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Abstract
Recently, Babaie-Kafaki et al. (AsiaPacific J Operat Res 29:1–25, 2012, Appl Soft Comput 46:220–229, 2016) have suggested
a model for the fuzzy bus terminal location problem. Here, we propose a new optimizationmodel by improving Babaie-Kafaki
et al.’s model. In our model, we define new structures of neighborhoods. Also, we assume that the number of passengers
corresponds to the fuzzy nodes. Using modified Kerre’s inequality, we propose a new variable neighborhood search algorithm
for solving a fuzzy bus terminal location problem. In our algorithm, we consider new types of neighborhoods to have a more
realistic fuzzymodel. The algorithm is tested on a variety of randomgenerated large-scale fuzzy bus terminal location problems
with fuzzy coefficients. In contrast of most existing method our proposed algorithm is solved fuzzy bus terminal location
problem directly. The parameters of our proposed algorithm are set by irace package to ensure fair space. To demonstrate the
performance of our method, we make a comparison between our method and other existing algorithms. We make use of the
non-parametric statistical test due to Wilcoxon’s test and the Dolan–Moré performance profiles to assess the performance of
the numerical algorithms.

Keywords Fuzzy bus terminal location problem · Variable neighborhood search · Modified Kerre’s inequality

1 Introduction

Bus terminal location problem (BTLP) is one the special case
of bus assignment with the objective of maximizing public
transportation service (Ghanbari and Mahdavi-Amiri 2011).
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In this problem, bus stations, metro stations and etc with a
known number are represented by n nodes. The main goal
of BTLP is to maximized the public service by locating a
number of locations among m terminals with definite neigh-
borhoods and it is a specific case of facility location problem
(FLP) (Ghanbari and Mahdavi-Amiri 2011).
According several studies, many types of FLPs were NP-
hard problems. So, we can not solve large instances of them
by using exact algorithms at a particular time (see Holmberg
et al. (1999); Mirchandani and Francis (1990); Rahdar et al.
(2022)). Because of this, other methods like approximation,
heuristics and metaheuristics algorithms (see Ghanbari et al.
(2020)) are used to solve FLPs problems.
Moreno Moreno Pérez et al. (2004) expressed that in real
applications, the FLPs can be defined with fuzzy parameters
or variables, that means if we considered a FLP problem as a
network, the weights, some nodes, distances of edges and so
on can be fuzzy numbers. Karagoz et al. (2021) presented a
newmodel of FLP problems. They introduced a method with
the name the additive ratio assessment (ARAS). Karagoz
et al. (2021), presented their proposedmethodunder the inter-
val type-2 fuzzy environment. Also, they show the efficiency
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performance of theire proposed method on the real-life case
study of Istanbul.
There are some true approximations methods for solving
FLPs, which theywere used local techniques. Thesemethods
had convergence problem. So, Grover et al. (2022) proposed
an efficient algorithm as compared true approximation that
used in inefficient ellipsoid method. Zhu et al. (2022) pre-
sented a FLP with drons (FLPD). They incorporated the
demand uncertainty by using demand scenarios. The main
goal of theirmodelwas tofind location, allocation and assign-
ment plane that has minimal cost. Also, Zhu et al. (2022)
proposed three other models and compared FLP with FLPD
and three proposedmodels. They used column and constraint
generation and benders decomposition methods for solving
proposed models.
The first corrugation of location models was crisp, and there
may no little account for the case of uncertainty in location
problems such as the p-median problem (p-MP) and max-
imal covering location problem (MCLP). Some examples
of uncertainty in these problems are the uncertainty associ-
ated with the demands of nodes or the distances of edges in
p-MP (Kutangila-Mayoya and Verdegay 2005) and the cov-
erage radii of facilities or demands of nodes to be covered
in MCLP (Batanovic et al. 2009). Apart from the above-
mentioned papers, various FLPs were discussed by fuzzy
logic methods (Bhattacharya et al. 1993; Wen and Iwamura
2008; Zhou and Liu 2007).
Here, we study a fuzzy bus terminal location problem
(FBTLP), which is also considered a combination of two p-
MPandMCLPproblems (Djenić et al. 2016).TheFBTLPhas
been addressed by authors such asBabaie-Kafaki et al. (2012,
2016), who suggested a BTLP in a network with uncertainty.
In the previous studies on the FBTLP (Babaie-Kafaki et al.
2012, 2016), by defining a membership function, the neigh-
borhood of each terminal is considered as a fuzzy set so that
each node belongs to the neighborhood of each terminal with
a grade of membership. Also, they defined a strictly decreas-
ing function by using the distances between node and the
terminal as a cost of service. Multiplying the cost of service
and the value of membership for each node in the objective
function is the specified attribute of each node for each ter-
minal.
The definition of membership function means that the
attribute of stations within the neighborhood radius of each
terminal is proportional to the cost of receiving a service from
each station (the grade of membership is considered equal to
1), and this attribute for stations outside the neighborhood
radius reduces by defining a strictly decreasing for the grade
of membership.
In the previous models, the attribute is distance dependent
and also the small distances affected the model. While, in
the real models, small distances between nodes do not affect
the model, and their attributes for the terminal are the same.

