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AN OVERVIEW OF BAER’S THEOREM AND ITS EXTENSIONS

SAEED KAYVANFAR

Abstract. Baer’s theorem is one of the cornerstone result in group theory, providing critical insights

into the relationship between the finiteness of central factor group and that of the commutator sub-

group. Building upon Schur’s foundational work, Baer’s theorem connects the upper and lower central

series, establishing constraints on group structure that have far-reaching implications. This paper pro-

vides a brief review of Baer’s theorem, detailing its historical development, generalizations, and recent

extensions. Some key results include exponents, bounds on central series, extensions to locally gen-

eralized radical groups, finite rank conditions and applications to automorphism-influenced properties

are given. Invoking the notion of variety of groups, we also propound the Baer’s (or Schur’s) theorem

in its most general form as a fundamental question and attempt to identify all classes of groups that

are Schur-Baer with respect to some variety as potential answers. Particular attention is also given

to some of its applications in diverse areas of mathematics. Furthermore, the paper explores open

problems and potential research directions, underscoring the theorem’s enduring significance and its

role in shaping contemporary mathematical inquiry.

1. Introduction

Group theory is a fundamental branch of mathematics, providing deep insights into the structure

of algebraic concepts. Among its most significant results is Schur’s theorem, which establishes a

relationship between the finiteness of central factor group and commutator subgroup. Building on
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Schur’s theorem from 1904 [21], Baer extended the understanding of central and commutator subgroups

to the roles of the upper and lower central series in group classification [2].

The relevance of Baer’s theorem extends far beyond its original formulation. Recent advancements

have broadened its applicability to infinite groups [14], groups with finite rank [28], and periodic locally

nilpotent groups [30]. The theorem has become a crucial tool in understanding nilpotent, solvable,

and residually finite groups, with connections to the other branches of algebra.

This paper reviews the historical development of Baer’s theorem, its key generalizations and ex-

tensions, and also its applications in diverse areas of mathematics. We aim to provide an overview

perspective on this seminal result and its extensions, while identifying open problems and future

research directions.

2. Historical Review of Baer’s Theorem

One of the foundational results leading to Baer’s theorem is Schur’s theorem, which links the

finiteness of the factor group G/Z(G) to the finiteness of the derived subgroup G′:

Schur (1904): If G/Z(G) is finite, then G′ is finite [21].

Schur’s theorem emerged from studies in linear group theory and primarily dealt with the represen-

tation theory of finite groups and their associated matrix groups. Schur’s theorem laid the groundwork

for understanding the interaction between a group’s center and its commutator subgroup. Initially

focused on finite groups, the theorem has had profound implications in the study of infinite groups,

particularly those that are residually finite or locally finite.

In 1952, Reinhold Baer extended Schur’s theorem to higher terms in the central series, providing

a framework for analyzing groups with finite upper central factor groups. To fully appreciate Baer’s

theorem, it is essential to understand the central series:

The upper central series of a group G is a family of subgroups {Zα(G)}α∈Ordinals, where Ordinals

represents the class of all ordinals and it is defined recursively as follows:

Z0(G) = {e}, and for a successor ordinal α+ 1, Zα+1(G)/Zα(G) = Z(G/Zα(G)), where Z(G/Zα(G))

is the center of the quotient group G/Zα(G). For a limit ordinal λ, Zλ(G) =
⋃

α<λ Zα(G). The

hypercenter Z∞(G) is defined as the union of all Zα(G) for all ordinals α:

Z∞(G) =
⋃

α∈Ordinals

Zα(G).

The lower central series of a group G is a family of subgroups {γα(G)}α∈Ordinals, defined as follows:

γ1(G) = G. For a successor ordinal α + 1, γα+1(G) = [γα(G), G], where [γα(G), G] is the subgroup

generated by all commutators [x, y] = x−1y−1xy for x ∈ γα(G) and y ∈ G. For a limit ordinal λ,

γλ(G) =
⋂

α<λ γα(G). The hypocenter γ∞(G) is defined as the intersection of all γα(G) for all ordinals

α:

γ∞(G) =
⋂

α∈Ordinals

γα(G).
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The hypercenter Z∞(G) of a group G is the terminal subgroup of the upper central series and is the

largest normal subgroup of G in which every element is central in some quotient G/Zα(G).

