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It is well-established that compactifying type I string theory on a circle Sð1Þ transforms the theory under

T-duality into type I’ theory; the compactification of type IIA string theory on the orbifold S̃ð1Þ=Z2, where the

Z2 action combines world sheet parity with spacetime reflection along the dual circle S̃ð1Þ. We propose that,
upon compactification, the untwisted (twisted) sector of the type I effective action should map under the
Buscher rules to the untwisted (twisted) sector of the type I’ effective action. This T-duality constraint offers
significant insight into the determination of bosonic couplings in the effective action of type IIA theories,
specifically those that remain after orbifold reduction, as well as in the untwisted sector of the type I effective
action. However, its scope is limited and insufficient to fully determine the couplings within the twisted sectors
of type I and type I’ theories. Within this framework, we demonstrate that the leading second-order derivative
couplings in untwisted sector of type I and the second-order derivative couplings in type IIA theory are uniquely
determined, except for the Chern-Simons term in type IIA, which is absent in the orbifold reduction.
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String theory is a promising candidate for quantum
gravity, as it encompasses both massless fields and an
infinite tower of massive fields. At low energies, it is
described by an effective action in ten-dimensional space-
time that includes only the massless fields and their
derivatives, classified in terms of the sole dimensionful
parameter in string theory, α0. The couplings at each order of
α0 include classical couplings [1–4], loop or genus correc-
tions [5–8], as well as nonperturbative corrections [9–12].
This effective action is expected to serve as a viable frame-
work for quantum gravity in ten-dimensional spacetime.
The effective action in string theory can be constructed

by imposing various global and local symmetries inherent
to the theory. While the leading-order effective action can
be determined by requiring local supersymmetry, extending
this approach to higher-order derivative terms is signifi-
cantly more challenging. This complexity arises because
one must simultaneously account for both bosonic and
fermionic fields in a consistent manner (see [13] for a
comprehensive review). Among the notable global sym-
metries in spacetime is the Oðd; d;RÞ symmetry, which
emerges when the ten-dimensional classical effective action

is dimensionally reduced on a torus TðdÞ [14,15]. This
symmetry is based on the implicit assumption that the
effective action is background-independent. This means the
structure of the effective action remains consistent and
unchanged, irrespective of whether certain dimensions are
flat or compactified on circles. At the classical level,
effective actions are indeed background-independent [16];
however, at the quantum level, this independence is lost.
For instance, S-matrix calculations at the torus level are
sensitive to the presence or absence of a circular dimension
in spacetime [17]. The introduction of a circular dimension
leads to two significant effects. First, the Kaluza-Klein
momenta in loops become discrete, replacing the continu-
ous integral over internal momenta with a summation.
Second, winding momenta emerge, a feature absent in
spacetimes without a circular dimension. These effects
introduce a dependence of S-matrix elements on the
background topology, rendering quantum corrections to
the effective action no longer background-independent.
Furthermore, under T-duality, the Kaluza-Klein momenta
and winding momenta are interchanged. As a result, while
the classical effective action exhibits the full Oðd; d;RÞ
symmetry, quantum corrections—such as higher-genus
contributions—are confined to the discrete subgroup
Oðd; d;ZÞ. Naturally, the classical effective action also
respects Oðd; d;ZÞ, since this subgroup is inherently part
of the continuous symmetry.
It has been shown that imposingOð1; 1;ZÞ symmetry on

the circular reduction of the classical effective action allows
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for the derivation of all couplings in the effective action of
bosonic string theory, as well as all bosonic couplings in
the effective action of heterotic string theory at orders α0

and α02 [18–22]. Additionally, all classical NS-NS cou-
plings in type II superstring theories at order α03 have been
identified in [23]. Moreover, the R-R couplings in these
theories at the leading order of α0 have been shown
in [24,25] to align with Oð1; 1;ZÞ transformations, which
relate the type IIA classical couplings to their correspond-
ing type IIB couplings. All of the aforementioned classical
couplings are fixed up to overall multiplicative factors in
each case. Once these factors are determined for
Minkowski spacetime, they remain valid for any other
spacetime, owing to the background independence of the
classical effective action. On the other hand, since quantum
corrections to the effective action are background-
dependent but still invariant under Oð1; 1;ZÞ transforma-
tions, the above results extend to quantum corrections as
well. However, the overall factors for quantum corrections
must be calculated using loop-level S-matrix computations
for a specific background with one Killing circle. These
results are then applicable exclusively to such space-
times [26].
It is well-established that compactifying type I string