Therefore, we propose a new neighborhood for each termi-
nal as a constant value, where there is no difference between
stations that are close to each other. By developing the
hypothesis, despite the proposed models in Babaie-Kafaki
et al. (2012, 2016) also Djenić et al. (2016); Ghanbari and
Mahdavi-Amiri (2011) in crisp, we introduce three fuzzy
types of neighborhoods with new membership function for
each terminal.
Similar to a crisp BTLP (Djenić et al. 2016), FBTLP is also
anNP-hard problem. So, hybridmetaheuristic algorithms are
proposed for solving it Babaie-Kafaki et al. (2012, 2016).
Here, we suggest a metaheuristic algorithm based on the
variable neighborhood search (VNS) Hansen et al. (2010)
for solving an FBTLP; we named it FVNS (see different
models and solving methods for fuzzy linear programming
problems in Ghanbari et al. (2020)).
In the most studied methods, the common solution for
solving FBTLP is to transform it into the crisp BTLP by
using different ranking functions (Babaie-Kafaki et al. 2012,
2016; Mahdavi-Amiri and Nasseri 2006; Mahdavi-Amiri
et al. 2009; Maleki et al. 2019). Using these defuzzifica-
tion methods are not appropriate, since we don’t solve a
fuzzy problem in a fuzzy environment, but by usingmodified
Kerre’s inequality, we can do it. Also, the ranking functions
are not accurate enough; see Ghanbari et al. (2019a).
In Babaie-Kafaki et al. (2012, 2016), the problem is trans-
formed to the exact case by using some defuzzification
methods like ranking functions, and next the exact model
is solved. Here, we propose a new fuzzy model for BTLP
(FMBTLP). In our model, we assume that the number of
passengers corresponds to the fuzzy nodes. Using modified
Kerre’s inequality, we propose a new variable neighborhood
search algorithm for solving a fuzzy bus terminal location
problem. In our algorithm, we consider new types of neigh-
borhoods to have a more realistic fuzzy model that there
is no significant difference in the cost of service, when the
difference between the distances is very small. To solve an
FMBTLproblem, byusingKerre’s inequality (Ghanbari et al.
2019a, b), the fuzzy value of the objective function are com-
pared to each other. In this situation, we don’t leave the fuzzy
environment. We propose a VNS algorithm with new types
of neighborhoods to find a feasible solution.
The rest of paper is arranged as follows. In Sect. 2, we briefly
reviewsomenotations anddefinitions.Anew fuzzymodel for
a BTLP named FMBT LP is presented in Sect. 3. In Sect. 4,
our proposed idea and the idea of Babaie-Kafaki et al. (2012,
2016) implement on a illustrative example and we compare
the result of them. To solve this fuzzy model, we present
a VNS (FVNS) algorithm in Sect. 5. Then, we numerically
compare our method with available methods, and for ana-
lyzing the performance of our proposed algorithm, we use
the Dolan–Moré performance profiles and Wilcoxson’s test
in Sect. 6. In the last section, we make conclusions.
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2 Basic definitions and concepts

Here, some concepts which are used in our paper are
described.