Also, the hypocenter γ∞(G) of a group G is the terminal subgroup of the lower central series and

is the smallest normal subgroup N such that G/N is nilpotent.

These definitions using ordinal numbers provide a framework for analyzing the hierarchical structure

of infinite groups, particularly in the study of nilpotent, solvable, and residually nilpotent groups.

Baer (1952): If G/Zn(G) is finite, then γn+1(G) is finite for all n ≥ 1 [2].

Baer’s theorem connects the upper central series Zn(G), which approximates the center, to the lower

central series γn+1(G), which measures non-commutativity. This result deepened our understanding

of the structure of groups by showing how finiteness in the upper series propagates to the lower series.

Baer’s work has influenced the classification of nilpotent and solvable groups and has set the stage for

numerous generalizations.

In the 1970s, Wiegold introduced quantitative bounds on the size of G′ in terms of |G/Z(G)|,
improving earlier results [42]. Mann extended these results using tools from the solution of the

restricted Burnside problem, establishing precise bounds for locally finite groups and groups of finite

exponent [35]. Extensions by Ellis [13], Kurdachenko et al. [28], Dixon et al. [9], Wehrfritz [41], and

Taghavi, Kayvanfar and Parvizi [23] have been done in order to find some bounds for lower central series

of a group. Also efforts by Ellis [14], Mann [35], Dietrich and Moravec [5] and Kurdachenko et al. [30]

were done to present bounds for the terms of the lower central series and autocommutator subgroup

of a group. Extensions by Dixon, Kurdachenko and others explored the behavior of commutator

subgroups under automorphism actions, further broadening the scope of Baer’s theorem [6].

Modern research continues to refine Baer’s theorem, addressing its applications in infinite group

theory, representation theory, and algebraic topology. Relationships between the upper and lower

central series, bounds on commutator subgroups, and also verifying some specific groups and properties

like locally generalized groups, section rank and priodic groups and so on and also extending the

theorem to the notion of variety of groups remain active areas of study, connecting Baer’s theorem to

new mathematical contexts.

3. Generalizations and Extensions of Baer’s Theorem

Since the publication of Baer’s original result, there have been numerous extensions and general-

izations. These generalizations primarily fall into two categories:

• Generalizations related to the types of groups considered (e.g., solvable groups, polycyclic

groups, finite groups, polycyclic by finite groups, Chernikov groups, residually locally finite

groups, locally generalized radical groups, etc.).

• Generalizations related to the bounds and conditions imposed (e.g. finite exponent, special

rank, section p-rank, rank conditions, etc.).
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Nevertheless, depends on the situation, the above specifications and properties are sometimes used

simultaneously. For instance, in the analyzing of groups with finite rank by replacing finiteness con-

ditions on central factors with rank constraints, researchers have extended Baer’s theorem to locally

finite groups, Chernikov groups, and polycyclic-by-finite groups. These results have provided new

tools for analyzing the hierarchy and classification of both finite and infinite groups.

Recent studies have also focused on bounding the size and structure of commutator subgroups using

advanced algebraic techniques, such as Baer invariants, Schur multipliers, and non-abelian tensor

products. These refinements have not only strengthened the applicability of Baer’s theorem but

also demonstrated its relevance to cohomology of groups, representation theory, and other areas of

mathematics.

To state Baer’s theorem (or Schur’s theorem) in the most general state, we need to know the concept

of variety of groups.

