
Research article

Dielectric constant prediction in polymers: A chemical structure 
based approach

S. Sharifi a, S. Bonardd b, L.A. Miccio b,c,*

a Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
b Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizábal 5, San Sebastián 20018, Spain
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A B S T R A C T

The dielectric constant is a fundamental property of materials, which governs their efficiency in various appli
cations like energy storage, microelectronics, and high-voltage insulation. However, predicting the dielectric 
permittivity remains a challenge due to the complex interplay between molecular structure, processing condi
tions, and external factors such as temperature and frequency. In this work, we describe a machine learning- 
based approach for estimating the dielectric constant of polymers by using their chemical structure. We 
employed a curated dataset of nearly 1000 polymeric materials, from which we extracted unit cell parameters, 
atomic features, and tokenized atom-wise descriptors. These features were used to train different predictive 
models, which integrate global structural attributes with local atomic embeddings to establish structure–property 
relationships with strong accuracy. We show that with this codification, a simple Random Forest approach can 
outperform a more computationally expensive neural network (ANN). Additionally, we implemented an 
extension of this approach to also handle SMILES-based polymer representations, allowing approximated pre
dictions for molecular structures without available crystallographic data. This study highlights the potential of 
data-driven approaches for accelerating the discovery of novel dielectric polymers, providing a computational 
tool that can complement experimental efforts in materials design.

1. Introduction

The dielectric constant is perhaps the most fundamental electric 
property of materials, since it characterizes their response under the 
influence of an external electric field. This property reflects the mate
rial’s ability to be polarized through spontaneous (electronic cloud and 
chemical bond distortions) or permanent polarization phenomena, the 
later attributed to the reorientation and align of molecular dipoles. The 
dielectric constant is directly related to a broad spectrum of techno
logical applications, including energy storage, microelectronics, and 
high-voltage insulation, each demanding precise control to optimize 
performance [1–5]. Among the available dielectric materials, polymers 
have emerged as indispensable in modern technology, offering tuneable 
permittivity while also providing mechanical flexibility and process
ability. Polymers also present other advantages, like notably higher 
dielectric strength values, lightweight and synthesis versatility. In 
addition, polymer and nanocomposite engineering have led to 

substantial enhancements in their dielectric properties, with researchers 
continually refining material formulations to improve efficiency, reli
ability, and sustainability [6–9]. High-permittivity polymers are 
particularly crucial in capacitive energy storage applications, where 
enhanced charge storage capacity is directly translated into improved 
device performance [4,10]. Recent developments in polymeric materials 
have led to substantial increases in dielectric constant, with reported 
values well-above 5.0, that recently has been selected as the benchmark 
value to classified high-dielectric polymer [11]. Breakdown strengths 
exceeding 770 MV/m have also been achieved, highlighting the effec
tiveness of innovative molecular design strategies. To attain such high 
performance, several structural and compositional modifications have 
been explored [12]: like the incorporation of polar groups into polymer 
backbones to increase the dielectric constant through orientational po
larization effects [13]; or high-temperature polyolefins with phenyl 
pendant groups that also exhibit increased permittivity due to their rigid 
bicyclic backbone (which in turn facilitates dipole alignment) [14]. 
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Similarly, polyurea- and polythiourea-based systems employ functional 
groups with high dipolar moments, achieving both high dielectric con
stants (~5.7) [15] and robust breakdown strengths (>700 MV/m) [16]. 
Another effective strategy involves the integration of nanocomposites, 
like the inclusion of ultralow concentrations of inorganic nanodots as 
fillers within ferroelectric polymer matrices to enhance dielectric 
response by inducing interfacial dipoles and altering polymer chain 
conformations [7]. Ferroelectric polymer nanocomposites have also 
demonstrated exceptional energy densities (~26.0 J/cm³) and break
down strengths exceeding 600 MV/m, making them promising candi
dates for high-energy-density capacitor applications [7]. Furthermore, 
molecularly interpenetrating interfaces have emerged as a novel 
approach to enhancing both dielectric properties and mechanical 
robustness. These interfaces introduce distinctive intermolecular in
teractions that reinforce the polymer network while maintaining high 
dielectric performance [17]. Such strategies are particularly relevant for 
applications requiring both flexibility and high charge storage capacity, 
such as wearable and flexible electronics [3,18].