2.1 Definitions and notation

Definition 1 (Zimmermann 2001) A fuzzy set is defined as
follows:

Ã = {(x, μ Ã(x)) | x ∈ R},

where, μ Ã(x) ∈ [0, 1] is called the membership function.

Definition 2 (Nguyen and Walker 2000) A fuzzy number is
a fuzzy quantity A satisfying the following conditions:

1. μ Ã(x) = 1, for exactly one x .
2. The support {x : μ Ã(x) > 0} of A is bounded.
3. The α-cuts of A are closed intervals.

Definition 3 (Zimmermann 2001) A decreasing map L :
R

+ → [0, 1] is called a shape function if the following con-
ditions hold:
⎧
⎨

⎩

L(0) = 1,
L(1) = 0,
0 < L(x) < 1, x �= 0, 1.

Definition 4 (Zimmermann 2001) A fuzzy number Ã is of
LR-type if there exist shape functions L (for left) and R (for
right), and scalars α > 0 and β > 0 such that

μ Ã(x) =
{
L

( a−x
α

)
, x ≤ a,

R
(
x−a
β

)
, x > a.

The mean value of Ã, a, is a real number, and α and β

are called the left and right spreads, respectively. Here, Ã
is denoted by (a − α/a/a + β)LR .

Remark 1 Based on Definition 4, another representation of
an LR fuzzy number Ã is Ã = (AL , AR), where AL is a
shape function for the left arm and AR is a shape function
for the right arm.

Definition 5 (Buckely and Jowers 2007) A triangular fuzzy
number Ã is defined by three real numbers a < b < c, where
the base of the triangle is the interval [a, c] and its vertex is
at x = b.

Remark 2 Another representation of a triangular fuzzy num-
ber Q̃ is Q̃ = (QL , QR), where QL and QR are the functions
for the left arm and the right arm of triangular fuzzy number
Q̃ = (q1/q2/q3), respectively.

Note 1 We show a triangular fuzzy number as Ñ =
(n1/n2/n3). So, Ñ = (n/n/n) represent a real number as
N.

Theorem 1 (Zimmermann 2001) Let Ã = (
aL/a/aR

)

LR, let

B̃ = (
bL/b/bR

)

LR, and let α ∈ R
+. Then,

1. α Ã = (
αaL/αa/αaR

)

LR.

2. − Ã = (−aR/ − a/ − aL
)

LR.

3. Ã
⊕

B̃ = (
aL + bL/a + b/aR + bR

)

LR.

2.1.1 Modified Kerre’s inequality

Another well-known method for the comparison of fuzzy
numbers is Kerre’s inequality (Wang and Kerre 2001). We
(Ghanbari et al. 2019a) presentedmodifiedKerre’s inequality
and established some efficient formulas for comparison of
fuzzy triangular numbers as the following theorem.

Theorem 2 (Ghanbari et al. 2019a) If Ã = (A1/A2/A3) and
B̃ = (B1/B2/B3) are two triangular fuzzy numbers with
A2 ≤ B2, Then we have:

1. If A3 ≤ B1, then

r( Ã, B̃) = B3 − B1

2
+ A3 − A1

2
.

2. If A2 = B2, then

r( Ã, B̃) = B3 + B1

2
− A3 + A1

2
.

3. If A2 < B2, then

r( Ã, B̃) = B3 − B1

2
+ A3 − A1

2
− ū(A3 − B1), (1)

where ū = AR(x̄) = BL(x̄) in which x̄ is the length of the
intersection point of AR and BL and defined as follows:

x̄ = B2A3 − A2B1

(B2 − B1) + (A3 − A2)
.

