condition H(0) = 0 and is locally
Lipchitz with respect to the states, we can establish the following theorem.

Theorem 1 ([29,34]). If the function H(x, t) is continuous over time, then a unique solution exists
for the FOS given by (3). The solution is expressed as

x(t) = x0 +

∞∫
0

ξv(w)ψ(w, t)dw, (4)

where ψ(w, t) is the solution of the initial value problem associated with the FOS (3), defined as

∂ψ(w, t)
∂t

= −wψ(w, t) + H(x(t), t), ψ(0, t) = 0. (5)

Here, ξv(w) = w−v sin(πv)
π , where w ∈ (0, ∞).

Equation (4) represents the solution of the FOS (3) as an integral involving the vector-
valued function ψ(w, t). To ensure a precise interpretation, the integral of ψ(w, t) is evalu-
ated component-wise. That is, for ψ(w, t) = [ψ1(w, t), ψ2(w, t), . . . , ψn(w, t)]⊤, the integral
is understood as

x(t) = x0 +



∞∫
0

ξv(w)ψ1(w, t) dw

∞∫
0

ξv(w)ψ2(w, t) dw

...
∞∫
0

ξv(w)ψn(w, t) dw


.

This component-wise approach is consistent with the established methods in FC and
ensures the solution is well defined in the context of vector-valued systems.

The Lyapunov function is a critical tool for analyzing the stability of FOSs. Consider
the system described in Equation (3).

A Lyapunov function V(x) : Rn → R for this system must satisfy

1. Positive Definiteness:

V(x) > 0 for x ̸= 0, V(0) = 0. (6)

2. Radial Unboundedness:
V(x) → ∞ as ∥x∥ → ∞. (7)

∥.∥ denotes an arbitrary norm.
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3. Negative Definiteness of the Fractional Derivative:

CDvV(x) < 0 for x ̸= 0. (8)

In FOS, the fractional derivative CDvV(x) incorporates memory effects inherent in FC,
making stability analysis dependent on the entire history of system states, not just the
current state.

Lemma 1 ([35]). For the system (3), if there exists a convex and continuously differentiable
Lyapunov function V : Rn → R and the following inequalities hold, then the nonlinear FOS is
asymptotically stable:

α1(∥x∥)| ≤ V(x) ≤ α2(∥x∥),
CDvV(x) ≤ −α3(∥x∥),

(9)

where αi, i = 1, 2, 3 are class K functions, v ∈ (0, 1) denotes the FO operator, and ∥.∥ is arbi-
trary norm.

Lemma 2 ([36]). Let x = 0 be an equilibrium point of the nonlinear system (3). If there exists a
convex and continuously differentiable Lyapunov function V : Rn → R such that V(0) = 0, then
the following inequality holds for all t > 0:

CDvV(x) ≤ ∇xV(x) · CDvx. (10)

Lemma 3 ([37]). Let x(t) ∈ Rn be a differentiable vector function. Then, for any time instant t,
the following inequality holds:

CDv
t (xT(t)x(t)) ≤ 2xT(t)CDv

t x(t), ∀v ∈ (0, 1) (11)

Definition 1 ([38,39]). A real n × n matrix W = [wij] is an M-matrix if the element wij ≤ 0 for
i ̸= j, and all the principal minors of W are positive.

Lemma 4 ([38]). Let W be an M-matrix, which is a special class of matrices commonly used in
stability analysis and control theory. Then, there exists a diagonal matrix Q = diag(q1, q2, . . . , qN),
where qi > 0 for all i, such that the matrix WTQ + QW is positive-definite.

This lemma plays a critical role in establishing stability criteria for FOS, as it ensures
the existence of a Lyapunov function or matrix that can be used to verify the positive defi-
niteness of the system’s dynamics. The diagonal nature of Q simplifies the computational
complexity, making it a practical choice for controller design and stability analysis.

3. Main Result
In this section, we introduce the general framework of nonlinear fractional-order sys-

tems (FOSs) and explore two distinct stabilization scenarios, addressing practical challenges
such as input saturation and time delays. These scenarios provide a comprehensive foun-
dation for advancing the stabilization theory of nonlinear FOSs under realistic constraints.

The first scenario focuses on deriving novel stability theorems to achieve asymptotic
stabilization of nonlinear FOSs subjected to input saturation. To accomplish this, two robust
methodologies are utilized. In Section 3.1, the first methodology employs a Lyapunov-like
function with diffusive realization, originally proposed in [40] and subsequently extended
in 2019 for analyzing the external stability of Caputo FOSs [34]. This approach provides
a systematic framework for analyzing the stability of nonlinear FOSs with saturation
constraints. The second methodology leverages the vector Lyapunov function method,
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a powerful tool particularly suited for the stability analysis and stabilization of FOSs
experiencing time-delay effects.