In contrast to high-permittivity polymers, low-permittivity polymers 
serve as critical components in microelectronic devices, particularly as 
interlayer dielectrics in integrated circuits [8,19,20]. These materials 
play a key role in minimizing parasitic capacitance, reducing power 
consumption, and mitigating signal delay (essential factors in the 
continued miniaturization of devices) [16]. Despite their importance, 
research on low-permittivity polymer development remains relatively 
underrepresented compared to high-permittivity materials. This 
disparity highlights the need for systematic investigations into the 
long-term stability, mechanical properties, and scalability of these 
polymer candidates. While certain polymer architectures, such as porous 
polymer films and fluorinated materials have demonstrated promising 
dielectric properties, challenges remain in balancing permittivity 
reduction with mechanical and processing compatibility. 
Processing-property correlations indicate that achieving uniform 
porosity and stable molecular architectures is critical to maintaining the 
integrity of low-permittivity films. The fabrication of bilayer polymer 
films with nanometer-scale control has been suggested as a potential 
route for optimizing performance while ensuring compatibility with 
modern lithographic techniques [19,21–24].

Regarding other applications, polymer-based insulators are widely 
employed in high-voltage power transmission systems, where they must 
exhibit exceptional dielectric stability and breakdown strength to 
minimize energy losses and ensure operational reliability [25,26]. 
Cross-linked polyethylene has been the industry standard for insulation 
in high-voltage direct current and alternating current cable systems due 
to its excellent dielectric properties, mechanical durability, and thermal 
stability [27–30]. However, the crosslinked structure of polyethylene 
renders it non-recyclable, posing significant environmental concerns as 
large-scale power grids expand. Recent efforts have focused on 
designing alternative insulating polymers that maintain desirable 
properties while offering recyclability. Strategies such as controlled 
cross-linking, optimized crystallinity, and interfacial engineering have 
been explored to develop high-performance, sustainable dielectric in
sulators. All-organic flexible dielectric films with engineered 
cross-linking networks have been reported to achieve breakdown 
strengths up to 770 MV/m, demonstrating their potential as 
next-generation high-voltage insulators.

Despite these experimental advances, accurately predicting the 
dielectric permittivity of polymers remains a formidable challenge. The 
complex interplay of molecular architecture, processing conditions, and 
external factors such as temperature and frequency introduce significant 
variability in dielectric behaviour. As a result, traditional structur
e–property relationships fall short in capturing these intricacies, 
imposing the adoption of data-driven approaches [31]. In this regard, 
machine learning has emerged as a powerful tool for predicting polymer 
properties, offering the potential to accelerate materials discovery 
and/or optimization [32–36]. Regarding dielectric properties of 

polymer materials, initial studies have focused on frequency- and 
temperature-dependent dielectric constant predictions [37], using 
polymer fingerprinting techniques and statistical learning models. 
Subsequent work extended the paradigm to the frequency domain [37], 
and began to experiment with connectivity‑aware graph or language 
models such as GCNs [38] and multitask transformers [39]. Applica
tion‑oriented studies have meanwhile targeted specialised niches like 
low‑k telecommunication polymers [40] or high‑permittivity epoxy 
resins for capacitors [41], highlighting both the versatility of ML and the 
field’s growing practical relevance. By combining high-throughput 
computational screening with these neural network-based modelling 
approaches, researchers extracted meaningful structure-property cor
relations and generated reliable permittivity predictions under diverse 
conditions [42,43]. Despite this progress, two critical gaps remain un
resolved: (i) no existing approach can process both fully characterised 
crystalline polymers provided as CIF files and virtual candidates repre
sented only by SMILES strings (i.e. a chemical structure representation 
only approach); and (ii) state‑of‑the‑art models still depend heavily on 
global composition features or expensive DFT‑derived tensors, limiting 
true high‑throughput screening. Finally, the scarcity of consistent, 
high-quality data on dielectric permittivity is another critical 
bottleneck.