theory on the circle Sð1Þ, under T-duality, transforms it into
type I’ string theory. The latter corresponds to the compac-
tification of type IIA string theory on the orbifold S̃ð1Þ=Z2,
whereZ2 combinesworld sheet parity with spacetime parity
along the dual circle S̃ð1Þ [27]. Both type I and type I’ theories
consist of untwisted and twisted sectors. The untwisted
sector of the type I’ effective action shares the same world
sheet topologies as the type IIA effective action, whereas the
twisted sector encompasses all other world sheet topologies.
Under T-duality, the untwisted (twisted) sector of the
effective action in type I string theory maps to the untwisted
(twisted) sector of the effective action in type I’string theory.
This paper focuses exclusively on the untwisted sector.
Specifically, we aim to demonstrate that by applying
Oð1; 1;ZÞ transformations or Buscher rules to the circular
reduction of the untwisted sector of the type I effective
action, one can derive the effective action of type IIA string
theory. This approach provides strong constraints for deter-
mining higher-derivative couplings in the untwisted sector
of the type I effective action and identifying couplings in the
type IIA classical effective action that remain nonvanishing
under orbifold reduction.
On the other hand, the twisted sector of the type I

effective action is ten-dimensional, whereas, for a zero
Wilson line in type I theory, the twisted sector of type I’
theory is restricted to a single nine-dimensional fixed point
of the orbifold. Consequently, as we will demonstrate, the
T-duality constraint on the twisted sector is insufficient to
fully determine the unknown coupling constants in the
twisted sector of the ten-dimensional type I theory, as well
as the independent coupling constants in the twisted sector

of type I’ theory. Notably, since the twisted sector of the
type I’ effective action is inherently nine-dimensional, it
includes numerous coupling constants. Therefore, the
T-duality constraint alone cannot fully resolve these cou-
plings. This contrasts with the untwisted sector, where the
independent couplings in both theories are ten-dimen-
sional, resulting in significantly fewer unknown coupling
constants that emerge in nine-dimensional spacetime after
compactification. To determine the twisted sector using T-
duality, one would need to independently identify the
couplings in the twisted sector of type I theory through
alternative methods; an investigation that falls outside the
scope of this paper.
In the type I effective action, specific couplings arise

from the replacement of deformed Ramond-Ramond (R-R)
field strength, as required by the Green-Schwarz mecha-
nism [28], within the untwisted sector of the theory. These
couplings are notably absent in the type IIA effective action
due to its fundamentally nonchiral nature. Our analysis
indicates that all such couplings in type I theory reside
exclusively in the twisted sector of the effective action. A
subtlety arises in the process of dimensional reduction;
although the ten-dimensional type IIA theory is nonchiral,
its orbifold reduction results in a chiral theory [27].
Crucially, all terms associated with potential chiral anoma-
lies are confined to the twisted sector, while the untwisted
sector remains anomaly-free.
The massless bosonic fields of type I theory are divided

into two sectors; the twisted sector, which includes mass-
less open string fields Aa

α (not the focus of this paper), and
the untwisted sector, which consists of closed string fields.
These closed string fields can be derived from the massless
fields of type IIB string theory by gauging the world sheet
parity symmetry of type IIB theory. The massless fields in
type IIB theory include Gαβ, Bαβ, and Φ in the NS-NS
sector, and Cð0Þ, Cð2Þ, and Cð4Þ in the R-R sector, with the
Cð4Þ-form being self-dual. The fields that survive the
orientifold projection are

Gαβ;Φ; Cð2Þ; ð1Þ

which are the massless closed string fields of ten-dimensi-
nal type I string theory.
To study the T-duality of type I theory, one should

consider one of the spatial coordinates of spacetime to be a
circle. If the circle has the coordinate y, then the fields
mentioned above have the following nine-dimensional
components:

Gμν; Gμy; Gyy;Φ; Cμν; Cμy: ð2Þ

On the other hand, the ten-dimensional type IIA theory has
the following massless bosonic fields:

Gαβ; Bαβ;Φ; Cð1Þ; Cð3Þ: ð3Þ

MOHAMMAD R. GAROUSI PHYS. REV. D 111, 086029 (2025)

086029-2



Under the orbifold reduction, the surviving components of
these massless fields in the nine-dimensional type I’ are

Gμν; Gyy; Bμy;Φ; Cμ; Cμνy: ð4Þ

Note that the number of massless fields in (2) is the same as
the number of massless fields in (4). The transformation of
the circular reduction of type I fields (2) under the Buscher
rules results in the following fields in type I’ [29–31]:

Gμν → Gμν þ
BμyBνy

Gyy
; Gμy →

Bμy

Gyy
; Gyy →

1

Gyy
; e2Φ →

e2Φ

Gyy

Cμy → Cμ; Cμν → Cμνy þ CμBνy − CνBμy; ð5Þ

where we have used in the Buscher rules [29–31] the fact that type I’ theory has no Gμy.
To derive the classical effective actions of type IIA and the untwisted sector of type I through T-duality, we formulate the

most general covariant and gauge-invariant effective action at tree level and at the second-derivative order for these actions.
The construction proceeds as follows:

Sð0Þ
I ¼ −

2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
½e−2Φða1Rþ a2∇αΦ∇αΦÞ þ a3jFð3Þj2�;

Sð0Þ
IIA ¼ −

2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
½e−2Φðb1Rþ b2∇αΦ∇αΦþ b3HαβγHαβγÞ þ b4jFð2Þj2 þ b5jFð4Þj2�; ð6Þ

where jFðnÞj2 ¼ 1
n!Fα1���αnF

α1���αn . Moreover, H ¼ dB, Fð2Þ ¼ dCð1Þ, Fð3Þ ¼ dCð2Þ, and Fð4Þ ¼ dCð3Þ þH ∧ Cð1Þ. By
rescaling the R-R potential as CðnÞ → e−ΦCðnÞ, one finds the overall dilaton factor e−2Φ, which corresponds to the
sphere-level effective action. However, the above form is a standard representation of the R-R couplings in the literature,
and the Buscher rules (5) are expressed in terms of the standard R-R fields. The parameters a1; a2; a3; b1; b2; b3; b4; b5 are
coupling constants that we will determine by imposing the constraint that the above classical actions should be covariant

under Buscher transformations (5). Specifically, this means Sð0ÞI → Sð0ÞI0 , where S
ð0Þ
I is the circular reduction of Sð0Þ

I and Sð0ÞI0

is the orbifold reduction of Sð0Þ
IIA. There is also a Chern-Simons coupling

R
B ∧ dCð3Þ ∧ dCð3Þ in the type IIA effective

action, which does not survive under the orbifold reduction. Hence, its coupling constant cannot be fixed by the

constraint Sð0ÞI → Sð0ÞI0 .
To simplify the Buscher rules (5), we consider the following circular reduction for the type I fields [25,32]:

Gαβ ¼
�
ḡμν þ eφgμgν eφgμ

eφgν eφ

�
; Cαβ ¼

�
c̄μν þ c̄μgν − c̄νgμ c̄μ

−c̄ν 0

�
; Φ ¼ ϕ̄þ φ=4; ð7Þ

and the following orbifold reduction for the type IIA fields:

Gαβ ¼
�
ḡμν 0

0 eφ

�
; Bαβ ¼

�
0 bμ

−bν 0

�
; Φ ¼ ϕ̄þ φ=4; Cα ¼

�
c̄μ
0

�
; Cαβγ ¼

�
0

c̄μν

�
: ð8Þ

Then the transformations (5) simplify to the following linear transformations:

gμ → bμ; φ → −φ; ϕ̄ → ϕ̄; ḡμν → ḡμν; c̄μ → c̄μ; c̄μν → c̄μν: ð9Þ

Imposing the above transformations on the nine-dimensional type I couplings should yield the corresponding type I’
couplings. This serves as a constraint to determine the coupling constants in the leading-order actions (6). While these
transformations are expected to receive higher-order corrections—essential for establishing the higher-derivative effective
action—this paper does not focus on such corrections. It is worth emphasizing the following transformation:

bμ → gμ; φ → −φ; ϕ̄ → ϕ̄; ḡμν → ḡμν; c̄μ → c̄μ; c̄μν → c̄μν; ð10Þ

converts the nine-dimensional type I’ couplings to nine-dimensional type I couplings, i.e., Sð0ÞI0 → Sð0ÞI . Hence, the
transformation generates the Z2-group.
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Using the reduction (7), one finds that the circular reduction of the leading-order type I effective action (6) in flat base
space becomes [19,25]