In Section 3.2, the second scenario builds on the first by incorporating time-delay
effects into the stability analysis. A novel stability theorem is proposed for achieving
asymptotic stabilization of delayed nonlinear FOSs, explicitly considering the influence
of input saturation. This extension significantly enhances the theoretical relevance and
practical applicability of the proposed stabilization strategies, enabling their deployment in
real-world control systems with complex dynamic behaviors.

Our study considers the general form of delayed nonlinear FOS, which can be ex-
pressed as follows.

CDv
t xi = aixi + fi(x) + gi(xi(t − τ)) + bisat(ui), i ∈ {1, 2, . . . , N} (12)

Let x ∈ Rn and u ∈ Rm denote the state and input vectors, respectively, where xi and
ui represent the ith state and input. The functions fi and gi correspond to the linear or
nonlinear components of the system. Here, N denotes the number of states, τ represents the
time delay, and sat(·) is the saturation function that constrains the input control, defined
as sat(u) = sign(u) · min(|u|, u0), where u0 is the saturation bound. Additionally, ai and
bi are specific real constants, and it is assumed that the system is controllable. Figure 1
presents a detailed block diagram of the system under consideration, providing a clear
visualization of its structure and functionality.

Figure 1. Block diagram of the FO delayed system subject to saturation control.

Assumption 1. The nonlinear functions fi and gi are continuously differentiable in time and
satisfy the local Lipchitz condition with Lipchitz parameters l1 and l2, respectively.

Lemma 5 ([41]). The saturation function satisfies the Lipchitz condition with a Lipchitz parameter lsat.

3.1. Section 1

We consider Equation (12) with τ = 0; then, by considering feedback controller
ui = kixi, the closed loop system can be rewritten as

CDv
t xi = acli xi + fi(x) + gi(xi) + bi

⌣
ψi(kixi), i ∈ {1, 2, . . . , N}, (13)

where
⌣
ψi = sat(kixi)− kixi and acli = ai + biki .

We introduce some assumptions for the present analysis. Some of these relate to the
functions fi(x) and g(xi), as introduced in [28,29]. Additionally, the following components
are defined and utilized in the subsequent discussions:
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1. Function Φ3i(∥xi∥): Let Φ3i : [0, ∞) → [0, ∞) be a non-negative, continuous, and
radially unbounded function that depends on the norm ∥xi∥. This function quantifies
bounds on the growth of specific terms in the analysis of subsystem i.

2. Lyapunov Function Gradient ∇xi Vi(xi): The term ∇xi Vi(xi) represents the gradient
of the Lyapunov function Vi(xi) with respect to the state xi. The Lyapunov function
Vi(xi) : Rn → R is a continuously differentiable, positive-definite function used to establish
subsystem stability.

3. Upper Bound Ξ
′′
i , Ξ

′
i and Ξi: The scalar Ξ

′′
i , Ξ

′
i and Ξi > 0 serves as an upper bound

in inequalities involving ∇xi Vi(xi) and related terms. This constant plays a crucial role in
bounding subsystem dynamics and ensuring analytical rigor.

Assumption 2. Consider a real number Ξ
′′
i > 0(i = 1, . . . , N) satisfying the following inequality:

∇xi Vi(xi)aclixi ≤
√

Φ3i(∥xi∥)Ξ
′′
i

√
Φ3i(∥xi∥) (14)

Assumption 3 ([28,29]). Consider a real number Ξij ≥ 0(i, j = 1, . . . , N) satisfying the follow-
ing inequality:

∇xi Vi(xi) fi(x(t)) ≤
√

Φ3i(∥xi∥)Ξij

√
Φ3i

(∥∥xj
∥∥) (15)

Assumption 4. Consider a real number Ξ
′
i > 0(i = 1, . . . , N) satisfying the following inequality:

∇xi Vi(xi)ψ̆(xi(t) ≤
√

Φ3i(∥xi∥)Ξ
′
i

√
Φ3i(∥xi∥) (16)

Assumption 5 ([28,29]). There is some constant υi > 0 for τ ≥ 0 such as

∇xi Vi(x)g(xi(t − τ)) ≤ υiΦ
1/2
3i (∥xi∥)Φ1/2

3i (∥xi(t − τ)∥), i = {1, 2, 3, . . .} (17)