In this work, we address these data and complexity challenges by 
approximating the polymer structure using crystallographic information 
inputs (CIF) and high-quality dielectric constant values derived from 
first-principles calculations [44]. To tap into the rich structural details 
captured by these CIF files, we employ a custom, automated pipeline 
that reads, filters, and processes each polymer structure. Our approach 
extracts global features (such as unit cell parameters, volume, among 
others) as well as atom-wise descriptors (composition), which are sub
sequently tokenized and embedded. These embedded tokens capture 
local compositional and site-level information, thereby enhancing the 
model’s ability to learn subtle structure–property correlations. We feed 
the resulting comprehensive feature representations into a machine 
learning model which concatenates the aggregated global features with 
averaged atom embeddings to predict dielectric permittivity. Ulti
mately, our approach can assist in the discovery of novel polymers with 
precisely tuned dielectric properties, accelerating progress in a range of 
applications from next-generation electronics to high-performance 
power cables and energy storage devices.

2. Methods

In this section we outline the key steps of our methodology, from 
data loading and feature extraction to neural network architecture and 
training procedure. In addition, we have included an expansion for 
SMILES-based inputs, so that any new chemical structures can be 
sketched and tested easily. All pipelines are schematically shown in 
Fig. 1.

2.1. Data description and preprocessing

All polymer structures and associated dielectric constant data used in 
this study were obtained from a curated collection of nearly 1000 
polymeric compounds for which structural information is provided in 
CIF format, along with experimental or computationally derived 
dielectric constant values [44]. The dataset arises from a density func
tional perturbation theory approach that computes the dielectric con
stant (each sample was treated as a solid-state crystal in the 
calculations). This approach yields the static dielectric constant, which 
effectively corresponds to zero (or near-zero) frequency. Some of these 
zero-frequency calculated values were compared to measured dielectric 
constants at low frequencies and room temperature [44]. When dis
crepancies were found to be large, the authors re-optimized the struc
tures until the computed properties converged more closely to the 
experimental results. In addition, the calculations were done on 
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Fig. 1. Schematic pipeline for the machine learning model predicting dielectric constants from CIF files and SMILES. left (model training): set up the computing 
environment and define filtering parameters. CIF files are read and processed to extract unit cell properties, atomic features, and metadata, while applying necessary 
filters. The processed features and labels are then stored, and outliers are removed. Atom vocabulary is built, and a custom dataset is created, followed by dataset 
splitting into training and validation sets. The Atom-Aware MLP model is then defined and trained using batch processing, optimization, and early stopping tech
niques. Training and validation loss are recorded, followed by visualization of model performance using scatter plots, hexbin plots, and error metrics. Finally, the 
trained model and vocabulary are saved for future use. right (extension to SMILES inputs): set up the computing environment, and convert the input SMILES string 
into an ASE atoms object. The molecular structure is then embedded and optimized before extracting atomic symbols and coordinates. A bounding box and unit cell 
are defined, which is subsequently expanded into a supercell and saved as a CIF file. The unit cell parameters are extracted, and atomic features such as atom count 
and average atomic number are computed. The Atom-Aware MLP model is defined, and a decision is made to either load a pre-trained model or create a new one. The 
model is then used to predict dielectric constants, store the predictions, and visualize the generated structures.
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geometries optimized at T = 0 K, with no explicit thermal expansion or 
finite-temperature effects. Therefore, the reported dielectric constants 
do not include temperature-dependent phenomena such as increased 
molecular mobility, thermally activated defects, or changes in phonon 
(lattice vibrational) occupations that would arise at higher tempera
tures. Therefore, while a polymer’s dielectric constant at room tem
perature and at a certain applied frequency can differ from the 
static-limit computed value, knowing the latter is extremely valuable 
for screening since it provides a baseline measure of a polymer’s 
intrinsic polarizability.

Each CIF file in the dataset includes detailed atomistic information, 
unit cell parameters, and metadata describing the material’s composi
tion. The files contain extra descriptors in the form of labels, source, or 
classification notes. Our script iterates over all files in directory and 
attempts to parse each file into an ASE (atomic simulation environment) 
object [45].