A variety V of groups is defined as a class of groups closed under homomorphisms, subgroups, and

direct products [38]. For example, trivial variety T, abelian variety A, nilpotent variety Nc of class

at most c, and solvable variety Sl of groups of length l, contains only the trivial group, all abelian

groups, groups of nilpotency class c and solvable groups of length l, respectively. The verbal subgroup

V (G) of a group G with respect to a variety V is the subgroup of G generated by all elements that

satisfy the defining identities of V. In other words,

V (G) = ⟨w(g1, g2, . . . , gn) | w(x1, x2, . . . , xn) is a word in V, gi ∈ G⟩,

where w(x1, . . . , xn) is any word representing a defining identity of the variety V, w(g1, g2, . . . , gn) is

the evaluation of that word in G and V is the set according to which the variety V is defined. Also,

the marginal subgroup V ∗(G) of a group G with respect to V is the set of all elements g ∈ G such that

substituting g into any word w(x1, . . . , xn) defining V leaves the word unchanged in all evaluations.

that is

V ∗(G) = {g ∈ G | w(g, g2, . . . , gn) = 1 in G, for all w ∈ V and all g2, . . . , gn ∈ G}.

In fact, V (G) captures the active “outputs” of the words defined by the variety and V ∗(G) identifies

the “inactive” elements that do not interfere with the variety’s defining laws. For instance, in the

variety of abelian groups, V (G) = G′, V ∗(G) = Z(G), and in the variety of nilpotent groups of class

at most c, V (G) = γc+1(G), V ∗(G) = Zc(G).

Now the most general state of Baer’s or Schur’s theorem can be propounded as a question as follows:

Question: For what variety V and class of groups X , the assuption G/V ∗(G) ∈ X implies V (G) ∈ X ?

If V is the variety of abelian groups A, or the variety of nilpotent groups of class at most c, i.e.

Nc, and X is the class of all finite groups F , then the answer of the above question is clearly Schur’s
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theorem and Baer’s theorem, respectively. Now, one may easily observe that many of the papers which

generalize Baer’s or Schur’s theorem, in fact, answer the above question for different varieties V and

classes of groups X .

Accordingly, it is appropriate to name such a class of groups in honor of Schur and Baer as follows.

Definition: Let V be a variety of groups. A class of groups X is called a Schur-Baer class with

respect to the variety V, if for all groups G

G/V ∗(G) ∈ X always implies V (G) ∈ X .

The class of all finite groups F and consequently, the class of all locally finite groups LF are Schur-

Baer with respect to the variety of abelian groups A. Furthermore, the class of polycyclic-by-finite

groups PF , Chernikov groups C (see [31, Theorem 3.9]) (it was first proved by Polovitskij), and

soluble-by-finite minimax groups SFmin[26] are Schur-Baer with respect to A too. Nevertheless, there

are some classes of groups which do not have this property. For instance, Adian [1] shows that the

class of periodic groups is not a Schur-Baer with respect to A.

In this section we intend to have a quick view to some classes of groups X which are Schur-Baer

with respect to some varieties of groups V.

3.1. Baer’s Theorem and Exponents. The relationship between Baer’s theorem and the exponents

of groups has been explored in numerous papers. In particular, several results address how the

finiteness conditions on the central series influence the exponents of the group. Some of the important

results in this area are as follows.

Ellis’ Exponent (2001): If G/Zn(G) is finite group of finite exponent, then exponent of γn+1(G) is

bounded by a function [14].

Mann’s Exponent (2007): If G/Z(G) is locally finite of finite exponent e, then exponent of γ2(G)

is bounded by a function of e [35].

Kurdachenko et. al.’s Exponent (2016): If G/Zn(G) is locally finite of finite exponent e, then

exponent of γn+1(G) is bounded by a function of e [30].

The above statements show that the classes of all finite group of finite exponent FFE and locally

finite of finite exponent LFFE are Schur-Baer with respect to the variety of nilpotent groups Nn and

therefore with respect to the variety of abelian groups A.

Dietrich and Moravec’s Exponent (2011): If G/L(G) is locally finite of finite exponent e, then

exponent of K(G) is bounded by a function of e, where L(G) and K(G) are absolute center and

autocommutator subgroup of G [5].
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3.2. Baer’s Theorem and Bounds on Central Series. Another significant area of development

has been the quantitative versions of Baer’s theorem. Some authors have sought to provide better

estimates and bounds for the sizes of |γn+1(G)| in terms of |G/Zn(G)|. These bounds can be used to

classify groups more efficiently and to understand the behavior of terms in the central series. Some of

these bounds include:

Wiegold’s Bound (1965): If |G/Z(G)| = t, then |G′| ≤ t
1
2
(log2 t−1) [42].