Assumption 6 ([28,29]). There is a continuous non-decreasing function ζi(ℸ) > ℸ > 0 for τ ≥ 0
such as

∥gi(x(t − τ)∥ ≤ ζi(∥gi(x(t))∥), i = {1, 2, 3, . . . , N} (18)

According to Theorem 4 in [42] and Remark 2.10 in [43], if we consider a continuous nondecreasing
function ζi(ℸ) > ℸ > 0 for ℸ > 0, then it is clear that

Φ1/2
3i (∥xi(t − τ)∥) < ζi

(
Φ1/2

3i (∥x(t)∥)
)

, i = {1, 2, 3, . . . , N} (19)

Lemma 6. if each Vi, i ∈ {1, 2, . . . , N} is continuously differentiable and convex, then their sum
will also be continuously differentiable and convex.

Proof. This pertains to properties of convex and continuously differentiable functions.

Theorem 2. Considering the closed-loop system described by Equation (13) and assuming that
Assumptions 1–5 are satisfied, the asymptotic stabilization of the closed-loop system can be achieved
if the following judgement matrix W is an M-matrix:

where W =


w11 w12 . . . w1j

w21 w21 . . . w2j
...

... . . .
...

wi1 wi1 . . . wij



wij =

{
−Ξ

′′
i − ζiυi − ∥bi∥Ξ

′
i i f i = j

−Ξij Otherwise
(20)
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Proof. Let us consider a series of positive-definite convex and continuously differentiable
functions Vi(xi) that satisfy Lemma 1 for the non-linear FOS.

α1i(∥xi∥) ≤ Vi ≤ α2i(∥xi∥)
CDvV(xi) ≤ −α3i(∥xi∥)

(21)

Then, we chose a vector function, the Lyapunov function of the FOS, with a set of positive-
definite constants qi > 0.

V(x) =
N
∑

i=1
qiVi(xi) (22)

According to Lemma 2, we have

CDvV(x) ≤
N

∑
i=1

qi∇xi Vi(xi)
CDvxi (23)

Substituting the states equation of (13) in (22), we have

CDvV(x) ≤
N

∑
i=1

qi∇xi Vi(xi)(acl ixi + fi(x) + gi(x(t)) + bi
⌣
ψi(kixi)), i ∈ {1, 2, . . . , N}, (24)

Simplifying Equation (24), we have

CDvV(x) ≤
N
∑

i=1
qi(∇xi Vi(xi)acl ixi +∇xi Vi(xi) fi(x)+

∇xi Vi(xi)gi(x(t)) +∇xi Vi(xi)bi
⌣
ψi(kixi)), i ∈ {1, 2, . . . , N}),

(25)

Applying Equations (14), (15), (17) and (16),

CDvV(x) ≤
N
∑

i=1
qi(

√
Φ3i(∥xi∥)Ξ

′′
i

√
Φ3i(∥xi∥) +

√
Φ3i(∥xi∥)Ξi

√
Φ3i(∥xi∥)

+υi
√

Φ3i(∥xi∥)ζi

(√
Φ3i(∥xi(t)∥)

)
+ bi

√
Φ3i(∥xi∥)Ξ

′
i

√
Φ3i(∥xi∥)

, i ∈ {1, 2, . . . , N})

(26)

Simplifying the above equation, we have

CDvV(x) ≤ −1
2

ΦT
3 (∥x∥)(WQ + QW)Φ3(∥x∥) (27)

we are able to find a diagonal matrix Q = diag{q1, q2, ..., qN}, such that the matrix
WQ + WQ is positive-definite. Then, according to Lemma 4, W is an M-matrix. Thus,
based on Lemma 3, the closed-loop system is asymptotically stable.

where Φ3(∥x∥) =
[

Φ
1
2
31 Φ

1
2
32 . . . Φ

1
2
3N

]
. The proof is complete.

By satisfying the M-matrix properties of W, we can guarantee the stability and asymp-
totic stabilization of the closed-loop system described by Equation (13). This provides a
basis for designing effective stabilization controllers that ensure the convergence of the
system’s trajectories to the desired equilibrium point.

We could introduce an alternative theorem in order to check a new stability condition
by the Lyapunov-like function with the aid of diffusive realization and the Lipchitz con-
dition. The Lyapunov-like function method provides a powerful tool for analyzing the
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stability of non-linear FOSs. Then, the described nonlinear system with Equation (13) can
be rewritten as general form as

CDv
t x = Acl x + F(x) + G(x(t)) + BΨ(x), (28)

where Acl = diag{acl1, acl2, ..., aclN} and B = diag{b1, b2, . . . , bN} are constant matrices, and
F(x), G(x(t) are the matrix of the linear or non-linear part of the system with appropriate
dimension. Furthermore, Ψ(x) = Sat(Kx)− Kx, K = diag{k1, k2, . . . , kN}.