2.1.1. Unit cell parameters
For each valid CIF file, the code extracts the unit cell parameters from 

the CIF text (Cell lengths, Cell angles, and the Unit cell volume). If any of 
these parameters are missing from the CIF text, they are computed 
directly from the ASE Atoms object.

2.1.2. Atomic features and tokenization
The script reads the atomic positions and symbols to determine the 

number of atoms in the structure and the average atomic number of 
these atoms. Both quantities are appended to the list of aggregated 
features, giving a total feature vector of length nine. In addition, while 
reading each CIF, the script retrieves atom site labels (C1, C2, etc) and 
their corresponding atom types. Each atom is then represented by a 
“token” combining the type and its label (C_C1, C_C2, etc).

2.1.3. Metadata
We also scan each CIF file for the lines containing “# Label” (com

pound label), “# Source” (string describing data origin), and “# Class” (a 
string describing a classification or grouping, when provided). These 
metadata fields are stored alongside the extracted features and dielectric 
constant. All entries are aggregated into lists of 9-dimensional feature 
tensors, target dielectric constants, compound identifiers, per-sample 
atom tokens, and additional metadata from each CIF file.

2.1.4. Outliers
After reading each CIF file, the script searches for the “Dielectric 

constant, total” field in the text. Any structure whose dielectric constant 
exceeded a selected threshold (9.0 in this work) is excluded. In addition, 
we also use a z-score threshold (2.5) for any remaining extreme values. 
Specifically, the script calculates the mean and standard deviation of the 
dielectric constants and removes any samples that deviate by more than 
the selected threshold. The final dataset includes nearly 900 samples. 
These steps help removing any potential outliers that might unduly skew 
model training.

2.1.5. Vocabulary construction
The atomic tokens extracted from all CIF files are used to build a 

vocabulary (mapping each unique token to an integer index). This is 
done by iterating over every token and assigning a unique index to each 
distinct token. The resulting vocabulary is used to convert atom tokens 
into embedding indices during model training.

2.2. Modelling

We used a simple fully connected network with two hidden layers to 
process the aggregated features and the atomic token embeddings. This 
network was compared with a Random Forest (RF) approach, which we 
will show its able to outperform the previous (both in accuracy and 
computational resources). The pipeline has been constructed as follows:

2.2.1. Inputs
We implemented a custom class that stores the aggregated 9-dimen

sional feature vectors, the target labels (dielectric constants), the com
pound labels (string identifiers), and the raw atom tokens. Within the 
method, if a vocabulary has been set, each sample’s list of tokens is 
converted to a tensor of integer indices. This enables straightforward 
embedding lookups in the subsequent neural network. Then, a custom 
function is used to handle the variable-length token lists. The function 
returns a batch tensor of features, a batch tensor of labels, a list of 
compound label strings, and a list of token index tensors. Therefore, this 
design allows accommodating varying numbers of atoms in each struc
ture without forcing truncation or padding. Before training, the dataset 
is randomly split into training and validation subsets (this random split 
ensures an unbiased evaluation of the model during training).

2.2.2. Embedding layer
Each unique atom token is mapped to a learnable embedding vector 

(default dimension 16). For each sample, the embeddings of all tokens 
(atoms) are averaged to form a single vector representing that sample’s 
composition and local environment features. The averaged embedding 
vector is concatenated with the 9-dimensional aggregated feature vec
tor, yielding a combined input.

2.2.3. Fully connected layers (neural network only)
The concatenated vector is passed through two hidden layers (each 

of size 32 by default) using Leaky ReLU activations (which in turn avoid 
dead neurons). The final linear layer outputs a single prediction for the 
dielectric constant.