Ellis’ Bound (1998): Let G be a nilpotent group whose n-th upper central quotient is a direct

product of finite prime-power group, i.e., G/Zn(G) ∼= S1 × · · · × Sl.

Suppose that each Si is a di-generator group whose order is a power of some prime pi say, where

pi ̸= pj for i ̸= j. Suppose that the Frattini subgroup ϕi of Si is such that |γj(Si, ϕi)| = pmij
i . Then

| γn+1(G) |≤
l∏

i=1

p
χn+1(di)+mindi+mi(n−1)d

2
i+···+mi1d

n
i

i

[13].

Kurdachenko et al.’s Bound (2013): If G/Z∞(G) is finite group of order t, then G has a finite

normal subgroup L of order at most |L| ≤ t
1
2
(log2 t+1)such that G/L is hypercentral, where Z∞(G) is

hypercenter of G [28].

Dixon et al.’s Bound (2017): Let G be a group and suppose that there is a natural number n such

that G/Zn(G) is finite of order t. Then there is a function β1 of n, t only such that γn+1(G) is finite

of order at most β1(t, n) is defined inductively by

β1(t, 1) = t
1
2
(logp t−1), β1(t, n) = β1(t, n− 1)

1
2
(logp β1(t,n−1)−1)tβ1(t,n−1)

[7].

The above bound improved in 2021 by Taghavi, Kayvanfar and Parvizi [23] and it will be presented

in the following.

Wehrfritz’s Bound (2018): Let G be a group such that |G/Z(G)| = t. Then |γ2(G)| ≤ t
1
2
(t′−1),

where t′ is

t′ =

{
logp t, if r′ = 1;

[ logp t], if r′ ̸= 1;

[41].

Taghavi et al.’s Bound (2021): Let G be a group such that G/Zn(G) is generated by d elements

and is finite of order t = pr11 · · · prss . Then

|γn+1(G)| ≤ min{t
1
2
(t′−1)( d

n−1
d−1

), t
1
2
(t′+1)∏s

i=1 p
χn+1(ri)
i }

[23].
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The significance of investigating on bounds for the lower central series are particularly useful when

working with large groups or groups where direct computation is not feasible.

Remark: Some of the above results have been extended to A-central series by many authors, where

A is a subgroup of Aut(G) such that Inn(G) ≤ A.

For instance:

Hegarty’s Bound (1994): Let |G/CG(Aut(G))| = t. Then

|γ2(G,Aut(G))| ≤ tt((t−1)2+[ t
2
])[log2 t]

[18].

Dixon et al.’s Bound (2014): Let G be a group and let A be a subgroup of Aut(G) such that

Inn(G) ≤ A and |A/Inn(G)| = k is finite. Let Z be the upper A-hypercenter of G. Suppose that

zl(G,A) = m is finite and G/Z is finite of order t. Then γm+1(G,A) is finite, and there is a function

β such that

|γm+1(G,A)| ≤ β(k,m, t),

where β(k,m, t) is defined inductively by

β(k, 1, t) = tk+
1
2
(logp t−1), β(k,m+ 1, t) = (β(k,m, t))k+d(m+1),

d(m+ 1) =
1

2
(logp β(k,m, t)− 1)

[7].

Dixon et al.’s Bound (2014): Let G be a group and let A be a subgroup of Aut(G) such that

Inn(G) ≤ A and |A/Inn(G)| = k is finite. Let Z be the upper A-hypercenter of G. Suppose

that zl(G,A) = m is finite and G/Z is finite of order t. Then there exists a function β1 such that

|γ∞(G,A)| ≤ tk+
1
2
(logp t+1) = β1(k, t) [7].

Kurdachenko et al.’s Bound (2015): Let G be a group and let A be a subgroup of Aut(G) such

that Inn(G) ≤ A and G/CG(A) is finite of order t. If A/Inn(G) has finite special rank r then [G,A]

is finite and there exists a function δ3 such that |[G,A]| ≤ δ3(t, r) [29].