Lemma 7 ([19]). By defining function Ψ(x) = Sat(u)− u, it satisfies the Lipchitz condition with
the Lipchitz parameter of ls.

Theorem 3. Consider the dynamical system described by Equation (28) under the validity of
Assumption 1. The system is guaranteed to be asymptotically stable if there exists

• A symmetric positive-definite matrix P with all elements satisfying pij ≥ 0,
• Positive constants k f , kg, and ks,

such that the following matrix inequality holds:
Θ P P P
P −k f I 0 0
P 0 −kg I 0
P 0 0 −ks I

 < 0, (29)

where
Θ = PAcl + AT

cl P + 2k f l2
1 + 2kgl2

2 + 2ksl2
s .

Proof. In this proof, we use Lyapunov-like function method (often used to establish stability
in control theory for FOS), and it contains a dependence on both the state x(t) and the
time t because the solution ψ(w, t) depends on t. By introducing the following Lyapunov
function based on Theorem 1, we have

V(x, t) =
∞∫

0

ξv(w)ψ(w, t)T Pψ(w, t)dw (30)

if we obtain the time derivative from V(x), it is clear that

V̇(x, t) =
∞∫

0

ξv(w)

[
∂ψ(w, t)

∂t

T
Pψ(w, t) + ψ(w, t)T P

∂ψ

∂t

]
dw (31)

Using Theorem 1, the above equation can be rewritten

V̇(x, t) =
∞∫
0

ξv(w)[−wψ(w, t) + Acl x + F(x) + G(x) + BΨ(x)]T Pψ(w, t)dw

+
∞∫
0

ξv(w)ψT(w, t)P[−wψ(w, t) + Acl x + F(x) + G(x) + BΨ(x)]dw
(32)

By simplifying, we have

V̇(x, t) = −
∞∫
0

ξv(w)ψT(w, t)Pψ(w, t)dw + xT AT
cl Px + FT Px + GT Px + ΨT(x)BT Px

−
∞∫
0

ξv(w)ψT(w, t)Pψ(w, t)dw + xT PAcl x + xT PF + xT PG(x) + xT PBΨ(x)
(33)
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Then, based on the Lipschitz condition, for any positive constant k f , kg > 0 and ks,

k f (FT(x(t))F(x(t))− FT(x(t))F(x(0))− F(x(t)FT(x(0)) + FT(x(0))F(x(0))
≤ 2k f l2

1(xT(t)x(t)− xT(t)x(0)− x(t)xT(0)
+xT(0)x(0)2k f l2

1 xT(t)x(t)− k f FT(x(t))F(x(t)) > 0
(34)

where l1 is the Lipschitz parameter of F(.)[29].

kg(GT(x(t))G(x(t))− GT(x(t))G(x(0))− G(x(t)GT(x(0)) + GT(x(0))G(x(0))
≤ 2kgl2

2(xT(t)x(t)− xT(t)x(0)− x(t)xT(0)
+xT(0)x(0)2kgl2

2 xT(t)x(t)− kgGT(x(t))G(x(t)) > 0
(35)

where l2 is the Lipchitz parameter of G(.).

ks(ΨT(x(t))Ψ(x(t))− ΨT(x(t))Ψ(x(0))− Ψ(x(t)ΨT(x(0)) + ΨT(x(0))Ψ(x(0))
≤ 2ksl2

s (xT(t)x(t)− xT(t)x(0)− x(t)xT(0)
+xT(0)x(0)2ksl2

s xT(t)x(t)− ksΨT(x(t))Ψ(x(t)) > 0
(36)

where ls is the Lipchitz parameter of Ψ(.).

Then, we can continue as follows

V̇(x, t) = −2
∞∫
0

ξv(w)ψT(w, t)Pψ(w, t)dw + xT(PAcl + AT
cl P)x + xT P f (x)

+xT Pg(x) + xT PΨ(x) + f T(x)Px + gT Px + ΨT(x)BT Px + 2k f l2
1 xTx

−k f f T(x) f (x) + 2kgl2
2 xTx − kggT(x)g(x) + 2ksl2

s xTx − ksΨT(x)Ψ(x)

(37)

By definition of a new vector as Ξ =
[

xT f T gT ψT
]T

, we have

ΞT


Θ P P P
P −k f I 0 0
P 0 −kg I 0
P 0 0 −ks I

Ξ < 0 (38)

Then, the FO non-linear system subject to saturation is asymptotically stable, which com-
pletes the proof.