Sð0ÞI ¼ −
2

κ2

Z
d9x

�
e−2ϕ̄

��
−
1

2
a1 þ

1

16
a2

�
∂μφ∂

μφþ a2∂μϕ̄∂μϕ̄ − a1∂μ∂μφþ 1

2
a2∂μϕ̄∂μφ

−
1

4
a1eφV2

�
þ a3e−φ=2jF̄ð2Þj2 þ a3eφ=2jF̄ð3Þ − c̄ð1Þ ∧ Vj2

�
; ð11Þ

where Vμν ¼ ∂μgν − ∂νgμ represents the field strength of the Uð1Þ vector gμ, and F̄ðnÞ ¼ dc̄ðn−1Þ. Furthermore, by applying
the orbifold reduction (8), the orbifold reduction of the leading-order type IIA effective action (6) is obtained as [19,25]

Sð0ÞI0 ¼ −
2

κ2

Z
d9x

�
e−2ϕ̄

��
−
1

2
b1 þ

1

16
b2

�
∂μφ∂

μφþ b2∂μϕ̄∂μϕ̄ − b1∂μ∂μφþ 1

2
b2∂μϕ̄∂μφ

þ 3b3e−φW2

�
þ b4eφ=2jF̄ð2Þj2 þ b5e−φ=2jF̄ð3Þ − c̄ð1Þ ∧ Wj2

�
; ð12Þ

where Wμν ¼ ∂μbν − ∂νbμ is the field strength of the Uð1Þ
vector bμ. The T-duality constraint is that, up to some total

derivative terms in thebase space,Sð0ÞI → Sð0ÞI0 under the trans-

formation (9) or Sð0ÞI0 → Sð0ÞI under the transformation (10).
Up to a total derivative term, one finds that under the

transformations (9), the nine-dimensional action (11) trans-
forms to the nine-dimensional action (12), provided that the
following relationships between the coupling constants hold:

b1 ¼ a1; b2 ¼ 4a1; b3 ¼ −
1

12
a1;

b4 ¼ a3; b5 ¼ a3; a2 ¼ 4a1: ð13Þ

Moreover, the constants a1 and a3 can also be absorbed by
normalizing themetricGαβ and the R-RpotentialCð2Þ to have

standard kinetic terms, i.e., a1 ¼ 1 and a3 ¼ −1=2. It is
important to emphasize that if thenine-dimensional couplings
in (12)were treated as independent, (12) would contain seven
parameters. In this scenario, T-duality would not be able to
constrain all the unknown parameters. Therefore, it is
essential that the independent couplings in both theories
are defined in ten dimensions, as illustrated in (6), allowing
T-duality to impose constraints on their reductions to nine
dimensions. This demonstrates why the T-duality constraint
alone, in the twisted sector, cannot uniquely determine the
couplings in the twisted sectors of type I and type I’ theories.
This limitation arises from the fact that the couplings
in the twisted sector of type I’ are inherently nine-
dimensional.
Hence, the type I and type IIA effective actions in (6)

become

Sð0Þ
I ¼ −

2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
e−2ΦðRþ 4∇αΦ∇αΦÞ − 1

2
jFð3Þj2

�
;

Sð0Þ
IIA ¼ −

2

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
e−2Φ

�
Rþ 4∇αΦ∇αΦ −

1

12
jHj2

�
−
1

2
jFð2Þj2 − 1

2
jFð4Þj2

�
: ð14Þ

Up to the Chern-Simons term
R
B ∧ dCð3Þ ∧ dCð3Þ, the

action Sð0Þ
IIA represents the standard leading-order ten-

dimensional effective action of nonchiral type IIA string

theory. However,Sð0Þ
I does not yet constitute the standard ten-

dimensional effective action of the chiral type I string theory.
In type I theory, there is a chiral anomaly which can be

canceled for the gauge group SOð32Þ by adding appro-
priate couplings at the eighth-order derivative and by
deforming the R-R gauge transformation to include non-
standard Aα

a-gauge transformations and local Lorentz
transformations [28]. In this paper, we specifically consider

the case of zero gauge field. Under the nonstandard local
Lorentz transformation for the Cð2Þ-field, the Cð2Þ-field
strength in (14) needs to be replaced by a new field strength
that is invariant under these nonstandard local Lorentz
transformations [28], i.e.,