Taghavi et al.’s Bound (2021): Let G be a group such that |G/Zn(G,A)| = t for some n,

where Inn(G) ≤ A ≤ Aut(G). Suppose that G/Zn(G,A) and A/Inn(G) are finitely generated

and d and k are the minimal numbers of generators of them, respectively. Then |γn+1(G,A)| ≤
tk(k+d)n−1+ 1

2
(t′−1)(

(k+d)n−1
d+k−1

) [23].

Taghavi et al.’s Bound (2021): LetG be a group with zl(G,A) < ∞, where Inn(G) ≤ A ≤ Aut(G).

Assume A/Inn(G) has finite special rank k and |G/Z| = t where Z is the A-hypercenter of G. Then

|γ∞(G,A)| ≤ tk+
1
2
(t′+1) = β1(k, t) [23].
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Taghavi et al.’s Bound (2021): Let G be a group such that G/Zn(G,A), for some n, is generated

by d elements and is finite of order t = pr11 · · · prss . If A/Inn(G) has finite special rank k, then

|γn+1(G,A)| ≤ min{tk(k+d)n−1+ 1
2
(t′−1)(

(k+d)n−1
d+k−1

), tk+
1
2
(t′+1)

s∏
i=1

p
χn+1(ri+k)−χn+1(k)
i }

[23].

Taghavi and Kayvanfar’s Bound (2024): Let G be an A-nilpotent group such that G/Zn(G,A)

is finite of order pn1
1 · · · pns

s and for 1 ≤ i ≤ s its Sylow pi-subgroup is generated by ri elements, where

ni’s and ri’s are positive integers. Suppose that A/Inn(G) is generated by d elements. If the Frattini

subgroup Φ(G/Zn(G,A)) has order pm1
1 · · · pms

s , mi’s are non-negative integers, then

|γn+1(G,A)| ≤
s∏

i=1

p
χn+1(ri+d)−χn+1(d)+mi(ri+d)n

i ,

where χn+1 is introduced in [22].

Taghavi and Kayvanfar’s Bound (2024): Let |G/Zn(G,A)| = t = p1
n1 · · · psns . Suppose that

each Sylow pi-subgroup of G/Zn(G,A) is generated by ri elements and A/Inn(G) has finite special

rank d. If the Frattini subgroup of each Sylow pi-subgroup of G/Zn(G,A) is of order pmi
i , then

|γn+1(G,A)| ≤
s∏

i=1

p
χn+1(ri+d)−χn+1(k)+mi(ri+d)n

i β1(d, t)

[22].

3.3. Baer’s theorem and Extensions to Specific Classes of Groups. Baer’s theorem has been

extended to various specific classes of groups, such as solvable groups, polycyclic groups, and locally

generalized radical groups [17, 22, 23, 36]. These extensions help classify certain kinds of groups that

do not necessarily fit the traditional constraints of Baer’s original result. For instance, in the case of

solvable groups, some authors have shown that if G/Zn(G) is finite or has finite rank, the derived length

of G is bounded by a function of the parameters of G/Zn(G). Similar results hold for polycyclic groups

and some other classes of groups where finiteness of terms in the central series provides important

structural information (for instance see [28]).

These extensions refine the theorem’s scope and applicability.

• Finite Rank Conditions and Locally Generalized Radical Groups

In this subsection some important results are given which show the connection between Baer‘s theorem

and “finite rank conditions” and “locally generalized radical groups”.

Makarenko (2000). If G is finite group and G/Zn(G) has finite special rank, then γn+1(G) also has

finite rank [36].

Kurdachenko and Shumyatsky (2013). Let G be a locally generalized radical group such that

http://dx.doi.org/10.22108/ijgt.2025.144491.1948
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G/Z(G) has finite special rank r. Then the special rank of γ2(G) is bounded by a function depending

on r [28].