Note 2 In this paper, the notations ≤K , ≥K , and =K , are
used for comparison two fuzzy numbers based on modified
Kerre’s inequality.

3 New proposedmodel for the FMBTLP

In the real models of FLP, there are some parameters like
demands and distances, whose exact assumptions are not
realistic (Moore 1997). So, to transform this model to a more
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realistic problem, it can be assumed that dates are uncertain
and described them by using fuzzy variables.
Here, we propose an FMBTLP, with the assumptions that the
number of passengers corresponding to each station and also
that the number of the neighborhoods are fuzzy numbers.
To express an FMBTL problem, consider a network whose
nodes are divided into two separate sets N and M , where
N = {1, 2, . . . , n} shows the index of the demand nodes
(bus stations) and M = {1, 2, . . . ,m} shows the index set
of the candidate centers for bus terminals. The objective is
to select p terminals from the set M such that the service
function is maximized.
The symbols used in this paper are listed in Table 1.

Remark 3 The neighborhood is defined for each terminal is
a fuzzy set.

Remark 4 J+
i is a fuzzy set with the following membership

function:

μJ+
i

( j) = μi j =

⎧
⎪⎨

⎪⎩

1, ci j < d1,

K , d1 ≤ ci j < d2,

f (ci j ), ci j ≥ d2,

where, d1, d2, and K are given constants and f (x) :
[d2,+∞) → [0, 1] is a strictly decreasing function.

Remark 5 We consider ui j as follows:

ui j = L.μi j , for all i ∈ M, j ∈ N ,

where L is a constant.

The variables (location and assignment) of the FMBTLP
are described as follows:

si =
{
1 if a bus terminal is located in the candidate center i,

0 O.W.

xi j =
{
1 if the node j ∈ N receives service fromi ∈ M,

0 O.W.

We define one type of FMBTL problem as follows:

FMBTLP : max
∑

i∈M

∑

j∈N+
i

ui j d̃ j xi j

s.t . (2)
∑

j∈N+
i

xi j ≤ |J | si , for all i ∈ M, (3)

∑

i∈M+
j

xi j = 1, for all j ∈ N , (4)

m∑

i=1

si = p, (5)

xi j ∈ {0, 1}, si ∈ {0, 1},
∀ i ∈ M, j ∈ N . (6)

The objective function determines the service amount of can-
didates node to all nodes. Constraints (3) show that when the
node i is chosen as a bus terminal, it can give service to its
neighborhood nodes. Also, constraints (4) show that each
node j ∈ J must receive service only from one terminal, and
the constraint (5) controls the number of necessary terminals.

Definition 6 The public service function is defined as follows
(Ghanbari and Mahdavi-Amiri 2011):

F(S̃) =
n∑

j=1

d̃ j × (max
i∈S ui j ), ∀ S ⊆ M . (7)

In the next section, we explain priorities of our proposed
model by using an illustrative example.

4 Illustrative example

In this section, we discuss an illustrative example. In this
example, we consider a bus network with six bus stations
and three candidate terminals. The coordinates of stations
and terminals are given in Tables 2 and 3, respectively. In
Table 2 the numbers considered as triangular fuzzy numbers.
According to FMBTLP, we want to determine two terminals
between three candidates ones, such that maximized the pub-
lic service function (7) and the chosen terminals according
to our proposed model can give service to its neighborhood
nodes. The goal of this example is that to compare the result
of this example by using our proposed idea and the idea of
Babaie-Kafaki et al. (2016).