The stability conditions provided by Theorem 3 offer valuable insights into the design
of controllers and stability analysis for the considered system. By ensuring that the matrix
inequality (29) is satisfied, we can guarantee the stability of the system, enabling effective
control strategies.

3.2. Section 2

The second analysis considers the presence of a time delay, indicated by τ ̸= 0 in
Equation (12). Then, Equation (39) presents the closed-loop system:

CDv
t xi = acl ixi + fi(x) + gi(x(t − τ)) + bi

⌣
ψi(kixi), i ∈ {1, 2, . . . , N}, (39)

Theorem 4. Consider the closed-loop system described by Equation (39), which satisfies As-
sumptions 2–6. If the judgment matrix W is an M-matrix, then the closed-loop system (39) is
asymptotically stable.
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The judgment matrix W is defined as

W =


w11 w12 · · · w1j

w21 w22 · · · w2j
...

...
. . .

...
wi1 wi2 · · · wij

,

where the elements wij of W are given by

wij =

−Ξ
′′
i − ζiυi − ∥bi∥Ξ

′
i if i = j,

−Ξij otherwise.
(40)

This theorem establishes that if the matrix W satisfies the properties of an M-matrix, the stability of
the closed-loop system is guaranteed. The conditions on the elements wij ensure that the system’s
stability criteria are met even in the presence of nonlinearities and external constraints.

Proof. For a closed-loop system (39), similar to the previous proof, let us consider a series
of positive-definite functions Vi(xi) as the Lyapanov function that satisfies Lemma 1 such as

V(x) =
N

∑
i=1

qiVi(xi) (41)

where qi is a set of positive-definite constants.
Then, according to Lemma 2, the following inequality satisfies

CDvV(x) ≤
N

∑
i=1

qi∇xi Vi(xi)
CDvxi (42)

Substituting the states equation of (39) in (42), we have

CDvV(x) ≤
N

∑
i=1

qi∇xi Vi(xi)(acl ixi + fi(x) + gi(x(t − τ)) + bi
⌣
ψi(kixi)), i ∈ {1, 2, . . . , N}, (43)

Simplifying Equation (43), we have

CDvV(x) ≤
N
∑

i=1
qi(∇xi Vi(xi)acl ixi +∇xi Vi(xi) fi(x)+

∇xi Vi(xi)gi(x(t − τ)) +∇xi Vi(xi)bi
⌣
ψi(kixi)), i ∈ {1, 2, . . . , N},

(44)

Using (15) and (17)

CDvV(x) ≤
N
∑

i=1
qi(∇xi Vi(xi)acl ixi +

√
Φ3i(∥xi∥)Ξi

√
Φ3i

(∥∥xj
∥∥)+

υiΦ
1/2
3i (∥xi∥)Φ1/2

3i (∥xi(t − τ)∥) +∇xi Vi(xi)bi
⌣
ψi(kixi)), i ∈ {1, 2, . . . , N},

(45)

Applying Assumption 6 to Equation (45),

CDvV(x) ≤
N
∑

i=1
qi
√

Φ3i(∥xi∥)Ξ
′′
i

√
Φ3i(∥xi∥) +

√
Φ3i(∥xi∥)Ξi

√
Φ3i(∥xi∥)

+υi
√

Φ3i(∥xi∥)ζi

(√
Φ3i(∥x(t)∥)

)
+ bi

√
Φ3i(∥xi∥)Ξ

′
i

√
Φ3i(∥xi∥)

, i ∈ {1, 2, . . . , N},

(46)
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Simplifying the above equation, we have

CDvV(x) ≤ −1
2

ΦT
3 (∥x∥)(WQ + QW)Φ3(∥x∥) (47)

we are able to always find a diagonal matrix Q = diag{q1, q2, . . . , qN}, such that the matrix
WQ + WQ is positive-definite. Then, according to Lemma 4, W is M-matrix. Thus, based
on Lemma 3, the closed-loop system is asymptotically stable.

where Φ3(∥x∥) =
[

Φ
1
2
31 Φ

1
2
32 . . . Φ

1
2
3N

]
.

Hence, the proof is complete.

Note 1. The selection of an appropriate vector Lyapunov function is of paramount importance in
the stability analysis of the system. It serves as the foundation for ensuring that all the required
assumptions are satisfied. By carefully choosing a vector Lyapunov function that aligns with the
system’s dynamics and constraints, the stability conditions can be rigorously verified, thereby
guaranteeing the desired asymptotic behavior of the system.