Kurdachenko and Otal (2013). Let G be a locally generalized radical group and Z be the upper

hypercenter of G. Suppose that zl(G) = k is finite and G/Z has finite special rank r. Then γk+1(G)

has finite special rank and there exists a function τ1(r, k) such that r(γk+1(G)) ≤ τ1(r, k), in which

τ1(r, 1) = κ(r) =
r(r + 1)

2
+ r2ι(log2 r) + r2, τ1(r, 2) = κ(κ(r)) + rκ(r),

τ1(r, k) = κ(τ1(r, k − 1)) + rτ1(r, k − 1),

where ι(α) denotes the smallest integer not less than the real number α [32].

The above theorems illustrate that for the class of groups of finite special rank FSR with respect

to Nn, we took a step forward for being Schur-Baer class, as the condition holds for finite groups

and locally generalized radical groups. These also can be seen in theorems of Taghavi and Kayvanfar

(2024) in this section. The same is somehow true for finite section rank, as it can be seen by Dixon et

al.’s theroem as follows.

The next two statements will illustrate how the condition “section rank” provides Baer‘s theorem.

Ballester et al. (2013). There exists a function λ2(G) such that if G is a locally generalized radical

group and C is a central subgroup such that G/C has section p-rank r, then

rp(γ2(G)) ≤ λ2(r) = 3rρ(r)2r+2(ρ(r)!) +
5r3 + 12r2 + r

2
+ 2r2ι(log2 r)

[3].

Dixon et al. (2015). Let G be a locally generalized radical group and let p be a prime. Suppose

that G/Zn(G) has finite section p-rank at most r. Then γn+1(G) has finite section p-rank. Moreover,

there exists a function τ(r, n) such that

rp(γn+1(G)) ≤ τ(r, n) = λ2(τ(r, n− 1)) + θ4(r, τ(r, n− 1))

[6].

Finally, in the following two propositions which connect “special rank” and Baer’s theorem, the

author in his joint paper [22] could improve the bound obtained by Kurdachenko et al. in [30].

Taghavi and Kayvanfar (2024). Let G be a locally generalized radical group such that G/Zn(G)

has finite special rank r.

(1) If n = 1, then r(γ2(G)) ≤ κ(r), where κ(r) is introduced in the previous theorem of Kur-

dachenko and Otal (2013).

(2) Otherwise

r(γn+1(G)) ≤ min{χn+1(r) + ([log2(n− 1)] + 1)rn+1 + κ(r), ( r
n−1
r−1 )κ(r)},

http://dx.doi.org/10.22108/ijgt.2025.144491.1948
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where

χn+1(r) =
1

n+ 1

∑
l|n+1

µ(l)r
n+1
l ,

and µ(l) is the Mobious function and is defined as

µ(l) =


1 if l = 1,

0 if l = pr11 · · · prss , ∃ri > 1,

(−1)s if l = p1 · · · ps,

[22].

The above theorem also can be generalized as follows.

Taghavi and Kayvanfar (2024). Let G be a locally generalized radical group such that G/Zn(G,A)

and A/Inn(G) have finite special ranks r and d, respectively.

(1) If n = 1, then r(γ2(G,A)) ≤ κ(r) + dr, where κ(r) is introduced in the previous theorem of

Kurdachenko and Otal (2013).

(2) Otherwise

r(γn+1(G,A)) ≤ min{((r + d)n − 1

(r + d)− 1
)κ(r) + (r + d)n−1dr,

χn+1(r + d)− χn+1(d) + ([log2(n− 1)] + 1)(r + d)nr + κ(r)},

where χn+1 is introduced in the previous theorem of Taghavi and Kayvanfar (2024) [22].

Finitely generated groups

• Finitely generated groups

Donadze et al. illustrated a criterion in the class of finitely generated groups FG under which they

are Schur-Baer with respect to the variety Nn.

Donadze et al. (2021). If G/Zn(G) is finitely generated, then γn+1(G) is finitely generated if and

only if γn+1(G/Zn(G)) is finitely generated [11].

• Hypercenter

Falco et al. (2011). If G/Z∞(G) is finite group, then G has a finite normal subgroup L such that

G/L is hypercentral, where Z∞(G) is hypercenter of G [15].