The distance matrix is defined as follows:

Q =
⎡

⎣
0.3162 0.9434 0.9487 0.9849 2.2361 4.5607
0.3000 1.2166 1.3000 1.3038 2.5000 4.2720
5.3226 6.2241 6.2394 6.2769 7.5240 0.9434

⎤

⎦

First, we use the proposed idea byBabaie-Kafaki et al. (2016)
for solving this problem. Suppose that r = 0.5, dr = 0.5.
We consider service function as defined in Ghanbari and
Mahdavi-Amiri (2011) and f (ci j ) = e−ci j , so, the opti-
mal value for objective function and optimal set for terminal
are z̃1 = (7.4817e + 03/7.5233e + 03/7.5650e + 03) and
S∗ = {1, 2}. Therefore, according to the optimal solution,
stations with the numbers, 1, 2, 3 and 4 can receive service
from terminals 1 and 2.
Now, we want to illuminate this issue by utilizing our pro-
posedmodel for two radii d1 = 0.5 and d2 = 1. Let L = 3.33
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Table 1 Description of symbols

Symbols Decription

M = {1, . . . ,m} Index set of the candidate terminals.

N = {1, . . . , n} Index set of the demand nodes.

C = [ci j ] Distance matrix between the nodes i ∈ M and j ∈ N

d̃ j Number of passengers corresponding to the node j ∈ N .

N+
i Set of nodes in N that can receive service from the node i ∈ M .

M+
j Set of nodes in M that can service the node j ∈ N , M+

j = {i ∈ M; μi j > 0}.
ui j Attribute of station j ∈ N for the terminal i ∈ M .

xi j Vector of boolean variables for assignment.

si Vector of boolean variables for location.

p The number of required terminals.

Table 2 Fuzzy coordinates of stations

station ( j) 1 2 3

coordinate ( j1, j2) (3.3, 2.2) (3.5, 1.3) (3.3, 1.2)

potential (d j ) (10000 − α/10000/10000 + α) (1000 − α/1000/1000 + α) (1000 − α/1000/1000 + α)

station ( j) 4 5 6

coordinate ( j1, j2) (3.4, 1.2) (4, 0.1) (1.8, 6.5)

potential (d j ) (3000 − α/3000/3000 + α) (500 − α/500/500 + α) (1000 − α/1000/1000 + α)

Table 3 Coordinates of terminals

Terminal (i) 1 2 3

coordinate (i1, i2) (3, 2.1) (3.3, 2.5) (1, 7)

and let K = 0.45. By using (7), the optimal objective func-
tion and optimal terminals are z̃2 = (4.1985e+04/4.2469e+
04/4.2953e + 04) and S∗ = {1, 3}, respectively.
Due toBabaie-Kafaki et al.’smodel, it is appeared that the ter-
minal no.2 only gives service to station no.1. The distinction
between the distance of station no.1 from terminal no.1 and
terminal no.2 is exceptionally small (see the matrix Q). At
that point, there’s no critical distinction between station no.1
getting service from terminal no.1 or terminal no.2. In our
proposed model, the neighborhood of the first-type affirms
the same thing. The result of this assumption is compared
with Babaie-Kafaki et al.’s model. So, terminal no.3 is built
up rather than terminal no.2, and in expansion to stations
no.1, no.2, no.3, and no.4, station no.6 get service, as well as
objective function’s value is expanded.
The interpretation of other neighborhoods in the proposed
model is similar.
In this proposed model, all stations could receive service and
objective function’s value is increased to z̃2 = (4.1985e +
04/4.2469e + 04/4.2953e + 04).

5 Variable neighborhood search for solving
FMBTLP

There are some methods with different ideas for escaping
local optima (e.g., tabu search (Glover and Laguna 1997)
and simulated annealing (Hendersom et al. 2003)), one of
these methods is local search. Another way of escape from
local optima is to change the neighborhoods during the search
systematically; that is the basic idea of the VNS algorithm.
This metaheuristic method has recently been proposed by
Hansen and Mladenović (1997). Based on the advantages of
VNS algorithm in solving optimization problems (Hansen
et al. 2010), and also its effective performanceof it for aBTLP
(Babaie-Kafaki et al. 2016; Djenić et al. 2016), we propose
the VNS for solving an FMBT LP . Based on the definition
of the service function in (7), for each feasible solution, the
value of an objective function is a fuzzy number. Thus, to
compare the solutions in the proposed algorithm (e.g., Step
1-4), we usemodifiedKerre’s inequality in Theorem2. So, all
fuzzy comparisons are performed in the fuzzy environment
by using Kerre’s inequality.