2.2.4. Training and hyperparameter optimization
We trained several models using mean squared error (MSE) as loss 

function. We also employed a grid hyperparameter optimization using 
Adam optimizer, learning rates ranging from 0.001 to 0.0001, batch 
sizes ranging from 16 to 512 samples, and dropout probability of either 
0 or 0.1. During each training, we calculated the validation loss at the 
end of each epoch, and employed an early stopping mechanism for 
halting training if validation loss does not improve (by at least a value δ 
= 10− 5) for a set number of epochs (50–300 depending on learning rate 
and batch size). When triggered, the model reverted to the best- 
performing weights seen so far. At the conclusion of training, we plot 
both the training and validation loss curves across epochs to diagnose 
overfitting or underfitting and to verify the stability of training. A 
similar procedure was implemented for the RF models [46], using a grid 
search optimization on the number of estimators and max depth.

2.3. Extension to SMILES-based inputs

While our primary workflow relies on CIF inputs, our approach can 
be extended to handle SMILES (Simplified Molecular-Input Line-Entry 
System[47]) representations of polymer or monomer units. This exten
sion allows users who may not have crystallographic data on hand to 
provide a SMILES string and still obtain a dielectric constant prediction. 
Below, we detail the steps involved:

2.3.1. SMILES parsing and 3D geometry
We used RDKit to parse SMILES strings and to generate an initial 3D 

geometry. Then, a simple force field optimization was employed for 
refining the geometry, producing 3D Cartesian coordinates for each 
atom in the monomer.

2.3.2. Conversion to an ASE atoms object
Once the 3D structure of the monomer is computed, we extracted 

each atom’s element symbol and position from the RDKit conformer. 
These atomic symbols and coordinates were then used to create an ase. 
Atoms object (this step bridges the SMILES-centric RDKit representation 
with the ASE-based workflow).
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2.3.3. Definition of a periodic unit cell
Unlike small molecules that require no periodic extension, polymeric 

materials typically span a repeating unit structure. To approximate 
polymer properties, our method computes the bounding box of the 
monomer and adds a pre-defined margin (typically 3 Å) along each 
dimension. This enlarged bounding box is used to define a 3D cell. For a 
more realistic representation of the repeating polymer environment, we 
can replicate the initial cell via an expansion matrix. For instance, a 
2 × 2 × 2 supercell can be built using make_supercell in ASE, or by 
manually extending one dimension to simulate a chain-like environ
ment. These manipulations ensure that the final structure better reflects 
the structure of polymers. The margin size and expansion matrix can be 
tuned to capture a more realistic polymer environment (a small margin 
or single replication may underestimate inter-chain effects, while very 
large expansions can significantly increase computational load).

2.3.4. CIF generation and feature extraction
The resulting 3D structure was written to a temporary CIF file using 

ASE’s write method. This file was immediately reprocessed with the 
same feature-extraction code we applied to standard CIF inputs. Thus, 
unit cell parameters (a,b,c,α,β,γ), volume, number of atoms, and average 
atomic number are automatically extracted, hence generating a 9- 
dimensional feature vector suitable for our models.

2.3.5. Integration with the existing models
After generating the features, the new sample is passed through our 

model. A predicted dielectric constant is computed in precisely the same 
manner as for data originating from CIF files.

This approach offers a flexible interface in which users can supply 
either standard CIF files (for well-characterized polymers) or SMILES 
strings (for less-characterized polymers or any hypothetical designs). 
The method can be therefore adapted to other polymer classes, such as 
branched polymers, or co-polymers, provided that an appropriate rep
resentation exists.

3. Results and discussion

In this section we present and discuss the key findings of our study. 
We start by showing the results of ANN and random forest training 
processes, and follow by analysing their corresponding strengths and 
weaknesses. We then present the extension of the method to other 
samples by using a second dataset, comprised of compounds whose both 
dielectric constant and SMILES strings are available. Finally, and with 
the aim of providing a deeper interpretation of the models’ behaviour, 
we focus on the chemical structures of the samples with the largest 
deviations.