4. Controller Design
Designing a stable controller is a critical challenge in the practical implementation

of control systems. While the previous section established sufficient stability conditions
for ensuring the stability of the closed-loop system, the task of designing an effective and
implementable controller remains a significant objective. In this section, we address this
challenge by formulating the controller design problem as an optimization problem, which
is a well-established methodology in control theory. This approach provides both flexibility
and robustness, allowing for the systematic incorporation of various performance criteria
into the design process. Moreover, the optimization framework ensures the derivation
of a smooth and computationally efficient controller that meets the desired stability and
performance requirements, making it practical for real-world implementation.

We propose the following optimization problem to achieve the optimal output controller:

Minimize u

subject to: Stability Condition
(48)

In the optimization problem (48), the control input u is defined as u = Kx, where K
represents the controller gain matrix. This optimization problem leverages the stability
condition derived from Theorem 2, specifically using Equation (29), which converts the
optimization into a nonlinear problem. The formulation ensures that the controller adheres
to stability constraints while optimizing system performance. Furthermore, the controller
gain matrix K is selected to ensure the asymptotic stabilization of the system.

The utilization of optimization in the design process not only addresses the inherent
complexities in FO nonlinear systems but also ensures that the controller remains stable in
the presence of input saturation and time delays. The method we present provides a system-
atic approach to balancing the trade-off between stability and performance, thereby offering
a comprehensive solution to controller design in FOSs subject to nonlinear dynamics and
practical constraints.

5. Simulation Results
In this section, we investigate the effectiveness of the proposed analysis using two

well-known FOSs: the FO Lorenz system and the FO Liu system. Both systems serve as
paradigms in the study of chaotic dynamics, providing valuable insights into complex
behaviors that are pivotal in numerous applications, including robotics and automation,
where precise control and adaptation to uncertain environments are critical.
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The FO Lorenz system extends the classical Lorenz system [44] into the FO domain,
thereby exhibiting intricate chaotic behavior that differs from its integer-order counterpart.
A recent survey [45] provides a new classification of FO Lorenz-type systems, detailing
their equilibria, eigenvalues, and attractors within the three-dimensional state space. These
characteristics make the FO Lorenz system particularly suitable for modeling and analyzing
systems that are sensitive to initial conditions and exhibit long-term unpredictability.

In the field of robotics and automation, chaotic systems like the FO Lorenz can be
employed for secure communication between robotic units, as the chaotic nature of the
system provides an inherent level of security in signal transmission. Additionally, the
complex dynamics of the FO Lorenz system may be leveraged for trajectory planning
and optimization algorithms, which are essential in scenarios where robots must navigate
unpredictable or dynamic environments. The practical applications of the FO Lorenz
system are extensive, encompassing fields such as weather forecasting, cryptography,
and fluid dynamics. These applications underscore its significance in understanding and
predicting complex phenomena, including those encountered in robotic control systems
and autonomous navigation.

Similarly, the FO Liu system, a variant of the classical Liu system, incorporates FO
derivatives that introduce non-locality and nonlinearity, resulting in highly complex and
chaotic dynamics. This system has attracted considerable attention in the field of nonlinear
dynamics due to its potential applications in secure communications and cryptography. In
robotics and automation, the FO Liu system could be applied to design robust controllers
capable of handling nonlinearities and uncertainties in robotic systems, particularly in
environments where precise synchronization and adaptability are required. Its chaotic
behavior also makes it suitable for applications in swarm robotics, where chaotic motion
patterns may enhance exploration and task distribution among robots.

Thus, studying the stability, control, and synchronization of the FO Liu system is essen-
tial not only for comprehending its theoretical behavior but also for exploring its practical
implications in automation and robotic systems where stability and precise coordination
between components are critical. By applying the proposed analysis to these FO chaotic
systems, we aim to deepen the understanding of their complex dynamics and demonstrate
the efficacy of the advanced stabilization techniques introduced in this work.

5.1. Example 1

For the first example, we consider the FO Lorenz system to demonstrate the advantage
of the proposed desired controller by utilizing the Lyapunov-like function. The system can
be described by the following equations, which capture the FO dynamics:

Dvx = σ(y − x) + sat(k1x)
Dvy = x(ρ − z)− y + sat(k2y)
Dvz = xy − βz + sat(k3z)

(49)

where x, y, and z represent the state variables, and σ, ρ, and β are system parameters. By
designing a suitable controller based on the Lyapunov-like function and applying it to the
FO Lorenz system, we aim to demonstrate the ability of the proposed control approach to
stabilize and control the chaotic behavior of the system. The analysis and simulation results
will provide insights into the effectiveness and performance of the controller in achieving
stabilization and desired system behavior.