5.1 Initial solution

To construct the initial solution, we use a greedy method
based on the defined potential objective function (POF) in
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Algorithm 1 FVNS for solving FMBTLP
Step 0: {I ntiali zation}

- Input MAXFVNS and MAXLS ∈ Z
+ to determine the stopping

conditions of VNS and local search (LS), respectively, nmax ∈
Z

+ to be the maximum number of neighborhoods in (8).
- Construct the initial solution S (see Subsection 5.1).

- Let i ter ← 1.

Step 1: {Main steps}
1-1: Let n ← 1.
1-2: {Shaking}. Create a random solution (S

′
) by using Nk(S).

1-3: {Local search}. Use the LSmethod (see 5.3) on S
′
. If MAXLS

iterations have been performed without improvement then stop,
let S

′′
be so the obtained local optima.

1-4: {move or not}. If F(S̃
′′
) >K F(S̃), then let S ← S

′′
and n ←

1; else, let n ← n + 1.
1-5: If n = nmax, then let i ter ← i ter + 1 and go to Step 1-6; else

go to Step 1-2.
1-6: If i ter = MAXFVNS, then Stop; else, go to Step 1-1.

Step 2: Return S.

Definition 7. In this method, p terminals with more POFs
are established.

Definition 7 The fuzzy POF is defined as follows:

POF(i) =
∑

j∈N+
i

d̃ j × ui j for all i ∈ M,

This formula has been extended in a fuzzy form by tak-
ing ideas from the formula of Ghanbari and Mahdavi-Amiri
(2011) within the crisp case.

Here, since the potentials of stations are fuzzy numbers,
the POF for each terminal is also a fuzzy number. So, to select
p terminals among m candidate centers, based on Definition
7, we use the ranking function (Mahdavi-Amiri and Nasseri
2007) and map the value of each POF into a real number.
Finally, p terminals are established that have more real val-
ues.

5.2 Neighborhood

Let that S ⊂ M and that |S| = p. The k-th neighborhood of
feasible solution S is establishing k currently closed terminals
and closing k currently open terminals,

Nk(S) = {T | T ⊂ M, |T | = p, |S − T | = l}, l = 1, 2, . . . , lmax,

(8)

where, lmax is a constant.

5.3 Local searchmethod

The LS method used in our proposed FVNS is based on the
first improvement approach. In each iteration of this proposed

method, a random solution is computed from the occupant
solution agreeing to the primary neighborhood in (8). In case
the new solution is way better than the occupant solution, at
that point the incumbent solution is upgraded; else, another
solution is considered. The proposed LS is stopped when
MAXLS iterations have been performed without improve-
ment.

5.4 Stopping condition

We stop the proposed FVNS algorithm when reach
MAXFVNS successive iterations without improvement.

6 Numerical results

Here,wewant to show the performance of our proposed algo-
rithm.We constructed many test problems of the FMBT LP
(we generate random test problem in MATLAB 7.0 pro-
gramming environment on a notebook, Intel(R) Core(TM)
i5-3210MCPU 2.5 GHz, with 4.00 GBRAM). In each prob-
lem, the locations of candidate centers and stations are placed
in a region depicted by {0 ≤ xi ≤ 10, 0 ≤ yi ≤ 10; i ∈ M}
and {0 ≤ x j ≤ 10, 0 ≤ y j ≤ 10; j ∈ N }, respectively. For
each node j ∈ N , d̃ j = (d j −α/d j/d j +β), j = 1, 2, . . . , n,
is a triangular fuzzy number, where d j is a random integer in
the interval [1, 100], and α and β are equally selected from
the interval [0, 10] (we generate our test problems similar to
Babaie-Kafaki et al. (2012, 2016)). Also, in all executions,
we set d1 = max ci j

10 and d2 = max ci j
5 in Definition 4, and the

value of L in Remark 5 is considered equal to the maximum
1
ci j

, i ∈ M, j ∈ N .