As stated in Subsection 3.2, two years later, in 2013 Kurdachenko et al. [32] could find a bound for L.
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3.4. Baer’s Theorem and connections to Varieties, Isoclinism, and Isologism. According to

the results obtained so far, Baer’s theorem has been generalized to some classes of groups X . In other

words, we know that for the variety of nilpotent groups of class at most n, Nn, the following classes

of groups are Schur-Baer:

• T : the class of trivial groups,

• F : the class of finite groups,

• LF : the class of locally finite groups,

• LFπ: the class of locally finite π-groups,

• FE : the class of finite groups of finite exponent,

• LFE : the class of locally finite groups of finite exponent,

• LGRFSR: the class of locally generalized radical groups of finite special rank,

• LGRfsr: the class of locally generalized radical groups of finite section rank,

and for the variety of abelian groups A, beside the above cases, the following classes of groups are

Schur-Baer too:

• PF : the class of polycyclic-by-finite groups,

• C: the class of Chernikov groups,

• SF : the class of solvable-by-finite groups,

• SFmin: the class of solvable-by-finite minimax groups,

• RLF : the class of residually locally finite groups,

• FE : the class of finite exponent groups,

In addition to the above items, Hekster in 1989 proved that for a finitely based and locally residually

finite variety V, the class of finite π-groups is Schur-Baer.

Hekster (1989). Let V be a finitely based and locally residually finite variety. If G/V ∗(G) ∈ Xπ,

then V (G) ∈ Xπ, where Xπ will denote a class of finite π-groups [19].

In the recent paper by Taghavi and Kayvanfar, Baer’s theorem has been generalized for any arbi-

trary variety of groups, but for some specific classes. In other words, we could find more classes of

groups which are Schur-Baer in the most general case, i.e. with respect to any variety of groups.

Taghavi and Kayvanfar (2024). Let V be a variety of groups. If G/V ∗(G) ∈ X , then V (G) ∈ X ,

whenever X is one of the following classes:

(i) N (S): the class of nilpotent (solvable) groups,
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(ii) FN (FS): the class of finite-by-nilpotent (finite-by-solvable) groups,

(iii) NF(NS): the class of nilpotent-by-finite (solvable-by-finite) groups,

(iv) LN (LS): the class of locally nilpotent (locally solvable) groups,

(v) LFN (LFS): the class of locally finite-by-nilpotent (locally finite-by-solvable) groups,

(vi) LNF(LSF): the class of locally nilpotent-by-finite (locally solvable-by-finite) groups,

[24].

Two groups G and H are isoclinic if there exist isomorphisms between their central factors and

commutator subgroups which are compatible together (for more details see [19]). Baer’s theorem has

been extended in this context to study isoclinic groups:

Theorem (Baer and Isoclinism): If G and H are isoclinic groups and G/Zn(G) is finite, then

γn+1(H) is finite [19].

4. Applications of Baer’s Theorem

Baer’s theorem has profound implications even beyond group theory. Its generalizations and refine-

ments have influenced various areas of mathematics, including algebra, topology, Galois theory, and

representation theory. Below, we outline some of its applications.

• Algebra: Nilpotent and Solvable Groups

Classification of Groups: Baer’s theorem provides tools for analyzing the structure of nilpotent

and solvable groups by relating their upper and lower central series. These results are critical in

understanding the structure of groups and their role in the classification of finite and infinite groups

[2, 28, 36].

Rank-Based Results: Extensions of Baer’s theorem to groups with finite rank central factors have

been used to classify groups such as Chernikov groups, polycyclic-by-finite groups, and groups of

bounded rank [3, 34].

• Representation Theory

Schur Multipliers and cohomology: Baer’s theorem is closely tied to Schur’s theorem, which plays

a significant role in the study of Schur multipliers. The Schur multiplier M(G) of a group G is the sec-

ond cohomology group H2(G,C×). In representation theory, we know that projective representations

correspond to central extensions of groups. In fact, central extensions influence the lifting of projective
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representations to linear representations. Schur’s theorem ensures that the commutator subgroup G′,

which plays a role in these extensions, has constrained size when G/Z(G) is finite [4, 25, 42].