The model parameters are given by σ = 10, ρ = 28, β = 8
3 , v = 0.993, and

K =
[
k1 k2 k3

]
=

[
0 0 0

]
. The open-loop system is depicted in Figure 2.
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Figure 2. Phase plot of the open-loop FO Lorenz system for v = 0.993.

Next, we consider the condition of Theorem 2 as follows:

Acl =

k1 − σ 0 0
0 k2 − 1 0
0 0 k3 − β

, F(x) =

 0
−xz
xy

, G(x) =

σ

ρ

0

.

We can now design the controller using the proposed method outlined in Section 4
and solve the optimization problem given by (48). We then consider ∥u∥:

Minimize ∥u∥
subject to:


Θ P P P

P −k f I 0 0

P 0 −kg I 0

P 0 0 −ks I

 < 0
(50)

We achieve the following results:

P =

 1 0.001 0.001
0.001 1 0.001
0.001 0.001 1


K = diag

[
−68.8939 −77.8701 −57.2020

]
= diag

[
k1 k2 k3

]
k f = 0.8132, kg = 0.0295, ks = 0.0825

(51)

Figures 3 and 4 exhibit the phase plots of the system and demonstrate the behavior
of the closed-loop system. These plots provide valuable insights into the dynamics and
convergence characteristics of the system. In Figure 3, the phase plot illustrates the trajectory
of the system’s state variables over time, allowing us to visualize the system’s attractor and
observe its overall behavior. A well-defined and structured attractor indicates the stability
and regular behavior in the system. The plot reveals the desirable convergence speed
of the system, with the trajectory approaching a steady state or periodic orbit. Similarly,
in Figure 4, the behavior of the closed-loop system with initial states x(0) = [10, 14, 7] is
depicted. The closed-loop response reflects the impact of the control input on the system’s
dynamics. The figure demonstrates the effectiveness of the control strategy in guiding
the system toward a desired state or trajectory. The convergence speed, as evident from
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the plot, indicates that the closed-loop system can reach the desired equilibrium or follow
a desired trajectory in a relatively short time. The rapid convergence speed observed in
Figures 3 and 4 is a positive outcome, signifying the effectiveness and efficiency of the
control approach. A fast convergence speed implies that the system can quickly adjust and
stabilize itself in response to perturbations or changes in initial conditions.

Figure 3. Phase plot of the closed-loop FO Lorenz system for v = 0.993.

Time (s)

S
ta

te
s

x

y

z

Figure 4. The behavior of the closed-loop FO Lorenz system for v = 0.993.

In Figure 5, we present a comparison of the states between FO and integer-order
system modes. The figure clearly demonstrates that the states of the FO system converge
faster than those of the integer-order system in [46]. This observation can be attributed
to two possible reasons. First, the stability region of the FO system, when v ∈ (0, 1), is
inherently broader than that of the integer-order system. Second, different controllers were
employed in the FO system and the integer-order system, which may contribute to the
observed performance differences.

Furthermore, we were unable to extend the presented analysis to the integer-order
system due to the specific constraints of Lemma 1 and Theorem 1, which apply only when
v ∈ (0, 1). Conducting a similar analysis for integer-order systems could represent a
valuable direction for future research.
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Figure 5. Comparison of states of FO and integer-order system modes presented in [46].

5.2. Example 2

In this section, we extend the application of our proposed control approach to the
FO Liu system. By incorporating time delays, we aim to further validate the effectiveness
and applicability of our control methods across different chaotic systems. We begin by
transforming the traditional FO Liu system into a form that incorporates multiple time
delays [29], as represented in Equation (51). The system dynamics are governed by three
state variables x1, x2, and x3, with corresponding fractional derivatives in the Caputo sense
denoted by Dv

t . The system coefficients a, b, c, and d are predefined constants, while τ = 1
represents the time delay. We select specific coefficient values (a = 2.5, b = −4, c = −5,
d = 4) and an initial condition of

[
0.1 0.1 0.1

]
to simulate the FO Liu system without

control. The phase plot of the system is presented in Figure 6.

Figure 6. Phase plot of the open-loop FO Liu system for v = 0.95.
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Dv

t x1 = −x1(t − τ) + x2
2(t)

Dv
t x2 = ax2(t − τ) + bx1(t)x3(t)

Dv
t x3 = cx3(t − τ) + dx1(t)x2(t)

(52)

It presents the phase plot of the FO Liu system without control, showcasing the
relationships between the state variables and visually representing the system’s attractor.
This allows us to identify any attractor structure and assess the system’s stability and
dynamic behavior. In [29], the system was studied without any limitations on controller.