Fð3Þ
αβγ → Fð3Þ

αβγ þ
3

2
α0Ωαβγ; ð15Þ

where the Chern-Simons three-form Ω is constructed from
the frame eαα1 , which is related to the spacetime metric as
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eαα1eββ1ηα1β1 ¼ Gαβ. Our index convention is that α, β are
the indices of the curved spacetime, and α1, β1 are the
indices of the flat tangent spaces.
The replacement of (15) into (14) yields the following

terms at orders α0 and α02:

Sð1Þ
I ¼ −

2α0

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
1

4
Fð3Þ
αβγΩαβγ

�
;

Sð2Þ
I ¼ −

2α02

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
3

16
ΩαβγΩαβγ

�
: ð16Þ

There are no such terms in the ten-dimensional type IIA
effective action. However, this does not imply any
inconsistency with T-duality. Specifically, if the R-R
potential is rescaled such that the overall dilaton factor
of the couplings in (14) becomes e−2Φ, this rescaling

results in the dilaton factor of Sð1Þ
I being e−Φ and that of

Sð2Þ
I being 1. It is important to note that the frame eαα1

cannot be rescaled in a similar way, as doing so would
disrupt the dilaton factor e−2Φ in the curvature term

of (14). Consequently, the coupling Sð1Þ
I arises from disk

and projective plane orders, while the coupling Sð2Þ
I

originates from cylinder, Möbius, and Klein bottle orders.
Furthermore, the torus world sheet cannot generate non-
zero couplings at order α02 [6]. Such world sheets are
absent in type IIA theory. As a result, all these couplings
are associated with the twisted sector of type I theory. This
twisted sector is expected to include numerous additional
fourth-order derivative and sixth-order derivative cou-
plings. All these couplings must transform under T-duality
into the twisted sector of type I’ theory. However, as
previously mentioned, T-duality alone cannot uniquely
determine these couplings, placing them outside the scope
of our current investigation.
In the heterotic theory, which lacks a twisted sector, the

Green-Schwarz mechanism requires the following replace-
ment within the effective action:

Hαβγ → Hαβγ þ
3

2
α0Ωαβγ: ð17Þ

This gives rise to couplings similar to those in (16), but with
the inclusion of the dilaton factor e−2Φ. These couplings
remain consistent with T-duality after incorporating addi-
tional ten-dimensional couplings at orders α0 and α02 [33].
Importantly, all these couplings are uniquely determined by
the T-duality constraint.
The next classical higher derivative corrections to the

actions (14) are at the eighth derivative order. To impose
T-duality and identify such couplings, one should first
determine Sð3Þ

I , which includes all independent couplings in

type I theory involving the fields (1), andSð3Þ
IIA, which includes

all independent couplings in type IIA theory involving the
fields (3). Then, the circular reduction of type I couplings

should be used to find Sð3ÞI , and the orbifold reduction of type

IIA couplings should be used to find Sð3ÞI0 . The T-duality

constraint requires that Sð3ÞI transforms into Sð3ÞI0 under the
higher-derivative corrections of the transformation (9).
However, these calculations are quite lengthy due to the

numerous independent couplings in types I and IIA theories.
A convenient approach to manage this large number of
couplings is to categorize them based on the number of R-R
field strengths. First, identify the independent terms with
zero R-R field strengths and use T-duality to determine their
coupling constants. Next, identify the independent cou-
plings with two R-R field strengths and apply T-duality to
determine their coupling constants. This process should
continue up to eight R-R field strengths. Similar calculations
for determining massless open string couplings on D-brane
world-volume actions, based on the number of Maxwell
field strengths, have been conducted in [34]. The details of
these calculations will be addressed in future work.
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