3.1. ANN and RF models

We trained several ANN models using a grid hyperparameter opti
mization approach (see methods section and Section 1 in supplementary 
information file). Fig. 2 shows hexbin plots comparing predicted versus 
true dielectric constant values for both training (a) and validation (b) 
sets for a single ANN model. The colour intensity represents the density 
of data points, with darker regions indicating higher data concentra
tions, and the solid line indicates the Predicted = True values. The plots 
show a strong linear trend along the diagonal, although some scatter 
samples are observed for higher dielectric constant values (starting at 
approximately 5–6), where the ANN model tends to systematically un
derestimate the target values. In terms of average metrics, training 
achieved a mean average percentage error (MAPE) of 9.1 % and a root 
median squared error (RMSE) of 0.57, while validation achieved MAPE 
= 10.8 % and RMSE = 0.67. It is important to stress that these results 
were obtained with only the above-mentioned structural information as 
input, without needing to rely on any experimental measurements like 
polarizability or other potentially related properties. However, and 

despite the observed overall metrics, it is also important to acknowledge 
that the ANN models present the above-mentioned biases at large 
dielectric constant values that render them nearly useless in this range. 
This issue has been observed throughout all trained ANN models (as 
shown in the hexbin plots in Figure SI 1), which evidences a systematic 
deviation of the approach that will be addressed below.

On the other hand, RF models were able to achieve strong perfor
mances with only a fraction of the computational resources. In this case 
we followed a similar training procedure, for which more information 
(grid hyperparameter optimization and the selected configuration) can 

Fig. 2. Hexbin plots comparing predicted versus true dielectric constant values. 
(a) Training set results, showing a strong correlation along the diagonal, indi
cating good model fit. (b) Validation set results, where the model maintains 
reasonable predictive performance but with slightly increased scatter. The color 
intensity represents the density of data points, with darker regions indicating 
higher data concentrations. The solid line represents the predicted 
= true values.

S. Sharifi et al.                                                                                                                                                                                                                                  Next Materials 8 (2025) 100795 

5 



be found in Section 2 of the supplementary information. Fig. 3 shows the 
predicted versus true dielectric constant results in the validation set for 
the selected model (see shadowed row in Table SI 2 and the corre
sponding scatter plot in Figure SI 2), which present a MAPE= 9.63 %, 
R2= 0.691, and RMSE= 0.583.

As reflected by the lower obtained overall deviations, in this case the 
previous bias is not nearly as pronounced, and even more extreme 
samples are reasonably well predicted (see that the concentration of 
values above 6–7 appear relatively closer to the diagonal than in the 
previous approach). This suggests that the extracted features, i.e. the 
computed unit cell parameters and atomic composition-based de
scriptors, effectively capture the dominant factors influencing permit
tivity (thereby favouring decision-tree-based algorithms that rely on 
well-defined feature importance [46]).

Despite the strong predictive capability demonstrated, some limita
tions should also be acknowledged in this approach. On the one hand, 
the available information in the dataset is mainly composed by medium- 
permittivity polymers, with comparatively few high- and low- 
permittivity materials (which are in turn essential for industrial appli
cations). This imbalance might lead to reduced prediction reliability in 
certain regions of permittivity space (like in the case of very high 
permittivity values for the ANN models). On the other hand, since the 
dataset is derived from crystallographic information files, the approxi
mations made for more amorphous polymers (which are prevalent in all 
practical applications), could present slightly larger deviations and 
biases. As a general trend, the larger deviations tend to cluster around a 
small set of chemically atypical backbones that are under-represented in 
the training distribution. Our inspection of the highest-deviations in
dicates three main recurring chemical structures: samples with organ
ometallic main chains (Sn, Ti), sample with highly fluorinated and 
chlorinated segments (PVDF-β, perfluoro-acetone alt-ethylene), and 
some samples with π-conjugated sulphur heterocycles linked through 
donor-acceptor spacers (C₄H₂S with CO/CS/NH). In the case of organ
ometallic samples, classical atom-type fingerprints encode tin and tita
nium merely as “heavy atoms”, so the distinctive d-orbital polarizability 
that drives the true permittivity is flattened, leading to conservative 
estimates. On the other hand, in case of highly fluorinated and chlori
nated polymers, the strong C–F/C–Cl dipoles raise the dielectric con
stant, but the model’s mixed atomic-charge descriptors were calibrated 
mainly on hydrogenated analogues; it therefore misses the extra dipolar 

contribution and tends to under-estimate fluoropolymers. Finally, in the 
third case the samples share an electron-rich C₄H₂S ring but differ in how 
strongly, and at what periodicity, electron-withdrawing (CO, CS) or 
electron-donating (NH) spacers are inserted. Their dielectric constant is 
extraordinarily sensitive to this subtle electronic push–pull balance.