We considered the membership function of N+
j , j =

1, 2, 3, as follows:

μN+
i
( j) = μi j =

⎧
⎪⎨

⎪⎩

1, ci j < d1,

1 + d1−d2
2Cmax

, d1 ≤ ci j < d2,

1 + .5d1−ci j
Cmax

, ci j ≥ d2,

where Cmax is the maximum ci j , i ∈ M, j ∈ N . In the test
problems, we set

n = 2000, 1500, 1000, 750, 500,

m = �n
2
�

p = �3m
4

�, �m
4

�, � m
10

�, � m

100
�.

6.1 Parameter settings

In this section, we want to use the irace package (Lopez-
Ibanez et al. 2016) to ensure fair space for setting the
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Table 4 Setting parameters of
FVNS algorithm

Parameter Explanation Type Interval IRACE

nmax Number of neighborhood’s structures integer [1, 10] 3

MaxVNS Number of iterations integer [3, 30] 10

MaxLS Number of iterations in Algorithm1 integer [100, 2000] 700

parameters of our proposed VNS algorithm. Table 4, shows
the value of the parameters obtained on their defined intervals
by using the irace package.

6.2 Implementation of FVNS

By using Table 4, we executed Algorithm 1 on all instances,
and we summarized the obtained results in Table 5. Also, we
solve the FMBT LP by the α-cut method (Hendry Purba
et al. 2017; Herrera and Verdegay 1995; Yi et al. 2016). Table
5 gives the obtained running times of the FVNS algorithm
and α-cut. In this table, the first column shows the number of
the demand nodes (n), the number of the candidate centers
(m), and the number of the established terminals (p), respec-
tively. The column entitled FVNS Objective function shows
the objective function achieved by the FVNS algorithm, and
the column entitled FVNS Time(s) shows the running time
of the FVNS algorithm. The column entitled α-cut Objective
function shows the objective function achieved by the α-cut
method; the column entitled α-cut Time(s) shows the run-
ning time of the α-cut method; and finally, the last column
shows the comparison of the objective function values cor-
responding to the solution FVNS algorithm (SolFV NS) and
the one due to α-cut method (Solα−cut) using (1).

It is observed that the FVNS algorithm presented here is
to be faster than the α-cut. Moreover, by using the column
entitled r(SolFV NS, Solα−cut), the fuzzy objective function
values obtained by our proposed algorithm for the numeri-
cal examples were higher than the ones obtained by α-cut
method.
The results of Wilcoxon’s test are shown in Table 6. We
performed all statistical computations utilizing SPSS21 soft-
ware. Consider the following test:

H0 : μFVNS = μα−cut ,

H1 : μFVNS > μα−cut ,

where, μFVNS represents the average speed of algorithm.
From Table 6, the null hypothesis H0 is rejected with the
level of significance of 0.05. Since the p-value is lower than
0.05, FVNS algorithm appears to be more faster than α−cut
method.

Also, we use the performance profiles given by the Dolan–
Moré diagrams (see details in Dolan and More (2002)).
Performance profile gives, for every ω, the proportion ρ(ω)

of the test problems that each considered algorithmic variant
has a performancewithin a factor ofω of the best. Thus, based
on the Dolan–Moré performance profile as shown in Fig. 1,
we conclude that the FVNS algorithm performs significantly
faster than α − cut method.