Homology: It is also known that the Schur multiplier M(G) of a group G is isomorphic to the sec-

ond integral homology group H2(G,Z) when G is a finite group. Baer’s theorem relates to H2(G,Z)
through its impact on the structure of G and its commutator subgroups, which influence the second

homology group. In fact, a smaller G′ often implies a simpler or smaller H2(G,Z).
Extensions of Baer’s theorem to groups with finite rank G/Zn(G) provide bounds on the rank of

H2(G,Z), ensuring that the second homology group retains controlled structure [25, 35, 41]. Exten-

sion Problems: By bounding commutator subgroup sizes, Baer’s theorem contributes to the study

of group extensions, particularly in determining the structure of central extensions and their repre-

sentations [6].

• Topology and Homotopy

Fundamental Groups: Baer’s theorem has significant implications in topology and homotopy the-

ory, particularly through its connections to fundamental groups, covering spaces, and homological

invariants.

The fundamental group π1(X) of a topological space X is a primary tool in algebraic topology

and Baer’s theorem constrains the structure of π1(X). The second homology group of a space X

relates directly to the group-theoretic second integral homology H2(π1(X),Z). Baer’s theorem im-

pacts H2(X,Z) in the following ways. When π1(X) satisfies the conditions of Baer’s theorem (e.g.,

π1(X)/Zn(π1(X)) is finite), then H2(X,Z) is constrained. This affects the classification of spaces

through their homology groups and influences the possible central extensions of π1(X). It is also

applies to homotopy theory, since homotopy theory often involves central extensions of fundamental

groups, which are classified by the second homology group H2(π1(X),Z). [4, 14, 40].

• Galois Theory

Galois Groups: Extensions of Baer’s theorem are used in analyzing the structure of Galois groups,

particularly those arising in infinite Galois extensions. The theorem provides finiteness conditions

for commutator subgroups, simplifying the study of Galois cohomology. Also, many Galois groups

are residually finite. Baer’s theorem can help analyze the interaction between residual finiteness and

central series properties in such groups. [2, 37].

Profinite Groups: Baer’s theorem applies to profinite groups, helping to study their central series

and aiding in the classification of infinite Galois groups with finite generator properties [13, 37]. (A

profinite group is a topological group, that is compact, totally disconnected and inverse limit of finite

groups)
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5. Open Problems and New Research Directions

Baer’s theorem, which establishes the generalization of the finiteness of commutator subgroups

based on the finiteness of central factor groups, continues to inspire research in group theory and re-

lated fields. Below, we outline some important open problems and potential research directions based

on Baer’s Theorem.

• Finiteness Conditions Beyond Central Factors

Problem: Can Baer’s theorem be extended to groups where G/Zn(G) has bounded exponent but

infinite rank?

Extending Baer’s theorem to these cases could provide insights into the structure of infinite groups,

particularly profinite or residually finite groups.

• Infinite Groups with Finiteness Constraints

Problem: Baer’s theorem applies to locally finite and residually finite groups. What are the corre-

sponding results for groups with torsion-free conditions?

Advances in this direction can help classify broader classes of infinite groups.

• More Accurate Bounds for Verbal Subgroups

As it is explained in Section 3, for the varieties of abelian groups and nilpotent groups, some authors

obtained bounds for the verbal subgroups.

Problem: Can one obtain more accurate bounds for verbal subgroups?

• New Varieties and Classes of Groups

So far, we have known some varities of groups V and some classes of groups X for which the general-

ization of Baer’s theorem is true. Finally, again we are achieving to the main question that we have

stated in this article:

Problem: For what variety V and class of groups X Baer’s theorem can be extended?

Advances in this area could refine classification techniques for groups.

These open problems and research directions illustrate the versatility of Baer’s theorem and its

potential for further exploration in group theory, algebra, topology and representation theory. With

its foundational role and ongoing generalizations, Baer’s theorem continues to inspire new lines of

inquiry across mathematics.
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