However, an important strength of this work lies precisely in its 
robust performance when predicting dielectric constants in the low to 
medium-high permittivity range. This capability aligns well with the 
primary objective of our study: identifying foundational or "base" 
polymeric structures and their correlation with dielectric constants. 
Such structural insights can significantly guide the rational design and 
synthesis of new polymeric materials aimed at achieving enhanced 
dielectric properties. By systematically exploring and optimizing these 
"base" structures, future efforts can effectively develop novel polymers 
with elevated permittivity suitable for advanced applications in energy 
storage, microelectronics, and high-voltage insulation.

3.2. Extension to external data and SMILES-based predictions

To assess model robustness and to further increase its applicability, 
we extended our pipeline to use it for inputting any chemical repre
sentations in the form of SMILES strings. Among many others, this 
approach has been widely employed in the past in the study of the 
structure dependence of other properties, and has shown good accuracy, 
applicability and simplicity [48–50]. As shown in Fig. 4 for some 
selected examples, our external test dataset consists of experimentally 
characterized polymers with available SMILES representations (see also 
the chemical representations for each of the strings corresponding to 
their SMILES), which we convert into 3D structures assuming that the 
monomer is enclosed in a unit cell (see methods section for more de
tails). When using these approximated inputs, and with the exception of 
a few examples that we analyse in detail below, the RF model exhibited a 
good agreement between the predicted and true values, thus reinforcing 
the hypothesis that many critical permittivity features can be captured 
from structural and composition information alone.

Fig. 5 shows the scatter plot of the obtained prediction result where, 
to further interpret the model’s performance, we examined the polymers 
with the highest deviations between predicted and true dielectric con
stants. In addition, a summary of external test samples with their indi
vidual metrics is also presented in the Table SI 3. These cases provide 
valuable insights into the strengths and limitations of our feature se
lection approach. Hence, several trends among the polymers with the 
largest deviations can be observed:

3.3. Underestimated dielectric constant in highly polarizable systems

Poly (methyl α-chloroacrylate) exhibited a large deviation 
(17.90 %), with a predicted dielectric constant of 2.79 compared to the 
true value of 3.40 (see label a in Fig. 5). One possible rationalization for 
this result is related to the presence of the highly electronegative chlo
rine atoms, which contribute to strong local dipole interactions and 
polarization effects. The model likely underestimates these contribu
tions, therefore indicating that either additional molecular descriptors 
capturing halogen-related polarization effects, or more chlorinated data 
samples during training could improve accuracy. On the other hand, 
nylon 6 also showed significant underestimation (12.82 %, label b in 
Fig. 5). This polymer displays strong intermolecular hydrogen bonding 
and chain alignment effects, which influence permittivity apparently 
beyond what is captured by our unit cell descriptors alone. As in the 
previous case, this suggests that future models could benefit from 
including features related to hydrogen bonding potential, chain 
mobility, and molecular mobility.

3.4. Overestimated dielectric constant

Poly (diallyl phenyl phosphonate) and Poly (diallyl phthalate) both 

Fig. 3. Hexbin plot comparing predicted versus true dielectric constant values 
in the validation set results. The color intensity represents the density of data 
points, with darker regions indicating higher data concentrations. The solid line 
represents the predicted = true values.
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presented overestimated values (positive deviations of 8.72 % and 
8.96 %, respectively). These materials contain rigid phenyl rings, which 
can reduce chain mobility and polarization response, leading to lower 
effective dielectric constants than the model predicted. Additionally, it 
is important to consider the density factor of polymeric materials, 
particularly when interpreting prediction deviations. A reduced density 
in such systems can decrease the dipolar density per unit volume, 

thereby significantly lowering the observed dielectric constant. Conse
quently, even in systems where dipole mobility is relatively high, a 
lower density of dipoles per unit volume can notably diminish the 
dielectric response, leading to larger discrepancies between predicted 
and actual permittivity values.