7 Conclusions and Future works

Inspired by a real-world problem, we have modeled BTLP
and solved it. We proposed a new model as FBTLP and
we presented a new model with the name FMBTLP. In our
proposed model, we considered the number of passengers
corresponding to each station and that the neighborhoods of
each terminal are fuzzy numbers. For solving FBTLP, we
proposed an FVNS algorithm, this algorithm used modified
Kerre’s inequality for solving FMBTLP. The parameters of
our proposed algorithm were set by irace package to ensure
fair space. We generated and solved some random test exam-
ples with triangular fuzzy coefficients, and we compared
the performance of our proposed algorithm with the α-cut
method. Finally, using the non-parametric statistical tests due
to Wilcoxon’s test and the Dolan–More’s diagram for ana-
lyzing the performance of the algorithms, we demonstrated
the efficiency of our proposed approach in comparison with
the α-cut method.
The limitation of this paper is that our proposed algo-
rithm is based on triangular fuzzy numbers. So, for the
further research lines on fuzzy bus terminal location problem
we can extend modified Kerre’s inequality for comparison
trapezoidal fuzzy numbers and propose algorithm based of
trapezoidal fuzzy number also similar to some works in
Akram (2011); Ghanbari et al. (2019), we can developed
our model by using bipolar fuzy numbers.
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Table 6 Results of Wilcoxon’s test on times of the pair
(FV NS(T ime(s)), α − cut(T ime(s))) for all test problems

Wilcoxon −3.308

level of significance 0.005

Fig. 1 The Dolan–Moré diagram for comparison of FVNS (Time(s))
algorithm and α − cut method (Time(s))
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Hansen P, Mladenović N, Moreno Pérez JA (2010) Variable neighbour-
hood search: methods and applications. Ann Oper Res 175:367–
407

Hendersom D, Jacobson SH, Johnson AW (2003) The theory and prac-
tice of simulate annealing. In: Glover F, Kochenberger GA (eds)
Handbook of metaheuristics. Kluwer Academic Publishers

Hendry Purba J, Sony Tjahyani DT, Widodo S, Tjahjono H (2017)
α-Cut method based importance measure for criticality analysis
in fuzzy probability: based fault tree analysis. Ann Nucl Energy
110:234–243

Herrera F, Verdegay JL (1995) Three models of fuzzy integer linear
programming. Eur J Oper Res 83:581–593

Holmberg K, Mikael R, Yuan D (1999) Modeling capacitated location-
allocation problem with fuzzy demands. Eur J Oper Res 113:544–
559

Karagoz S, Deveci M, Simic V, Aydin N (2021) Interval type-2 Fuzzy
ARAS method for recycling facility location problems. Appl Soft
Comput 102:97–106

Krarup J, Pruzan M (1990) Ingredients of location analysis. In:
Mirchandani PB, Francis RL (eds) Discrete Location Theory.
Wiley-Interscience

Kutangila-Mayoya D, Verdegay J (2005) p-median problems in a fuzzy
environment. Mathware Soft Comput 12:97–106

Logendran R, Terrell MP (1988) Uncapacitated plant location-
allocation problems with price sensitive stochastic demands.
Comput Oper Res 15:189–198

123



S. Rahdar et al.

Lopez-Ibanez M, Dubois-Lacoste J, Perez Caceres L, Birattari M, Stut-
zle T (2016) The Irace package: iterated racing for automatic
algorithm configuration. Oper Res Perspect 3:43–58

Mahdavi-Amiri N, Nasseri SH (2006) Duality in fuzzy number linear
programming by use of certain linear ranking function. Appl Math
Comput 180:206–216

Mahdavi-AmiriN,Nasseri SH (2007)Duality results and a dual simplex
method for linear programming problems with trapezoidal fuzzy
variables. Fuzzy Sets Syst 158:1961–1978

Mahdavi-Amiri N, Nasseri SH,Yazdani A (2009) Fuzzy primal simplex
algorithm for solving fuzzy linear programming problems. Iran J
Oper Res 1:68–84

Maleki HR, Tata M, Mashinchi M (2019) Linear programming with
fuzzy variables. Fuzzy Sets Syst 109:21–33

Mirchandani PB, Francis RL (1990) Discrete location theory, Wiley-
Interscience
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