By contrasting the results obtained with and without control, we can evaluate the
effectiveness of our methods in stabilizing the system and regulating its behavior.

Without control, the time-delayed FO Liu system exhibits unstable states for every
τ ≥ 0. Thus, we introduce controllers as follows:

Dv
t x1 = −x1(t − τ) + x2

2(t) + b
′
1sat(u1(t))

Dv
t x2 = ax2(t − τ) + bx1(t)x3(t) + b

′
2sat(u2(t))

Dv
t x3 = cx3(t − τ) + dx1(t)x2(t) + b

′
3sat(u3(t))

(53)

We set the input coefficients b
′
1 = b

′
2 = b

′
3 = 1, and the vector Lyapunov function is

defined as follows:
V(xi(t)) = Σ3

i=0xi
2 = V1 + V2 + V3 (54)

Selecting ζ = 3/2 satisfies the requirements of Theorem 4. We can derive the following
inequality:

∇xi Vi(xi)xi(t − 1) ≤ 2∥xi(t)∥∥xi(t − 1)∥ ≤ 3∥xi(t)∥2, (55)


∇x1 V1(x1)g1(x(t)) ≤ 2∥x1(t)∥∥x2(t)∥2

∇x2 V2(x2)g2(x(t)) ≤ 8∥x1(t)∥∥x2(t)∥∥x3(t)∥
∇x3 V3(x3)g3(x(t)) ≤ 8∥x1(t)∥∥x2(t)∥∥x3(t)∥

(56)

Choosing u1(x(t)) = 9x1(t), u2(x(t)) = 15x2(t), and u3(x(t)) = 13x3(t), and based
on Theorem 4, the matrix W is defined as follows:

W =

 10 0 0
0 28.5 0
0 0 24

.

It is evident that the matrix W is an M-matrix. We now proceed to analyze the
closed-loop system described by (53) with the proposed controller. The time responses of
the controlled FO Liu system are illustrated in Figures 7 and 8, showcasing the system’s
behavior under the influence of the designed controller. These figures provide insights into
the convergence speed and stability of the controlled system. Figure 9 depicts the output of
the saturation control.

To further demonstrate the versatility of the proposed controller, we consider different
FO parameters and initial values for the FO Liu system. Figures 10 and 11 depict the
time responses of the system for randomly selected FO parameters and initial values.
These results confirm that the proposed controller, based on the vector Lyapunov function,
effectively satisfies the conditions outlined in Theorem 4, ensuring stability and convergence
of the system across various parameter settings v = [0.78, 0.78, 0.78], with initial values as
x0 = [2.21, 3.1, 4]).

In conclusion, the application of the proposed controller to the FO Liu system yields
promising results. The controlled system exhibits stable behavior and convergence toward
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desired states. These outcomes affirm the viability of the vector Lyapunov function-based
control approach and its ability to meet the requirements specified in Theorem 4.

Figure 7. Phase plot of the closed-loop FO Liu system for v = 0.95.
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Figure 8. Time evolution of state variables of the closed-loop FO Liu system for v = 0.95.
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Figure 9. Input saturation control.
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Figure 10. Time evolution of state variables of the closed-loop FO Liu system for order v = 0.78.

Figure 11. Phase plot of the closed-loop Liu system for order v = 0.78.

6. Conclusions
This research introduces novel stabilization criteria for a class of fractional-order (FO)

nonlinear systems characterized by saturation control and time delays. The stability anal-
ysis hinges on two primary methodologies: the Lyapunov-like function and the vector
Lyapunov function tailored for FO nonlinear systems with control constraints. The former
technique leverages Lyapunov-like functions, diffusive realization, and Lipschitz condi-
tions, while the latter employs vector Lyapunov functions, the M-matrix method, and
specific assumptions. Notably, this latter approach effectively addresses the asymptotic
stability problem of nonlinear systems with time delays.

A pivotal aspect of this work is the practical application of the derived stability
conditions. A dedicated section outlines the design of a stabilized controller within the
context of an optimization problem, considering constraints. To validate the efficacy of the
proposed control strategies, two well-established chaotic systems, the FO Lorenz and Liu
systems, were employed as case studies. The simulation results unequivocally demonstrate
the successful stabilization of these systems, underscoring the practical significance and
applicability of the developed techniques. Future research directions include extending
these control methods to encompass uncertain FO nonlinear systems.
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