Polycarbonate (3.80 % deviation) is another case where the model 
overestimated the dielectric constant. Nylon-based polymers with 

Fig. 4. SMILES, 2D chemical structure and approximated 3D structure for selected compounds in the test set.

Fig. 5. Scatter plot of predicted vs true dielectric constant values. The dashed line represents the predicted = true values, and the shadowed area represents a 0.5 
absolute deviation range. Labels a to g represent the samples with the largest observed deiviations: a) poly (methyl α-chloroacrylate), b) nylon 6, c) PMMA, d) poly 
(vinyl acetate), e)nylon 12, f) nylon 11 and g) poly (ether ketone).
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longer carbon chains also presented overestimated dielectric constants 
(nylon 11 and nylon 12). In particular, nylon 11 was predicted 3.87 (true 
dielectric constant 3.30), and nylon 12 was predicted 3.74 (true 3.60). 
While nylons possess strong intermolecular hydrogen bonding networks 
that contribute to dielectric response through interchain interactions, in 
these cases these are diluted by the longer carbon chains when 
compared to the shorter nylon 6. Furthermore, it is worth noting 
increasing complexity arising from the odd-even effect in polyamides, 
where the number of methylene groups significantly impacts their 
physical and dielectric properties [51]. In our dataset, the model slightly 
overestimates the dielectric constant for these longer-chain nylons. 
Other chemistries, like Poly(amide-imide), showed minimal deviation 
(0.72 %) suggesting that its combination of aromatic and amide func
tionalities is well captured by the model. Other examples include Poly 
(p-hydroxybenzoate) and Poly (hexamethylene adipamide), that also 
showed small deviations (3.63 % and 5.62 %, respectively), thus rein
forcing the hypothesis that hydrogen bonding induced variability is 
reasonably captured.

As a final remark, it is important to emphasize that the DFT-derived 
labels used for training predominantly capture the electronic contribu
tion to the static permittivity at 0 K. This is justified by the fact that, at 
such low temperatures, the glass-transition temperatures of most poly
mers considered here result in minimal contributions (i.e., the α-relax
ation is largely frozen). Additionally, transport processes such as ionic 
conductivity and interfacial phenomena (e.g., Maxwell-Wagner-Sillars 
effects) are significantly suppressed due to the absence of these long- 
segmental motions. On the other hand, if present, β-relaxations (Δεβ) 
would represent the primary thermally activated correction. However, 
the activation energies typically associated with these relaxations hinder 
their occurrence at such low temperatures. Furthermore, the reported 
β-relaxation strengths for common engineering polymers generally 
range from 0.1 to 0.8 (rarely exceeding 1.0) [52] which is comparable to 
the uncertainty of the present model. Values above 1.0 could be asso
ciated with special cases of high-dielectric polymer materials that have 
been excluded from the training process of the model. Therefore, the 
adopted training-validation strategy remains valid for exploring 
structure-property relationships and yields meaningful performance 
estimates for chemical representation inputs (e.g., SMILES).

These insights not only enhance our understanding of the structur
e–property relationships governing polymer dielectric behaviour but 
also provide clear directions for improving the predictive approach in 
future iterations.

4. Conclusions

This study demonstrates the effectiveness of machine learning-based 
approaches for predicting the dielectric constant of polymers using only 
structural descriptors. By employing both artificial neural networks and 
random forest models, we also explored the predictive capabilities of 
different architectures in terms of both accuracy and resource economy. 
In the conditions employed in our study, the obtained results indicated 
that the RF model outperforms the ANN, particularly in capturing 
extreme dielectric constant values while maintaining lower computa
tional costs. The ANN model exhibited a systematic underestimation 
bias at high dielectric constants, likely due to the limited representation 
of high-permittivity polymers in the training set. The generalization of 
the approach to SMILES-based predictions further demonstrated the 
flexibility of the model, allowing for dielectric constant estimations even 
when other data is unavailable. The developed computational approach 
provides a valuable tool for accelerating the identification of next- 
generation dielectric polymers for applications in energy storage, mi
croelectronics, and high-voltage insulation technologies.
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